SMALL SETS IN DENSE PAIRS

PANTELIS E. ELEFTHERIOU

We consider expansions $\widetilde{\mathcal{M}} = \langle \mathcal{M}, P \rangle$ of an o-minimal structure \mathcal{M} by a set $P \subseteq M$, such that the geometric behavior on the class of all definable sets is tame. An important category of such structures is when every definable open set is already definable in \mathcal{M} ([1, 2, 4, 5, 7]). Three main examples of this category are:

- (1) Dense pairs
- (2) Expansions of \mathcal{M} by a dense independent set
- (3) Expansions of real closed field \mathcal{M} by a dense divisible subgroup P of $\langle M^{>0}, \cdot \rangle$ with the Mann property.

In [7], all these examples were put under a common perspective, and a cone decomposition theorem was proved for their definable sets. That theorem aimed to provide an understanding of all definable sets in terms of sets definable in \mathcal{M} and 'P-bound' sets. Corollary 5 below further reduces the study of P-bound sets to that of subsets of some P^l definable in $\widetilde{\mathcal{M}}$.

Notation. We fix an o-minimal expansion $\mathcal{M} = \langle M, <, +, 0, \ldots \rangle$ of an ordered group with a distinguished positive element 1. We denote by \mathcal{L} its language, and by dcl the usual definable closure operator in \mathcal{M} . An ' \mathcal{L}_A -definable' set is a set definable in \mathcal{M} with parameters from A. We also fix some $P \subseteq M$ and denote $\mathcal{M} = \langle \mathcal{M}, P \rangle$. An '(A-)definable set' is a set definable in \mathcal{M} with parameters from A. We drop the above indices 'A', if we do not want to specify the parameters. Finally, we let D denote a subset of M.

Definition 1 ([4]). A set $X \subseteq M^n$ is called *P-bound over A* if there is an \mathcal{L}_A -definable function $h: M^m \to M^n$ such that $X \subseteq h(P^m)$.

In the aforementioned examples, P-boundness amounts to a precise topological notion of smallness ([7, Definition 2.1]), as well as to the classical notion of Pinternality from geometric stability theory ([7, Corollary 3.12]). In [7], we asked:

Question 2. Is every P-bound set in definable bijection with a subset of P^n , for $some \ n?$

The main difficulty in answering the above question is that in $\widetilde{\mathcal{M}}$, most 'choice properties' generally fail. For example, it is known that a dense pair does not eliminate imaginaries and does not admit definable Skolem functions ([2, Section 5]. If P is a dense independent set, then \mathcal{M} eliminates imaginaries but does not admit definable Skolem functions ([3]). We observe here (Corollary 5 below) that all that is needed in order to answer the above question is that the induced structure on P by \mathcal{M} eliminates imaginaries.

Definition 3. Let $D, P \subseteq M$. The *D-induced structure on* P *by* M, denoted by $P_{ind(D)}$, is a structure whose language is

$$\mathcal{L}_{ind(D)} = \{ R_{\phi(x)}(x) : \phi(x) \in \mathcal{L}_D \}$$

and, for every tuple $a \subseteq P$,

$$P_{ind(D)} \models R_{\phi}(a) \Leftrightarrow \mathcal{M} \models \phi(a).$$

We prove (Proposition 6) that in our examples, $P_{ind(D)}$ eliminates imaginaries, for any $D \subseteq M$ which is dcl-independent over P. We work in a general setting. Consider the following properties for $\widetilde{\mathcal{M}}$ and D:

- (OP) (Open definable sets are \mathcal{L} -definable.) For every set A such that $A \setminus P$ is delindependent over P, and for every A-definable set $V \subset M^n$, its topological closure $\overline{V} \subseteq M^n$ is \mathcal{L}_A -definable.
- $(dcl)_D$ Let $B, C \subseteq P$ and

$$A = \operatorname{dcl}(BD) \cap \operatorname{dcl}(CD) \cap P.$$

Then

$$\operatorname{dcl}(AD) = \operatorname{dcl}(BD) \cap \operatorname{dcl}(CD).$$

 $(ind)_D$ Every A-definable set in $P_{ind(D)}$ is the trace of an \mathcal{L}_{AD} -definable set.

