
CORRECTION TO “DEFINABLE GROUPS AS HOMOMORPHIC

IMAGES OF SEMI-LINEAR AND FIELD-DEFINABLE GROUPS”.

PANTELIS ELEFTHERIOU AND YA’ACOV PETERZIL

The goal of this note is to fix an error in the proof of [2, Proposition 3.6]. The
statement of the theorem requires a a small change, and so does the proof.

Recall that for a definable abelian group 〈H,+〉, a definable subset X ⊆ H is
called H-linear if for every g, h ∈ X, there is a neighborhood U of 0 ∈ H, such that
(g −X) ∩ U = (h−X) ∩ U . If in addition 0 ∈ X then we call X a local subgroup
of G.

Given definable abelian groups 〈G1,+〉 and 〈G2,⊕〉, G1-linear subset X ⊆ G1

and G2-linear subset Y ⊆ G2, a map φ : X → Y is called an isomorphism of X
and Y if φ is a bijection and in addition for every x1, x2, x3 ∈ X,

(1) x1 − x2 + x3 ∈ X if and only if φ(x1)	 φ(x2)⊕ φ(x3) ∈ Y , in which case
(2) φ(x1 − x2 + x3) = φ(x1)	 φ(x2)⊕ φ(x3).

The error in the proof of [2, Proposition 3.6] is in the last sentence of the second
paragraph: the identity map need not be an isomorphism between 〈Cb,+〉 and
〈Cb,⊕〉. Earlier in this paragraph we remarked that the identity map is locally
an isomorphism between those sets (and even without defining what local
isomorphism is). But this does not imply that it is an isomorphism. What
we essentially prove below is that the identity map is a bijective homomorphism
between these two sets (Definition 0.2), which results in the weaker Proposition 0.1
below. In Section 1.3, we show how this proposition suffices for our purposes.

We suspect that [2, Proposition 3.6] is still true as it is stated, but we do not
address this here. An important observation, however, pointed out to us by Eliana
Barriga, is that a bijective homomorphism between two G-linear sets need not be
an isomorphism. Namely:

Caution A definable bijection φ : X → Y could satisfy one of the implications in (1)
without φ−1 satisfying it, and thus without being an isomorphism. For example, let
G1 = 〈R,+〉 and G2 = 〈[0, 1),+(mod1)〉, let X = (0, 3/4) ⊆ G1 and Y = (0, 3/4) ⊆
G2 and let φ : X → Y be the identity map.

It is easy to see that if x−y+z ∈ X then x	y⊕z ∈ Y and then x−y+z = x	y⊕z.
However, 2/3	 1/6⊕ 2/3 = 1/6 ∈ Y but 2/3− 1/6 + 2/3 = 7/6 /∈ X.

We now proceed to fix the error. We recall [2, Fact 3.5], and for that we recall
some definitions:

By a definable parallelogram we mean a set of the form

C0 =

{
k∑

i=1

λi(ti) : ti ∈ Ji

}
,
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each Ji = (−ai, ai) is a long interval (with ai possibly ∞) and λ1, . . . , λk are M -
independent partial linear maps from (−ai, ai) into Mn.

A k-long cone in Mn is a set of the form C = B+C0, for a k-long cone C0, such

that for each x ∈ C there are unique b and ti’s with x = b+
∑k

i=1 λi(ti).

Fact 0.1. [1, Proposition 5.4] Let 〈G,⊕〉 be a definably compact abelian group
of long dimension k. Then G contains a definable, generic, bounded k-long cone
CB + C0 on which the group topology of G agrees with the o-minimal topology.
Furthermore, for every a ∈ C there exists an open neighborhood V ⊆ G of a such
that for all x, y ∈ V ∩ a+ C0,

(1) x	 a⊕ y = x− a+ y.

Our goal is to re-formulate and prove Proposition 3.6 from the article. Towards
that purpose we make the following definition.

Definition 0.2. Given groups 〈G1,+〉 and 〈G2⊕〉, and given a G1-linear set X ⊆
G1 and a G2-linear set Y ⊆ G2, a definable φ : X → Y is a homomorphism from
X to Y if for all x1, x2, x3 ∈ G1, if x1 − x2 + x3 ∈ X then φ(x1)	 φ(x2)⊕ φ(x3) is
in Y , and we have

φ(x1 − x2 + x3) = φ(x1)	 φ(x2)⊕ φ(x3).

Notice that if, in the above definition, X is an actual subgroup ofG1 and φ(0) = 0
then φ(X) is a subgroup of G2 and in particular, if φ is injective then it is an
isomorphism of groups.

