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Abstract. We prove that all known examples of weakly o-minimal
non-valuational structures have no de�nable Skolem functions. We show,
however, that such structures eliminate imaginaries up to de�nable fam-
ilies of cuts. Along the way we give some new examples of weakly o-
minimal non-valuational structures.

1. Introduction

A fundamental application of o-minimal cell decomposition is the fact that
o-minimal expansions of groups admit de�nable choice, implying � among
others � the existence of atomic models, elimination of imaginaries and curve
selection.

In the present paper we study the analogous properties in the context
of weakly o-minimal structures. Recall that a structure M = 〈M,<, . . .〉
is weakly o-minimal if < is a dense linear order and every de�nable subset
of M is a �nite union of convex sets. Weakly o-minimal structures were
introduced by Cherlin-Dickmann [4] in order to study the model theoretic
properties of real closed rings. They were later also used in Wilkie's proof
of the o-minimality of real exponential �eld [18], as well as in van den Dries'
study of Hausdor� limits [7]. Macpherson-Marker-Steinhorn [10], followed-
up by Wencel [15, 17], began a systematic study of weakly o-minimal groups
and �elds, revealing many similarities with the o-minimal setting.

An important dichotomy between valuational structures � those admitting
a de�nable proper non-trivial convex subgroup � and non-valuational ones
arose, supported by good evidence that the latter structures resemble o-
minimal structures more closely than what the former ones do. For example,
strong monotonicity and strong cell decomposition theorems were proved for
non-valuational structures. As a weakly o-minimal expansion of an ordered
group cannot admit a de�nable choice function for the cosets of a non-trivial
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proper convex sub-group, our study is immediately restricted to the non-
valuational case.

The �rst results of the present note unravel a discrepancy between the
weakly o-minimal non-valuational setting and the strictly o-minimal set-
ting: we show that in all known (to us) weakly o-minimal non-valuational
expansions of ordered groups de�nable Skolem functions do not exist. We
conjecture that, in fact, no strictly weakly o-minimal expansion of an ordered
group admits de�nable Skolem functions.

The non-existence of de�nable Skolem functions is proved, essentially,
by contradicting (a possible generalisation of) curve selection in o-minimal
traces (see De�nitions 1.1 and 1.2 below). On the positive side, however,
we prove that, using di�erent techniques, elimination of imaginaries � to a
certain extent � can still be obtained.

Weakly o-minimal structures arise naturally as expansions of o-minimal
structures by externally de�nable sets [1]. Among those, dense pairs give
rise to non-valuational structures, motivating the following de�nition:

De�nition 1.1. A structure M is an o-minimal trace if there exists an o-
minimal expansion of a group, N0, in a language L0 such that M ( N0 is
dense in N0,M|L0 ≺ N0 andM is the structure induced on M from N0.

In other words, M is an o-minimal trace if there exists a dense pair
(N0,M0) of o-minimal structures (see [6] for details) andM isM0 expanded
by all N0-de�nable sets. In particular no o-minimal trace is o-minimal. To
the best of our knowledge all known examples of weakly o-minimal expan-
sions of ordered groups are o-minimal traces. In particular, in Section 2 we
prove:

Proposition 1. LetM be an o-minimal expansion of an ordered group,M′
any expansion ofM by cuts. ThenM′ is non-valuational if and only if it is
an o-minimal trace.

Section 3 is dedicated to the construction of an example of a weakly o-
minimal non-valuational ordered group that is not an o-minimal trace (or
even a reduct of an o-minimal trace).

The key de�nition to our analysis of de�nable Skolem functions is the
following.

De�nition 1.2. A weakly o-minimal structure M has no external limits
if for every de�nable f : (a, b) → M where a, b ∈ M ∪ {±∞}, the limits
limt→a+ f(t) or limt→a+ f(t) exist in M ∪ {±∞}.

We recall that by the previously mentioned strong monotomicity (or see
[15, Lemma 1.3]) the above limits always exists in the Dedekind completion
of M , justifying the above terminology. Of course, all o-minimal structures
have no external limits, but beyond that we only know:

Proposition 2. O-minimal traces have no external limits.
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The connection with de�nable Skolem functions is established by the fol-
lowing proposition.

Proposition 3. A weakly o-minimal non-valuational expansion of an or-
dered group is o-minimal if and only if it has no external limits and, after
naming a non-zero constant, admits de�nable Skolem functions.

From this we conclude that o-minimal traces do not have de�nable Skolem
functions. In fact, since having no external limits is preserved under elemen-
tary equivalence and under the passage to ordered reducts, we obtain a
stronger result:

Theorem 1. IfM is elementarily equivalent to an ordered group reduct1 of
an o-minimal trace, thenM has no de�nable Skolem functions.

The following statement is appealing and appears to be open.

Conjecture 1.3. No strictly weakly o-minimal non-valuational expansion of
an ordered group has de�nable Skolem functions.

This conjecture in particular would imply that no strictly weakly o-minimal
structure has de�nable choice. The above conjecture would follow from an
a�rmative answer to the next question, which also appears to be open.

