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Abstract. We analyze definably compact groups in o-minimal expan-
sions of ordered groups as a combination of semi-linear groups and
groups definable in o-minimal expansions of real closed fields. The anal-
ysis involves structure theorems about their locally definable covers. As
a corollary, we prove the Compact Domination Conjecture in o-minimal
expansions of ordered groups.

1. Introduction

This is the second of two papers (originally written as one) analyzing
groups definable in o-minimal expansions of ordered groups. The ultimate
goal of this project is to reduce the analysis of such groups to semi-linear
groups and to groups definable in o-minimal expansions of real closed fields.
Such a reduction was proposed in Conjecture 2 from [19] and a first step
towards it was carried out in [10].

In the first paper ([12]) we established conditions under which locally
definable groups have definable quotients of the same dimension. In this
paper, we carry out the aforementioned reduction for definably compact

groups by first stating a structure theorem for the universal cover Ĝ of

a definable group G (Theorem 1.1). We describe Ĝ as an extension of a
locally definable group U in an o-minimal expansion of a real closed field by

a locally definable semi-linear group Ĥ. We then apply [12, Theorem 3.10]
and derive a stronger structure theorem (Theorem 1.3), replacing the above
U by a definable group. We expect that the second theorem will be useful
when reducing questions for definable groups to groups in the semi-linear
and field settings. We illustrate this effect by applying our second theorem
to conclude the Compact Domination Conjecture in o-minimal expansions
of ordered groups (Theorem 1.4 below).

Let us provide the details.
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1.1. The setting. We let M = ⟨M,<,+, 0, . . . ⟩ be an o-minimal expansion
of an ordered group. When M expands a real closed field (with + not nec-
essarily one of the field operations) there is strong compatibility of definable
sets with the field structure. For example, each definable function is piece-
wise differentiable with respect to the field structure. Other powerful tools,
such as the triangulation theorem, are available as well ([3]). At the other
end, when M is a linear structure, such as a reduct of an ordered vector
space over an ordered division ring, then every definable set is semi-linear.

By the Trichotomy Theorem for o-minimal structures there is a third
possibility (see [20]), where there is a definable real closed field R on some
interval in M , and yet the underlying domain of R is necessarily a bounded
interval and not the whole of M . Such a structure is called semi-bounded
(and non-linear), and definable sets in this case turn out to be a combination
of semi-linear sets and sets definable in o-minimal expansions of fields (see
[4], [19], [10]). An important example is the expansion of the ordered vector
space ⟨R;<,+, x 7→ ax⟩a∈R by all bounded semialgebraic sets. Most of our
work is intended for a semi-bounded structure which is non-linear.

We assume in the rest of this paper, and unless stated otherwise, that
M = ⟨M,<,+, · · ·⟩ is a sufficiently saturated o-minimal expansion of an
ordered group.

1.2. Short sets and long dimension. Following [19], we call an element
a ∈ M short if either a = 0 or the interval (0, a) supports a definable real
closed field; otherwise a is called tall. An element of Mn is called short if all
its coordinates are short. An interval [a, b] is called short if b − a is short,
and otherwise it is called long. A definable set X ⊆ Mn is called short
if it is in definable bijection with a subset of In for some short interval I.
The image of a short set under a definable map is short. As is shown in
[4], M is semi-bounded if and only if all unbounded rays (a,+∞) are long.
However, a semi-bounded and sufficiently saturated M also has bounded
intervals which are long.

Following [10] (see also Section 3 below), we say that the long dimension
of a definable X ⊆Mn, lgdim(X), is the maximum k such that X contains
a definable homeomorphic image of Ik, for some long interval I (the original
definition of lgdim(X) was given in terms of cones, see Section 3 below, but
it is not hard to see the equivalence of the two). The results in [10] show
that every definable subset of Mn can be decomposed into “long cones”
and as a result it follows that a definable X ⊆ Mn is short if and only if
lgdim(X) = 0. We call X strongly long if lgdim(X) = dim(X); this is for
example the case with a cartesian product of long intervals. Note that all
these notions are invariant under definable bijections.

Roughly speaking, strongly long sets and short sets are “orthogonal” to
each other. The idea is that the structure which M induces on short sets
comes from an o-minimal expansion of a real closed field, while the structure



DEFINABLE GROUPS 3

induced on strongly long sets is closely related to the semi-linear structure.
More precisely, if p(x) is a complete type over A such that every formula
in p(x) defines a strongly long set then its semi-linear formulas determine
the type. This is a result which will not be used in this paper, but its proof
is straightforward. Indeed, the aforementioned decomposition from [10] im-
plies, in particular, that every strongly long definable set X of dimension k
is a union of a strongly long k-dimensional semi-linear set and a definable
set whose long dimension is smaller than k. Both sets are definable over
the same set of parameters as X. It follows that p(x) is determined by the
semi-linear formulas.

We will see in examples (Section 6) that the analysis of definable groups
forces us to use the language of

∨
-definable groups, so we recall some defi-

nitions.

1.3.
∨
-definable and locally definable sets. Let M be a κ-saturated,

not necessarily o-minimal, structure. By bounded cardinality we mean car-
dinality smaller than κ. We alert the reader that there is a second use of the
word “bounded” throughout this paper. Namely, a subset of Mn is bounded
if it is contained in some cartesian product of bounded intervals. It will
always be clear from the context what we mean.