Proposition 0.3. Let 〈G,⊕〉 be a definably compact, definably connected abelian
group. Then there exists a definably connected, k-dimensional local subgroup H ⊆ G
and a definable short set B ⊆ G, dim(B) = dim(G)− k, satisfying:

(1) There exist e1, . . . , ek > 0 in M , each tall in M , and there exists a definable
bijective homomorphism φ : H ′ → H, between the Mn-linear set H ′ and
the G-linear set H. In particular, dimH = lgdimH = k.

(2) The set B ⊕H = {b⊕ h : b ∈ B h ∈ H} is generic in G.

Notice that the difference between the above formulation and the original one
is that the bijective homomorphism between H and H ′ is not assumed to be an
isomorphism any more.

1. Proving Proposition 0.3

1.1. A preliminary result. We work in an o-minimal expansion M = 〈M,<
,+, . . .〉 of an ordered group. Let G = 〈G,⊕, eG〉 be a definable group. It has a
group topology, the G-topology. We fix an open parallelogram C0 ⊆ Mn that is
contained in G. Observe that this does not mean C0 is an open set. We know
that C0 is affine, connected and definable. Suppose that the subspace topology on
C0 coincides with the G-topology on it. By “open V ⊆ C0” we mean that V is
relatively open in C0 (in either topology). We assume the following local property
holds: for every a ∈ C0, there is an open V ⊆ C0 containing a, such that for every
x, y ∈ V ,

x	 a⊕ y = x− a+ y.

Our first goal is to prove in details Proposition 1.6 below.
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Claim 1.1. Let a ∈ C0 and open V ⊆ C0 witnessing the local property around a.
Then there is open U ⊆ V containing a such that

U 	 U ⊕ a ⊆ V.

Proof. Because C0 is affine, there is open U ⊆ V containing a such that

U + a− U ⊆ V.
We then have, for every x ∈ U ,

U ⊆ V − a+ x = V 	 a⊕ x,
and hence U 	 x⊕ a ⊆ V. Therefore U 	 U ⊕ a ⊆ V. �

Lemma 1.2. For every a ∈ C0, there is an open U ⊆ C0 containing a, such that
for every x, z ∈ U ,

x	 z ⊕ a = x− z + a.

Proof. Take V witnessing the local property around a. By Claim 1.1, there is open
U ⊆ V containing a such that

U 	 U ⊕ a ⊆ V.
For every x, z ∈ U , we have

x	 z ⊕ a = k ⇔ x = k 	 a⊕ z = k − a+ z,

since k, z ∈ V , and hence
x	 z ⊕ a = x− z + a,

as required. �

Lemma 1.3. For every a ∈ C0, there is an open U ⊆ C0 containing a, such that
for every x, y, z ∈ U ,

x	 z ⊕ y = x− z + y.

Proof. Fix a ∈ C0 and let V ⊆ C0 open containing a witnessing the local property
around a. Let also U ⊆ C0 open containing a provided by Lemma 1.2. We may
shrink U if necessary, so that U ⊆ V and

U − U + a ⊆ V.
Then for every x, y, z ∈ U , we have

x	z⊕y = (x	z⊕a)	a⊕y = (x−z+a)	a⊕y = (x−z+a)−a+y = x−z+y,

as needed. �

We can now show a special case of Proposition 1.6 (with z = a below).

Lemma 1.4. For every a, c ∈ C0, there is open U ⊆ C0 containing a, such that
for every x, z ∈ U ,

(∗) x	 z ⊕ c = x− z + c.

Proof. Fix a ∈ C0 and let

Γ = {c ∈ C0 : there is open U ⊆ C0 containing a such that

for every x, z ∈ U , (*) holds}.
We have Γ 6= ∅, because, by Lemma 1.2, it contains a. We prove that Γ is open
and closed in C0. Since C0 is connected, this will imply that Γ = C.
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Γ open. Suppose c ∈ Γ. Take open V ⊆ C0 containing c witnessing the local
property, and open W ⊆ C0 containing a on which (*) holds. Since C0 is an open
parallelogram, we can shrink W , if necessary, so that

W −W + c ⊆ V.

We thus have, for every x, z ∈W and y ∈ V ,

x	 z⊕ y = (x	 z⊕ c)	 c⊕ y = (x− z+ c)	 c⊕ y = (x− z+ c)− c+ y = x− z+ y,

and hence y ∈ Γ, as needed.

Γ closed. Suppose y ∈ cl(Γ) ∩ C0. Let U ⊆ C0 be an open set containing y
provided by Lemma 1.2 (for a = y). Hence, there is y′ ∈ U ∩ Γ. Let W ⊆ C0 be
open containing a witnessing that y′ ∈ Γ. Shrink W , if necessary, so that also

W −W + y′ ⊆ U.