Properties (OP) and (ind)_D already appear in the literature and are known for our three examples ([7]). Property (dcl)_D is introduced here. We prove the following results ([6]).

Theorem 4. Suppose (OP), $(dcl)_D$ and $(ind)_D$ hold for $\widetilde{\mathcal{M}}$ and D. Then $P_{ind(D)}$ eliminates imaginaries.

Corollary 5. Suppose (OP), $(dcl)_D$ and $(ind)_D$ hold for $\widetilde{\mathcal{M}}$ and D, and let $X \subseteq M^n$ be a D-definable set. If X is P-bound over D, then there is a D-definable injective map $\tau: X \to P^l$.

Proof. Let $h: M^m \to M^n$ be an \mathcal{L}_A -definable map such that $X \subseteq h(P^m)$, and consider the following equivalence relation E on M^m :

$$xEy \Leftrightarrow h(x) = h(y).$$

Note that $E \cap (P^m \times P^m)$ is an equivalence relation on P^m , which is \emptyset -definable in $P_{ind(D)}$. Since $P_{ind(D)}$ eliminates imaginaries, there is a \emptyset -definable in $P_{ind(D)}$ map $f: P^m \to P^l$, for some l, such that for every $x, y \in P^m$,

$$f(x) = f(y) \Leftrightarrow xEy.$$

Define $\tau: X \to P^l$, given by $\tau(h(x)) = f(x)$. Then τ is well-defined, injective and D-definable (in $\widetilde{\mathcal{M}}$).

We verify $(dcl)_D$ in our three main examples.

Proposition 6. Let $\widetilde{\mathcal{M}} = \langle \mathcal{M}, P \rangle$ be a dense pair, or an expansion of \mathcal{M} by a dense independent set or by a dense divisible multiplicative group with the Mann Property. Let $D \subseteq \mathcal{M}$ be dcl-independent over P. Then $(\operatorname{dcl})_D$ holds. Hence $P_{ind(D)}$ eliminates imaginaries.

The assumption that D is dcl-independent over P is necessary. Namely, without it, $P_{ind(D)}$ need not eliminate imaginaries. However, even without it, we still obtain the following corollary, which in particular applies to our examples.

Corollary 7. Suppose (OP), $(\operatorname{dcl})_D$ and $(\operatorname{ind})_D$ hold for $\widetilde{\mathcal{M}}$ and every $D \subseteq M$ which is dcl -independent over P. Let $X \subseteq M^n$ be an A-definable set. If X is P-bound over A, then there is an $A \cup P$ -definable injective map $\tau : X \to P^l$.

Allowing parameters from P is standard practice when studying definability in this context; see for example also [7, Lemma 2.5, Corollary 3.24].

Finally, we show that Theorems A and B are optimal also in the following way. Let D be dcl-independent over P. Suppose (OP) and (ind)_D hold for $\widetilde{\mathcal{M}}$ and D. Then:

 $P_{ind(D)}$ eliminates imaginaries \Leftrightarrow (dcl)_D.

If we do not assume (OP), the above two properties need not hold. We do not know whether they hold, if we assume (OP) and $(ind)_D$. Finally, (OP) does not imply $(ind)_D$, but we do not know whether $(ind)_D$ is necessary for P_{ind} to eliminate imaginaries.

References

- [1] G. Boxall, P. Hieronymi, Expansions which introduce no new open sets, Journal of Symbolic Logic, (1) 77 (2012) 111-121.
- [2] A. Dolich, C. Miller, C. Steinhorn, Structures having o-minimal open core, Trans. AMS 362 (2010), 1371-1411.
- [3] A. Dolich, C. Miller, C. Steinhorn, Expansions of o-minimal structures by dense independent sets, APAL 167 (2016), 684-706.
- [4] L. van den Dries, Dense pairs of o-minimal structures, Fundamenta Mathematicae 157 (1988), 61-78.
- [5] L. van den Dries, A. Günaydın, The fields of real and complex numbers with a small multiplicative group, Proc. London Math. Soc. 93 (2006), 43-81.
- [6] P. Eleftheriou, Small sets in dense pairs, in preparation.
- [7] P. Eleftheriou, A. Günadin and P. Hieronymi, Structure theorems in tame expansions of o-minimal structures by dense sets, preprint (2016).