Question 1.4. Is every weakly o-minimal non-valuational structure elemen-
tarily equivalent to a reduct of an o-minimal trace?

A better understanding of the notion of external limits and generalisations
of the theory of dense pairs are also relevant topics. We postpone them for
future work.

Section 4 of our note is dedicated to the study of atomic models and
elimination of imaginaries in the weakly o-minimal non-valuational setting.
We start with a hands-on proof of:

Proposition 4. Let M be an ordered group reduct of an o-minimal trace.
Then Th(M) does not have atomic models over arbitrary sets.

On the positive side, we show:

Theorem 2. LetM be a weakly o-minimal non-valuational structure. Then
M eliminates imaginaries up to ∅-de�nable families of de�nable cuts.

We note that while this paper was being revised, an independent work
Laskowski-Shaw [14] appeared, studying weakly o-minimal expansions of or-
dered groups by a single cut. They show that the structure has de�nable
Skolem functions if and only if it is valuational.

Acknowledgements. We wish to thank Salma Kuhlmann for hosting Gil
Keren in Konstanz in the Winter term 2013/2014, during which time this
collaboration began. The visit was funded by the Erasmus Mundus EDEN
consortium. We also thank Philipp Hieronymi and Moshe Kamensky for
their important feedback, and the referee for many useful suggestions.

1This means that the order and the group structure are preserved in the reduct.
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2. No definable Skolem functions

The present section is dedicated to proving that ordered group reducts of
o-minimal traces have no de�nable Skolem funcitions. For convenience we
will assume, throughout, that all groups are equipped with a constant 1 > 0.
We start with a few preliminaries.

As usual, if M is an ordered structure, a cut in M is a partition M =
C ∪ D where C < D. A cut (C,D) is de�nable if C is. As a matter of
convention, throughout this paper we will assume that if (C,D) is a cut in
M then C has no maximum. With these conventions we let M be the set
of all M-de�nable (with parameters) cuts ordered by (C,D) < (C ′, D′) if
C ′ ∩D 6= 0. Throughout we will implicitly identify M with a subset of M
via a 7→ ((−∞, a), [a,∞)).

Following the terminology of [11], a cut (C,D) is rational if D has a
minimal element, and irrational otherwise. IfM expands an ordered group
a cut (C,D) is non-valuational if inf{y − x : x ∈ C, y ∈ D} exists (in the
sense of the structureM, of course). As pointed out to us by M. Kamensky,
if the group is p-divisible for some p then such an in�mum, if it exists, must
be 0. As a canonical example, if G is a de�nable proper, non-trivial, convex
subgroup of M then the formula x > G de�nes a valuational cut. Indeed,
this is the typical case, as shows the following easy observation:

Remark 2.1. Let M be a weakly o-minimal expansion of a group. Then
M is non-valuational if and only if no de�nable cut is valuational.

2.1. Non-valuational expansions of o-minimal groups. As already men-
tioned, it follows from [1] that any expansion of an o-minimal structure by
externally de�nable sets is weakly o-minimal. Since any set of cuts over an
o-minimal structure is realised in some elementary extension, any expansion
of an o-minimal structure by cuts is weakly o-minimal.

We start by sharpening Remark 2.1. Towards that end we remind that
in [11, Lemma 2.2] it is shown that if M is o-minimal, and a realizes an
irrational cut over M then no b ∈M(a) \M realizes a rational cut overM.
The following lemma is an analogue for non-valuational cuts. It follows from
[16, Theorem 2.11], but we provide a succinct proof.

Lemma 2.2. Let M be an o-minimal expansion of an ordered group. Let
(C,D) be an irrational non-valuational cut over M and C < a < D any
realization. ThenM(a) does not realize any valuational cuts over M .

Proof. Let b ∈ M(a) be any element. Then there exists an M-de�nable
function f such that b = f(a). By o-minimality and the fact that a /∈
M (because (C,D) is an irrational cut) there is an M-de�nable interval I
containing a such that f is continuous and strictly monotone or constant on
I. If f is constant on I then b ∈M and there is nothing to prove. So we may
assume without loss of generality that f is strictly increasing. Restricting
I, if needed, we may also assume that I is closed and bounded. So f is
uniformly continuous on I.
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By [11, Lemma 2.2] the type p ∈ S1(M) of a positive in�nitesimal element
is not realized inM(a). It follows, since (C,D) is non-valuational, that for
any c ∈ C(M(a)), d ∈ D(M(a)) and 0 < δ ∈M(a) there are c < c′ < d′ < d
with c′ ∈ C(M) and d′ ∈ D(M) with d′ − c′ < δ. Given any 0 < ε ∈ M(a)
take 0 < ε′ < ε with ε′ ∈ M and let δ ∈ M be such that |f(x) − f(y)| < ε′

for any x, y ∈ I with |x− y| < δ. So

inf{f(d)− f(c) : c ∈ C(M(a)), d ∈ D(M(a))} = 0.