We have, for every x, z ∈W ,

x	z⊕y = (x	z⊕y′)	y′⊕y = (x−z+y′)	y′⊕y = (x−z+y′)−y′+y = x−z+y,

and hence y ∈ Γ, as needed. �

Corollary 1.5. For every a, c ∈ C0, there is open U ⊆ C3
0 containing (a, a, c), such

that for every (x, z, y) ∈ U ,

(∗) x	 z ⊕ y = x− z + y.

Proof. Let a, c ∈ C0 and U as in Lemma 1.4. Take V ⊆ C0 open containing
c witnessing the local property around c. By shrinking U if necessary, we may
assume that

U − U + c ⊆ V.
Then U×U×V ⊆ C3

0 is open containing (a, a, c), and for every (x, z, y) ∈ U×U×V ,

x	 z⊕ y = (x	 z⊕ c)	 c⊕ y = (x− z+ c)	 c⊕ y = (x− z+ c)− c+ y = x− z+ y,

as needed. �

Proposition 1.6. For every a, x, y ∈ C0 with x− a+ y ∈ C0,

x	 a⊕ y = x− a+ y.

Proof. Fix a, y ∈ C0 and let K = {x ∈ C0 : x− a+ y ∈ C0} and

Γ = {x ∈ K : x	 a⊕ y = x− a+ y}.

We have Γ 6= ∅ because it contains a. We prove Γ is open and closed in K. Observe
that since C0 is a parallelogram, K is easily seen to be connected and open in C0.

Γ open. Let x ∈ Γ. Let also U ⊆ C0 containing x provided by Lemma 1.4 for
x, x− a+ y (the latter is in C0, since x ∈ K). We have, for every x′ ∈ U ,

x′	a⊕y = x′	x⊕(x	a⊕y) = x′	x⊕(x−a+y) = x′−x+(x−a+y) = x′−a+y,

and hence x′ ∈ Γ, as needed.

Γ closed. Let x ∈ cl(Γ) ∩ K. Let U ⊆ C3
0 be open containing (x, x, x − a + y)

provided by Corollary 1.5 for x, x−a+y. We may shrink π1(U) if necessary so that
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for all x′ ∈ π1(U), x′−a+y ∈ π3(U). Now, since x ∈ cl(Γ), there is x′ ∈ π1(U)∩Γ.
We have:

x	a⊕y = x	x′⊕(x′	a⊕y) = x	x′⊕(x′−a+y) = x−x′+(x′−a+y) = x−a+y,

and hence x ∈ Γ, as needed. �

1.2. The proof of Proposition 0.1. We have a strongly long parallelogram C0 ⊆
Mn and a short set B ⊆ Mn, such that for every b ∈ B, and x, y, z ∈ C0, with
x− y + z ∈ C0, we have

(b+ x)− (b+ y) + (b+ z) = (b+ x)	 (b+ y)⊕ (b+ z),

or written differently,

b+ (x− y + z) = (b+ x)	 (b+ y)⊕ (b+ z).

(In this notation the cone C from the article is B + C0).
For b ∈ B, we let fb(x) = b + x a map from C0 into C. By the above we have

for all x, y, x+ y ∈ C0,

(2) fb(x+ y) = fb(x)⊕ fb(y)	 b.

We now define the binary relation on B: b1 ∼ b2 iff there exists g ∈ G such that
for all x ∈ C0 we have fb1(x) = fb2(x) ⊕ g. It is easy to see that this defines an
equivalence relation on B (this is true for any independent of the linearity property
above).

We need:

Claim 1.7. Assume that for b1, b1 ∈ B there exists an open set W ⊆ C0 and g ∈ G,
such that for every x ∈W we have fb1(x) = fb2(x)⊕ g. Then b1 ∼ b2.

Proof. We first claim that there exists a neighborhood W1 3 0 and a constant
element g1 ∈ G such that for all x1 ∈W1, fb1(x1) = fb2(x1)⊕ g1.

Indeed, fix x0 ∈ W and choose W1 3 0 such that x0 + W1 ⊆ W . On one hand
we have, for all x1 ∈W1,

fb1(x0 + x1) = fb1(x0)⊕ fb1(x1)	 b1 = (fb2(x0)⊕ g)⊕ fb1(x1)	 b1.

On the other hand,

fb1(x0 + x1) = fb2(x0 + x1)⊕ g = fb2(x0)⊕ fb2(x1)	 b2 ⊕ g.

