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ABSTRACT. For a weakly o-minimal expansion M = (M, <,+,...) of an or-
dered group, we introduce the notion ‘no external limits’ and prove that M is
o-minimal if and only if it has no external limits and admits definable Skolem
functions. We then show that all known examples of weakly o-minimal non-
valuational expansions of ordered groups have no external limits and thus
obtain a large collection of such structures that do not have definable Skolem
functions, extending a result from Shaw [8].

1. EXTENDED ABSTRACT

A structure M = (M, <,...) is called o-minimal if every definable subset of M
is a finite union of points and intervals [3, 7]. M is called weakly o-minimal if every
definable subset of M is a finite union of convex sets [2, 6]. Examples of weakly
o-minimal structures are:

(a) R = (R, Fin(R)), a non-archimedean real closed field R expanded by its
natural valuation ring F'in(R).

(b) R = (Raig, (0,m)), the field of real algebraic numbers expanded by the
convex set (0, ).

These are the archetypical examples of two categories of weakly o-minimal struc-
tures that can be distinguished by their ‘definable cuts’. A pair (C, D) of non-empty
subsets of M is called a cut in M if C < D and CUD = M. It is called a de-
finable cut if C' (and D) are definable. If M = (M, <,+,...) expands an ordered
group, then M is called non-valuational if for every definable cut (C, D) in M, the
infimum inf{y —z : x € C,y € D} exists in M (and must equal 0). Otherwise, it
is called wvaluational. Example (a) above is valuational and (b) is non-valuational.
We denote by M the set of all definable cuts (C,D) in M such that C has no
maximum element. Then M has a natural order, where (C, D) < (C’,D') if and
only if C' < C’, which extends the order < of M, where a € M is identified with
((—OO, a)v [a, +OO)) .

In [6], a weak cell decomposition theorem was proved for every weakly o-minimal
structure M. In [9], a strong cell decomposition theorem was shown in case M is
non-valuational, exhibiting its resemblance to o-minimal structures. In the current
note, we introduce the notion of having no external limits (Definition 1.1 below)
and use it to prove that a large collection of weakly o-minimal non-valuational
structures do not admit definable Skolem functions.
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Canonical examples of weakly o-minimal non-valuational structures are obtained
by considering dense pairs of o-minimal structures, as introduced in [4]: let A be
an o-minimal structure and M; < A a dense elementary substructure. The theory
of dense pairs is the theory of the structure (N, M;) obtained by expanding A
with a unary predicate for the universe M of M;. By a result of [1] the structure
M induced from (N, M;) on M is weakly o-minimal. Moreover, any definable set
in M is of the form M™ N S where S C N" is N-definable, [4, Theorem 2]. Thus,
any definable cut in M is of the form ((—o0,a) N M, (a,+00)) for some a € N.
Since M is dense in N, we obtain that M is non-valuational.

We now give the main definition and results of this note.

Definition 1.1. A weakly o-minimal structure M has no external limits if for every
definable f : (a,b) — M where a,b € M U {#oo} and lim; ,,+ f(t) or lim; .+ f(¢)
exist in M, then that limit exists in M. Otherwise, we say that M has external
limats.

Theorem 1.2. Let (N, M) be a dense pair and M the induced structure on the
universe M of My. Then every ordered reduct of M has no external limits.

By [1], an expansion of an o-minimal structure by any number of convex sets is
weakly o-minimal.

Theorem 1.3. Let M; = (M, <,+,...) be an o-minimal expansion of an ordered
group. Let M = (M1,{C;}ic1) be an expansion of My by a number of convex
sets. Assume that M is non-valuational. Then there is a dense pair (N, My) of
o-minimal structures such that M is the induced structure on M.

It follows that the structure M from the last theorem has no external limits.
Although it is easy to construct a weakly o-minimal non-valuational structure
which has external limits, we conjecture the following:

Conjecture 1.4. Let M = (M, <,+,---) be a weakly o-minimal non-valuational
expansion of an ordered group. Then M has no external limits.

Theorem 1.5. Let M = (M, <,+,...) be a weakly o-minimal expansion of an
ordered group. Then M is o-minimal if and only if it has no external limits and
admits definable Skolem functions.

Corollary 1.6. The weakly o-minimal structures from Theorems 1.2 and 1.8 do
not admit definable Skolem functions.

The reader may wonder if all weakly o-minimal non-valuational expansions of
ordered groups can be obtained as (reducts of) the induced structure from a dense
pair (N, M) on the universe M of M;. This is not the case, as it can be shown
with the structure <Q, <+, {{(m,y) cr < ay}}aeQ(w)>.
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