Thus, b realizes a non-valuational cut overM. Since b ∈M(a) is arbitrary,
this �nishes the proof of the lemma. �

We also need the following observation.2

Proposition 2.3. Let M be an o-minimal expansion of an ordered group
and C = {(Ci, Di)}i∈I a collection of irrational non-valuational cuts in M,
where I is an index set. Then there exists M≺ N such that M is dense in
N and N realizes all cuts in C.

Proof. Let {(Ci, Di)}i∈I be a collection of cuts as in the assumption, and p ∈
S1(M) the type of a positive in�nitesimal. We construct N by induction as
follows. For i = 1 letM1 :=M(a1) where a1 |= (C1, D1) is any realization.
By [11, Lemma 2.2] p is not realized inM1. Let a < b ∈M1 be any elements.
Then there exists r ∈M such that 0 < r < b− a (otherwise b− a |= p ). By
the previous lemma a realises a non-valuational cut, so there exists a′ ∈ M
such that a′+ r

2 > a. Thus a′+ r
2 ∈ (a, b)∩M . Since a, b were arbitrary this

shows that M is dense in M1.
Assume now that for all j < i we have constructedMj such that (Cj , Dj)

is realized in Mj+1 and such that M is dense in Mj (so in particular, Mj

does not realise p). If i is a successor ordinal we let Mi,0 = Mi−1 and if
i is limit we let Mi,0 :=

⋃
j<iMi. Note that as density is preserved under

passing to the limit, by induction, M is dense in Mi,0. Finally, if (Ci, Di)
is realized in Mi,0 set Mi = Mi,0. Otherwise set Mi := Mi,0(ai) where
ai |= (Ci, Di) is any realization.

We prove that Mi does not realize p. If Mi = Mi,0 this follows from
the induction hypothesis. So we assume that this is not the case. Thus
(Ci(Mi,0), Di(Mi,0)) de�nes a cut inMi,0, and as by induction M is dense
in Mi,0 this cut is still non-valuational. Thus, applying [11, Lemma 2.2]
again the desired conclusion follows. As in the induction base, it follows
that M is dense in Mi.

Setting N :=
⋃
i∈IMi, by construction, N realizes all (Ci, Di)i∈I and, by

induction M is dense in N , as required. �

From the above result we can deduce the following which, though not
needed in this paper, may be of independent interest:

2We thank Y. Peterzil for pointing out this formulation.
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Corollary 2.4. Let M be an o-minimal expansion of a group. Then there
exists a maximal elementary extensionM≺ N such that M is dense in N .

Proof. Let (Ci, Di)i∈I enumerate all non-valuational irrational cuts in M .
Let N be the structure provided by the previous proposition with respect to
this collection of cuts.

Let N1 � N be any proper extension and a ∈ N1 \N . Let p := tp(a/N).
We may assume that N is dense in N1 (otherwise M is certainly not dense
in N1 and we have nothing to prove). So p is non-valuational. Since M is
dense in N it is also non-valuational in M . If p is irrational over N it is
irrational overM , and so realised in N , which is impossible. So p is rational,
and there exists a′ ∈ N such that p is an in�nitesimal near a′. But then,
say, (a′ − a) ∩N = ∅, so N1 is not dense in M . �

Returning to our main argument we can now deduce Proposition 1.

Proposition 2.5. Let M be an o-minimal expansion of an ordered group.
Then any expansion ofM by non-valuational cuts is an o-minimal trace.

Proof. Let M̃ be the expansion ofM by unary predicates {Ci}i∈I interpreted
as distinct irrational non-valuational cuts inM . We have to show that there
exists an elementary extensionM ≺ N such that M is dense in N and M̃
is precisely the structure induced on M by all externally de�nable subsets
from N .

Let N be as in Proposition 2.3, realizing all Ci. Then M ≺ N and M
is dense in N , so (N ,M) is a dense pair. By [6, Theorem 2] the structure
induced onM in the pair (N ,M) is precisely the expansion ofM by unary

predicates for all cuts realized in N . Thus, by construction, we get that M̃
is a reduct of the structure induced on M from (N ,M). So it remains to

show that any cut over M de�nable in (N ,M) is de�nable in M̃.
So let a ∈ N be any element. We have to show the (−∞, a)∩M is de�nable

in M̃. By construction there are a1, . . . , an realizing the cuts Ci1 , . . . , Cin and
anM-de�nable continuous function, f , such that f(a1, . . . , an) = a. Choose
a1, . . . , an and f so that n is minimal possible. For every η ∈ {−1, 1}n say
that f is of type η at a point c̄ ∈ Nn if

fi(xi) := f(c1, . . . , ci−1, xi, ci+1, . . . , cn)

is strictly monotone at ci and for all 1 ≤ i ≤ n and fi(xi) is increasing at ci
if and only if η(i) = 1. By the minimality of n there is some η ∈ {−1, 1}n
such that f is of type η at (a1, . . . , an). In particular, the set Fη of points
x̄ such that f is of type η at x isM-de�nable with non-empty interior. Let
Li := Ci if η(i) = −1 and Li := Di (the complement of Ci) otherwise, then

L :=
∏n
i=1 Li ∩ Fη has non-empty interior and de�nable in M̃ , and for any

x̄ ∈ L we have that f(x̄) < f(a1, . . . , an) = a. Since M is dense in N and
L(N) is not empty also L(M) is not empty. Thus

x ∈ (−∞, a) ⇐⇒ ∃y(y ∈ L ∧ x < f(y))
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and the right hand side is M̃ -de�nable. �

2.2. No external limits. The key to proving Proposition 3 is the fact that
o-minimal traces do not have external limits (Proposition 2). We will need
the following fact (which follows from [8, Lemma 1.3]).