It follows that for all x1 ∈W1 we have

fb1(x1) = fb2(x1)⊕ (b1 	 b2).

We now fix g1 = b1 	 b2 and define

Cb1,b2 = {x ∈ C0 : fb1(x) = fb2(x)⊕ g1}.

In order to show that b1 ∼ b2 we need to prove that Cb1,b2 = C0. Because C0 is
definably connected, we need to verify that it is closed and open in C0:

Each of the maps fbi : C → G is continuous with respect to the Mn-topology
in the domain and the G-topology in the range (because B + C0 is open in both
topologies). Thus also the map fb2(x)⊕ g is continuous from Mn into G. It follows
that Cb1,b2 is closed in C0. Let us see that it is also open in C0, so let x0 ∈ Cb1,b2 .
We already saw that 0 is an interior point so fix W1 ⊆ Cb1,b2 an open neighborhood
of 0 such that x0 +W1 ⊆ C0.
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We have

fb1(x0 +x1) = fb1(x0)⊕fb1(x1)	b1 = (fb2(x0)⊕(b1	b2)⊕fb2(x1)⊕(b1	b2))	b1.

= [fb2(x0 + x1)⊕ b2]⊕ (b1 	 b2)	 b2 = fb2(x0 + x1)⊕ (b1 	 b2),

so x0 +W1 is contained in Cb1,b2 . �

Lemma 1.8. There are only finitely many ∼-classes in B.

Proof. This is very similar to the proof in the article. We assume towards contra-
diction that there are infinitely many classes and by replacing B with a definable
set of representatives, we assume that each ∼-class contains a single element (and
B is infinite).

We now consider the map F : B×C0 → G given by F (b, x) = fb(x). We replace
C0 by a definably compact, still strongly long X ⊆ C0 of the same dimension. The
map F is continuous from B ×X endowed with the Mn-topology into G, endowed
with the group topology. As before, for any b1 6= b2 in B, we obtain an open set
V ′′ ⊆ C0, such that the map fb1(x)	fb2(x) is constant on V ′′. Namely, there exists
g ∈ G such that for all x ∈ V ′′, fb1(x) = fb2(x)⊕ g. By Claim 1.7, we have b1 ∼ b2,
contradicting our assumption. �

As in our article, we may replace B by one of the equivalence classes Bi such
that Bi + C0 is still generic in G, thus we may assume that for all b1, b2 ∈ B there
exists g = g(b1, b2) such that fb1(x) = fb2(x)⊕ g for all x ∈ C0.

Fix a cone C ⊆ Mn of the form B + C0 (for B as above), fix b0 ∈ B and for
every b ∈ B choose g(b) ∈ G such that fb(x) = fb0(x)⊕ g(b). We now define

B′ = {g(b)⊕ b0 : b ∈ B}

and

H = {fb0(x)	 b0 : x ∈ C0}.
For every b ∈ B and x ∈ C0, we have

b+ x = fb(x) = fb0(x)⊕ g(b) = (fb0(x)	 b0)⊕ (g(b)⊕ b0),

hence C = B+C0 = B′⊕H. Furthermore, 0G ∈ H and the map σ(x) = fb0(x)	b0
from C0 onto H is injective and satisfies for all x1, x2, x1 + x2 ∈ C0, σ(x1 + x2) =
σ(x1) ⊕ σ(x2), and in particular, σ(x1) ⊕ σ(x2) ∈ H. Note however, that we do
not claim that if σ(x1)⊕ σ(x2) ∈ H then x1 + x2 is in C0. We can finish as in the
article (but with the disclaimer that σ−1 is not a local homomorphism because of
our remark).

1.3. On Section 4.1. We now need to clarify the first few paragraphs of 4.1 .
Actually, the argument there does not really use the existence of an inverse homo-
morphism from H into C0.

Consider then the bijection σ : C0 → H, which is a homomorphism when defined.
Since C0 is convex, for every n ∈ N and x ∈ C0, we have σ(x) = σ(x/n) ⊕ · · · ⊕
σ(x/n), where the sum on the right is taken n-times (since C is convex in Mn, each
x/n belongs to C0). Using the fact that 〈Mn,+〉 is torsion-free it now immediately
follows:

Corollary 1.9. The map σ can be extended to a locally definable homomorphism
from the group generated by C0 in 〈Mn,+〉 onto 〈H〉 the subgroup of G generated
by H.
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The rest of the argument remains the same. Because the set of short elements
in C0 is a subgroup of 〈Mn,+〉 the restriction of σ to it is now an isomorphism of
groups onto its image and we can proceed as before.
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