Fact 2.6. LetM≺ N be o-minimal structures. If f : N → N is a de�nable
function such that f(a) ∈ M for all a ∈ M , then there are �nitely many
intervals {Ii}ki=1 in N , and functions fi : Ii → N de�nable over M , such

that M \
⋃k
i=1(Ii ∩M) is �nite and f |Ii = fi.

Proof. Let D be the collection of all intervals Di provided by [8, Lemma
1.3]. So N \

⋃
D∈DD is �nite. Let I ⊆ D be the sub-collection of those

intervals in D that have in�nite intersection with M . Since f(M) ⊆ M , by
[8, Lemma 1.3(ii)], for every Ii ∈ I, there is fi de�nable over M , such that
f |Ii = fi. �

We can now prove a slightly stronger statement than Proposition 2.

Lemma 2.7. LetM≺ N be o-minimal structures. LetM1 be the structure
induced onM by all N -de�nable sets. ThenM1 has no external limits.

Proof. If a < b are elements inM and f : (a, b)∩M →M is anM1-de�nable
function then by [1] there exists an N -de�nable function F : (a, b)→ N such

that F |(a, b) ∩M = f . Extend F to an N -de�nable map F̂ : N → N such

that F̂ (M) ⊆ M (by letting, for example, F̂ (x) = 0, if x 6∈ (a, b)). By
Fact 2.6, there is an interval I ⊆ N containing some end-segment (c, b) ∩
M of (a, b) ∩M , and a function G : I → N de�nable over M , such that

F̂ |I = G. Since M ≺ N , the restriction of G to M is an M-de�nable
function g : I ∩M → M . Moreover, since f and g agree on (c, b) ∩ I ∩M ,
we have limx→b f(x) = limx→b g(x). By o-minimality of M we know that
limx→b g(x) ∈M ∪ {±∞}, proving the claim. �

As a special case, we obtain Proposition 2.

Corollary 2.8. Any expansion of an o-minimal group by externally de�nable
sets has no external limits. In particular:

(1) Every o-minimal trace has no external limits.
(2) There are weakly o-minimal valuational structures, e.g., RCVF, with

no external limits.

Remark 2.9. Corollary 2.8(2) answers negatively a question of Peterzil
(private communication) who asked whether having no external limits is
characteristic of non-valuational structures.

There is an explicit connection between de�nable non-valuational cuts,
de�nable Skolem functions and no external limits. For an existential formula
ϕ(x) := ∃yψ(x, y), a function f is called a Skolem function for ϕ, if for all x
with ∃yψ(x, y), we have ψ(x, f(x)).
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Lemma 2.10. LetM be a weakly o-minimal expansion of an ordered group,
C anM-de�nable irrational non-valuational cut such that 0 ∈ C. Then the
formula

ϕC(x) := ∃y(x > 0 ∧ y ∈ C ∧ x+ y /∈ C)

has a de�nable Skolem function only ifM has external limits.

Proof. Because C is non-valuational, M |= ϕC(a) for all a > 0. Thus, if
f : (0,∞) → M is a de�nable Skolem function for ϕC(x) we must have
lim
x→0

f(x) = sup(C). Because C is irrational, if f is de�nable it witnesses

thatM has external limits. �

We have thus proved Proposition 3.

Proposition 2.11. LetM be a weakly o-minimal non-valuational expansion
of an ordered group. ThenM is o-minimal if and only if it has no external
limits andM admits de�nable Skolem functions.

Proof. The left-to-right direction is well-known (see, for example, [5, Chapter
6]. In the other direction, ifM is not o-minimal it has at least one de�nable
(irrational) non-valuational cut, C. Since by assumptionM has no external
limits, by Lemma 2.10M has no de�nable Skolem functions. �

In the context of o-minimal traces we can give a more precise statement,
Theorem 1.

Corollary 2.12. IfM is elementarily equivalent to an ordered group reduct
of an o-minimal trace then M has de�nable Skolem functions if and only if
it is o-minimal.

Proof. By Corollary 2.8 o-minimal traces have no external limits. Since both
having no external limits and being weakly o-minimal non-valuational are
elementary and preserved under reductsM has no external limits, the result
follows from Proposition 2.11 �

For reducts of o-minimal traces we can show an even stronger result:

Proposition 2.13. LetM be an ordered group reduct of an o-minimal trace.
Then no expansion of M by externally de�nable sets has de�nable Skolem
functions, unlessM is o-minimal.

Before proceeding to the proof of the proposition we need some handle
over externally de�nable sets in the context of (reducts of) o-minimal traces.
First, we need some terminology.

De�nition 2.14. An o-minimal structure M̃ in a signature L witnesses

that M is an o-minimal trace, if (M̃,M|L) is a dense pair of o-minimal

structures andM is the structure induced on M from M̃.

Lemma 2.15. LetM be an o-minimal trace witnessed by M̃ in the signature
L. Then any expansion ofM by externally de�nable sets is de�nable in the

(non-dense) pair (Ñ ,M|L) where Ñ � M̃ is saturated.
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Proof. Let (Ñ1, Ñ0) � (M̃,M|L) be saturated. So the induced structure on
N0 in the pair is a saturated model of Th(M). Let us denote this structure
N .

By [1] every de�nable set in N is of the form D∩Nk
0 for some Ñ1-de�nable

set D. So any externally de�nable set inM is of the form D ∩Mk for some

Ñ1-de�nable set D. This is what we needed. �

The above lemma generalises automatically to the case where M is an
ordered group reduct of an o-minimal trace. So we are reduced to proving
the following statement.

Lemma 2.16. LetM≺ N be o-minimal expansions of groups. Assume that
there exists c ∈ N \M realising a non-valuational cut C over M . Then no
expansion ofM by N -de�nable sets has a de�nable Skolem function for the
formula

ϕC(x) := ∃y(x > 0 ∧ y ∈ C ∧ x+ y /∈ C)

Proof. By Lemma 2.7 and Proposition 2.10. �

Combining all the above observations we get a proof of Proposition 2.13:

Proof of Proposition 2.13. AssumeM is not o-minimal. Being non-valuational
it admits at least one de�nable non-valuational irrational cut, C. By Lemma
2.15 any expansion ofM by externally de�nable sets is a reduct of the struc-
ture induced on M in some o-minimal pair (N0,M0). Since the structure
induced on M in the pair is an expansion of M it admits at least one de-
�nable irrational non-valuational cut. So by Lemma 2.16 this expansion has
no de�nable Skolem functions. �

Remark 2.17. There are good reasons to believe that Proposition 2.13 ex-
tends to structures elementarily equivalent to such reducts. It seems, how-
ever, that to prove such a result more sophisticated techniques are required,
going beyond the scope of the present paper.

We point out that the assumption in Proposition 2.11 ofM expanding an
o-minimal ordered group is necessary.

Example 2.18. Let R be the structure obtained by appending two real
closed �elds one �on top� of the other. More precisely, the language is given
by (≤, R1, R2,+1, ·1,+2, ·2) and the theory of R is axiomatised by:

(1) R1, R2 are unary predicates such that (∀x)(R1(x) ↔ ¬R2(x)) and
(∀x, y)(R1(x) ∧R2(y)→ x < y).

(2) +i, ·i are ternary relations supported only on triples of elements in
Ri. They are graphs of functions on their domains, and Ri is a real
closed �eld with respect to these operations.

(3) ≤ is an order relation compatible with the �eld ordering of R1 and
R2 together with (1) above.
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It follows immediately from quanti�er elimination for real closed �elds, that
the above theory is complete and has quanti�er elimination (after adding
constants for 0, 1 in both �elds, and relation symbols for the inverse function
in both �elds). Thus R is weakly o-minimal, and the only de�nable cut in R
not realized in R is (R1(R), R2(R)). However, R does have external limits.
Take the function x 7→ x−1 in the �eld structure on R1 on the interval (0, 1).
Clearly its limit, as x→ 0+ is the element in the Dedekind completion of R
that realizes the cut (R1(R), R2(R)), and hence not in R.

As a note, the boolean algebra of de�nable subsets of Rn (any n) is the
boolean algebra generated by sets of the form S1 × S2 where Si ⊆ Rni

i are
semi-algebraic sets with n1 +n2 = n and closing under the natural action of
Sym(n). It follows that R has de�nable Skolem functions.

3. A new example

Our initial approach to proving Conjecture 1.3 was to verify whether all
weakly o-minimal non-valuational structures are o-minimal traces. As it
turns out, the class of o-minimal traces is not closed under taking ordered
group reducts. The present section is dedicated to an example, Qπvs, of a
weakly o-minimal expansion of the ordered group of rational numbers which
is not a reduct of an o-minimal trace. However, Qπvs is elementarily equivalent
to a reduct, Rπalg, of an o-minimal trace. This shows that the class of reducts
of o-minimal traces is not elementary. We do not know the answer to the
analogous question for o-minimal traces.

We �rst construct Rπalg. Let R be the �eld of real numbers, Ralg the real

closure of Q. Then (R,Ralg) is a dense pair. Let R̃alg be the structure on
Ralg induced from R. Let

P = {(x, y) ∈ R2
alg : y < πx}

and

Rπalg = (Ralg,≤, 0, 1,+, P ).

The structure Rπalg is a weakly o-minimal non-valuational expansion of an

ordered group with no external limits, being a reduct of R̃alg, which has
these properties by virtue of being an o-minimal trace. Our �rst goal is to
prove a quanti�er elimination result for the theory of Rπalg (Proposition 3.3

below).

Lemma 3.1. For all α ∈ Q(π) the relation αx < y is ∅-de�nable in Rπalg.

Moreover, for α1, . . . , αn ∈ Q(π) linearly independent over Q
the relation

∑n
i=1 αixi < 0 is ∅-de�nable.

Proof. Abusing terminology, we will say that α ∈ Q(π) is de�nable in Rπalg

if the relation αx < y is. We show that if α, β ∈ Q(π) are de�nable in Rπalg

then so is α + β and that πn is de�nable for all n ∈ Z. Indeed, if α, β are
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de�nable by Sα, Sβ then α+ β is de�ned by

(∃z1, z2)(Sα(x, z1) ∧ Sβ(x, z2) ∧ y > z1 + z2).

If x 7→ πnx is de�nable by Pn(x, y) then x 7→ πn+1x is de�ned by

(∃z)(Pn(x, z) ∧ P1(z, y).

So to conclude the �rst part of the lemma it remains only to note that
P−1(x, y) is given by P1(y, x).

For the second part of the lemma we will show that if n > 1 and α1, . . . , αn
are linearly independent over Q then:

n∑
i=1

αixi < 0 ⇐⇒ (∀x′1, . . . x′n)

(
n∧
i=1

x′i < αix→
∑
i=1n

x′i < 0

)
unless xi = 0 for all i. The left-to-right direction is clear, so we have to show
the other implication. The assumption implies

∑n
i=1 αixi ≤ 0, so we only

have to check that equality cannot hold. First, observe that since the xi
are not all 0, we may assume � by induction on n � that the xi are linearly
independent over Q. Indeed, if x1 =

∑n
i=2 qixi for qi ∈ Q we get

n∑
i=1

αixi = α1

n∑
i=2

qixi +

n∑
i=2

αixi =

n∑
n=2

(qiα1 + αi)xi

and as {(qiα1 + αi)}ni=2 are still independent over Q the claim follows. Now
αi are polynomials in π with rational coe�cients and xi are real algebraic

numbers, so we can write
∑n

i=1 αixi =
∑k

i=0 βiπ
i = 0 where βi are Q-linear

combinations of x1, . . . , xn. So βi = 0 for all i if and only if the αi are all 0,
which is impossible, since they are linearly independent. �

The above lemma can be restated as follows:

Corollary 3.2. Let Lπ be the language of ordered Q-vector spaces expanded
by n-ary predicates for the relations Cᾱ(x̄) :=

∑n
i=1 αixi < 0 for all n ∈ N

and αi ∈ Q(π). Then Cᾱ(x̄) is de�nable in Rπalg and Cᾱ(r̄) ≡ Cβ̄(s̄) if and

only if
∑
αi ⊗ ri =

∑
βj ⊗ sj as elements of R⊗Q Q(π).

Let T0 be the Lπ-theory of ordered Q-vector spaces expressing the con-
clusion of the previous corollary. By construction Rπalg |= T0.

Proposition 3.3. The theory T0 has quanti�er elimination.

Proof. Let Q1,Q2 |= T0 be saturated of the same cardinality. We will show
that if Ai ⊆ Qi are small divisible subgroups, and f : A1 → A2 is a partial
Lπ-isomorphism, then f can be extended to any a ∈ Q1.

Since f is an Lπ-isomorphism Qi |= T0 we can extend f to an isomorphism
of A1⊗Q(π) with A2⊗Q(π). Identify a with a⊗1. By quanti�er elimination
in the theory of ordered divisible abeian groups and since A1⊗Q(π) is a divis-
ible abelian sub-group, tp(a/A1⊗Q(π)) is determined by the cut it realises.
Thus, it will su�ce to show that the same cut over A2 ⊗Q(π) is realised in
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Q2 ⊗ Q(π). But since Q2 is a saturated model of T0 we automatically get
that Q2 ⊗Q(π) is saturated (for ≤), as required. �

We are now ready to present our main example. Let

F = {(x, y) ∈ Q2 : y < πx}
and

Qπvs = (Q,≤, 0, 1,+, F ).

Clearly, Qπvs |= T0, so by quanti�er elimination (Proposition 3.3) Qπvs ≡ Rπalg.
In particular, since Rπalg is weakly o-minimal and non-valuational, so is Qπvs.

Theorem 3.4. Qπvs is not a reduct of an o-minimal trace.

Proof. Assume towards a contradiction that there exists an o-minimal struc-
ture Q with universe Q, and R � Q such that (R,Q) is a dense pair, and
the structure induced on Q from R expands Qπvs. In particular, R is a subset
of R. Moreover, Q(π) ⊆ R, since the de�nable cut ((−∞, π), (π,+∞)) in
Qπvs is realized in R, by [6, Theorem 2].

The desired conclusion now follows from [12] as follows. First, by Theo-
rem A thereof, either R is linearly bounded or there is a de�nable binary
operation · such that (R,≤,+, ·) is a real closed �eld. Since Q ≺ R, in
the latter case we would have a binary operation ·Q de�nable in Q making
(Q,≤,+, ·Q) into a real closed �eld. But that is impossible, because (Q,+)
is the standard addition on Q, and therefore there exists at most one �eld
structure (de�nable or not) expanding it, and (Q,+, ·) is not real closed.

So we are reduced to the linearly bounded case. The closure K of F =
{(x, y) ∈ Q2 : y < πx} in R2 is the graph of the map x 7→ πx : R → R.
Clearly, F is de�nable in the pair (R,Q), and hence, by [6, Corollary 4.9],
K is de�nable in R. Hence x 7→ πx : R → R is a de�nable endomorphism
of (R,+), and by [12, Theorem B], it is ∅-de�nable. Since Q ≺ R, the
restriction of this map to Q has image in Q, a contradiction. �

The above proof actually shows more:

Corollary 3.5. If Q ≡ Qπvs then Q is not an o-minimal trace. In particular,
Rπalg is not an o-minimal trace.

Remark 3.6. We have shown that Rπalg witnesses the fact that the class of
o-minimal traces is not closed under reducts, and Qπvs witnesses that the class
of reducts of o-minimal traces is not closed under elementary equivalence.

4. Atomic models and elimination of imaginaries

In the o-minimal context de�nable Skolem functions have two main appli-
cations. The �rst, is a simple proof of the existence of atomic models, and
in its stronger form of de�nable choice it implies elimination of imaginaries.

For o-minimal structures both properties can be proved under fairly gen-
eral assumptions even for structures not supporting de�nable Skolem func-
tions. In the present section we investigate these two properties in the weakly
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o-minimal non-valuational case. We show that all known examples of such
structures do not have atomic models. We then discuss elimination of imagi-
naries, obtaining � using the new machinery developed in [2] � some positive
results.

The obstacle to the existence of atomic models is simple: ifM is strictly
weakly o-minimal and non-valuational there exists a de�nable cut C that is
irrational overM, i.e.,M is dense at C. But this need not be the case over
arbitrary sets. In the case of o-minimal traces, our control over the de�nable
closure operator, allows us to construct such examples:

Proposition 4.1. Let M0 be a saturated o-minimal expansion of a group
in the signature L0. Let tp(c/M0) be that of an irrational non-valuational
cut, andM the expansion ofM0 by the externally de�nable cut x < c. Then
Th(M) does not have atomic models over arbitrary sets.

Proof. Let A ⊆M be a small set. We note that by weak o-minimality (and
the group structure) the only types isolated over A are algebraic. So it will
su�ce to �nd A ⊆M such that dclM(A) is not an elementary substructure.

Choose any small N0 ⊆ M0 such that tp(c/N0) is an irrational non-
valuational cut. This can be done as follows: choose {ai}i∈ω ⊆M inductively
by ai |= tp(c/Ai−1), where Ai = dclM0(Ai−1ai) and A−1 = ∅. Then set
N0 :=

⋃
i∈ω Ai. Saturation of M0 assures that this construction can be

carried out.
Now let a ∈ M be such that tpL0(a/N0) = tpL0(c/N0). Then, by con-

struction N0 is dense in N0(a) and a realises an irrational cut over N0. It
follows that tp(c/N0a) is a rational cut. To show this it will su�ce to prove
that |c − a| < b for all b ∈ N0(a). But because N0 is dense in N0 it will
su�ce to check the same thing for b ∈ N0. This is now immediate from the
choice of a and the fact that c realises an irrational non-valuational cut over
N0.

It follows that N0(a) 6≡ M (because C � the externally de�nable set x < c
� is a rational cut over N0(a) but not over M). Finally, since, e.g., by [6]
M is precisely the expansion ofM0 by cuts de�ned byM0(c) over M0 we
get that dclM(N0(a)) ⊆ N0(ac)∩M . Since dimM0(c/M) = 1 it follows that
dclM(N0(a)) = N0(a), with the desired conclusion. �

We point out that the key to the above proof is the fact that dclM(N0(a)) ⊆
N0(ac) ∩M . Indeed, the exact same proof would work if M were the ex-
pansion ofM0 by any number of distinct non-valuational irrational cuts. It
would also work ifM were any ordered group reduct of such an expansion.
More precisely:

Corollary 4.2. Let M be an ordered group reduct of an o-minimal trace,
which is not o-minimal. Then:

• there is A ⊆M such that dclM(A) is not an elementary substructure.
• Th(M) does not have atomic models over arbitrary sets.
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As we do not know of any example of a weakly o-minimal non-valuational
structure whose theory is not that of an ordered group reduct of an o-minimal
trace it is natural to ask:

Question 4.3. Assume that T is a weakly o-minimal non-valuational theory
expanding the theory of ordered group. Assume that T has atomic models
(i.e., over any set). Is T o-minimal?

We now turn to the question of elimination of imaginaries. To the best
of our knowledge, the only place the problem is addressed is [15, Theorem
6.3]. As our previous proposition shows, the assumptions in the main part of
Wencel's result are not met in all known examples3. Here we take a di�erent
approach. To start we need:

De�nition 4.4. Let M be a weakly o-minimal expansion of an ordered
group. Let M be the set of M-de�nable cuts, and M∗0 the structure with
universe M and whose atomic sets are ClM (D) for all D M-de�nable over
∅.

It is not hard to see thatM∗0 has the same de�nable sets as the �canonical
o-minimal extension� de�ned in [15, Section 3]; we will not be using this fact.
We only need the following statement taken from the M.Sc. thesis of E. Bar
Yehuda, [2].

Fact 4.5. Let M be a weakly o-minimal non-valuational expansion of an
ordered group, C ⊆ Mn+m any set M-de�nable over ∅. Then there exists a
set C̃,M∗0-de�nable over ∅, such that for all a ∈Mn the set

C̃a := {b ∈Mm
: (a, b) ∈ C̃} = ClM (Ca)

where Ca := {b ∈Mm : (a, b) ∈ C}.

We can now state the result:

Theorem 4.6. Let M be a weakly o-minimal non-valuational expansion
of an ordered group. Then M∗0 eliminates imaginaries for M. I.e., for
any equivalence relation E, ∅-de�nable in M there exists a function fE, ∅-
de�nable inM∗0 such that for all x, y ∈ dom(E) we have f(x) = f(y) if and
only if E(x, y).

Proof. Let E be as provided by Fact 4.5. SinceM expands a group so does
M∗0. So M∗0 has de�nable choice (possibly after naming one positive con-
stant). So there is a ∅-de�nable function f : dom(E) → dom(E) such that
f(x) = f(y) if and only if Ex = Ey. Now, if x, y ∈ dom(E) and |= E(x, y)
then Ex = Ey, implying that ClM Ex = ClM Ey, so that, by the construc-

tion of E and f we get that f(x) = f(y) So it remains to check that if
x, y ∈ dom(E) and Ex = Ey then E(x, y). Towards that end, it will su�ce
to show that Ex ∩ Ey 6= ∅ (because E is an equivalence relation). Since

3Moreover, Wencel's proof seems to use [15, Proposition 6.2]. The justi�cation for this
usage is unclear to us.
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Ex = ClM Ex it is enough to prove:

Claim: If C,D ⊆Mn are such that ClM (C) = ClM (D) then C ∩D 6= ∅.

Let C,D be as in the claim. It is standard to check that

(*) dimM∗
0
(ClM (C)) = dimM(C) > dim(ClM (C) \ C) ≥ dimM(∂C).

So the assumptions imply that dimM(C) = dimM(D). It will therefore be
enough to prove the weaker claim that if

(**) dimM (ClM (C) ∩ ClM (D)) = dimM(C) = dimM(D)

then C ∩D 6= ∅.
In what follows, we make use of Wencel's strong cell decomposition theo-

rem (see [15] for de�nitions and the theorem). Fix strong cell decompositions
C and D of C and D respectively. Since ClM (C) =

⋃
{ClM (Ci) : Ci ∈ C},

and similarly for D, there must be cells Ci ∈ C and Dj ∈ D satisfying (∗∗)
above. Thus, we are reduced to proving the lemma under the assumption
that C,D are strong cells.

Now the proof of the claim for strong cells is an easy induction. If C,D
are 0-cells, there is nothing to show. If C,D are 1-cells then ClM (C) and
ClM (D) are closed intervals, and their intersection, by assumption, is also

an interval. Since M is dense in M , we get that C ∩D is an interval in M .
Essentially the same proof works if C,D are open cells � then the assump-

tion implies that the intersection of their closures contains an open set, and
by density of M in M and (∗) we get the desired conclusion.

In general, C,D are graphs of de�nable functions. Let πC be a projection
such that dimM(πC(C)) = dim(C). So, since C is a cell, πC is injective on
C and πC(C) is an open cell. On a set of small co-dimension of ClM (C)
the projection π(C) is an injection so there exists a set of full dimension in
ClM (C) ∩ ClM (D) such that πC is an injection. Restricting to the image of
that set under πC the claim now follows by induction. �

The above, implies in particular that if M is a structure as above, and
for anyM-∅-de�nable function f : Mn → M there exists anM-∅-de�nable
function F : Mn → Mm (some m) such that F (x) = F (y) if and only
if f(x) = f(y) then M eliminates imaginaries. Indeed, if E is an M-∅-
de�nable equivalence relation on Mn then by the theorem there exists a
∅-de�nable (inM∗0) function fE : M

n →M such that fE(x) = fE(y) if and
only if E(x, y) for x, y ∈ dom(E). Since the structure induced on M from
M∗0 isM, the restriction f |Mn isM-de�nable. By [2] it isM-∅-de�nable.
So the function f̃E eliminates the imaginary Mn/E.

In view of the above it seems natural to identify the pair (M∗0,M) with
Meq, suggesting that this may well be the right context for studying weakly
o-minimal non-valuational structures.
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