A
∨
-definable group is a group ⟨U , ·⟩ whose universe is a directed union

U =
∪

i∈I Xi of definable subsets of Mn for some fixed n (where |I| is
bounded) and for every i, j ∈ I, the restriction of group multiplication to
Xi×Xj is a definable function (by saturation, its image is contained in some
Xk). Following [5], we say that ⟨U , ·⟩ is locally definable if |I| is countable. In
this paper, we consider exclusively locally definable groups. We are mostly
interested in definably generated groups, namely

∨
-definable groups which

are generated as a group by a definable subset. These groups are of course
locally definable. An important example of such groups is the universal
cover of a definable group (see [6]). In [16] a similar notion is introduced, of
an Ind-definable group.

A map ϕ : U → H between
∨
-definable (locally definable) groups is called∨

-definable (locally definable) if for every definable X ⊆ U and Y ⊆ H,
graph(ϕ) ∩ (X × Y ) is a definable set. Equivalently, the restriction of ϕ to
any definable set is definable.

In an o-minimal expansion of an ordered group, a
∨
-definable group U

is called short if U is given as a bounded union of definable short sets. If
U =

∪
i∈I Xi then we let lgdim(U) = maxi(lgdim(Xi)). We say that U is

strongly long if dim(U) = lgdim(U).

We are now ready to state the main results of this paper. Note that in the
special case where M expands a real closed field, the results below become
trivial (since in this case all definable sets are short), and in the case where
M is semi-linear, they reduce to the main theorem from [13] (since in this
case every definable short set is finite).
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1.4. The universal cover of a definably compact group. We first note
(see [19, Lemma 7.1]) that every definably compact group in a semi-bounded
structure is necessarily bounded; namely, it is contained in some cartesian
product of bounded intervals.

Theorem 1.1. Let G be a definably compact, definably connected group of

long dimension k and let F̂ : Ĝ→ G be the universal cover of G. Then there

exist an open, connected subgroup Ĥ ⊆ ⟨Mk,+⟩, generated by a semi-linear

set of long dimension k, and a locally definable embedding i : Ĥ → Ĝ, with

i(Ĥ) central in G, such that U = Ĝ/i(Ĥ) is generated by a short definable
set. Namely, we have the following exact sequence with locally definable

maps i, π and F̂ :

0 Ĥ Ĝ U 0

G

- -i

?̂
F

-π -

If we let H = F̂ (i(Ĥ)), then H is the largest connected, strongly long,
locally definable subgroup of G, namely it contains every other such group.

Question In Section 6 we present various examples that illustrate this

theorem. In all our known examples the universal cover Ĝ is the direct sum

of the groups Ĥ and U (rather then just an extension of U by Ĥ). Can Ĝ

always be realized as a direct sum of Ĥ and U?

Remark 1.2. 1. One immediate corollary of the above theorem is that every
definably compact group G which is strongly long is definably isomorphic
to a semi-linear group, because in this case H = G.

2. Note that when G is abelian, we have ker(F̂ ) ≃ ZdimG (indeed, by

[6, Corollary 1.5], we have ker(F̂ ) ≃ Zl, where the k-torsion subgroups of G
satisfy G[k] ≃ (Z/kZ)l. By [19], we have l = dimG).

3. Note that since U above is generated by a definable short set, there is a
definable real closed field R such that U is locally definable in an o-minimal
expansion of R. Indeed, let X ⊆ U be a definable set which generates U ,
and let R be a definable real closed field such that, up to an M-definable
definable bijection, X is a subset of Rm. Let N be the structure which
M induces on R. Without loss of generality, 0 ∈ X. We let X1 = X
and consider the equivalence relation on X ×X given by (x, y) ∼ (x′, y′) if
x− y = x′ − y′. Clearly, X ×X/ ∼ is in definable bijection with X −X. By
definable choice in N , there exists a definable set Y in N and a definable
bijection between X × X/ ∼ and Y . Hence, in M the sets X − X and Y
are in definable bijection. Now consider the definable embedding of X into
X −X (x 7→ x − 0), which induces an N -definable injection f1 : X1 → Y .
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We let

X2 = X1 ⊔ (Y \ f1(X1)).

The set X2 is definable in N and is in definable bijection with Y (so also
with X −X). We also have X1 ⊆ X2.

We similarly define X3 in N to be in definable bijection with X −X +X
and such that X1 ⊆ X2 ⊆ X3. We continue in the same way and obtain a
locally definable set

∪
n∈NXn in N that is in locally definable bijection with

U .

1.5. Covers by extensions of definable short groups. In the next re-
sult we want to replace the locally definable group U from Theorem 1.1 by
a definable short group K. Roughly speaking, it says that G is close to
being an extension of a short definable group by a semi-linear group, and
the distance from being such a group is measured by the kernel of the map
F ′ below.

Theorem 1.3. Let G be a definably compact, definably connected group of
long dimension k. Then G has a locally definable cover F : G → G with

the following properties: there is an open subgroup Ĥ ⊆ ⟨Mk,+⟩, generated
by a semi-linear set of long dimension k, and a locally definable embedding

i : Ĥ → G, with i(Ĥ) central in G, such that K = G/i(Ĥ) is a defin-
ably compact definable short group. Namely, we have the following exact
sequence with locally definable maps i, π and F :

0 Ĥ G K 0

G

- -i

?
F

-π -

If we take H ⊆ G as in Theorem 1.1, then there is also a locally definable,
central extension G′ of K by H, with a locally definable homomorphism
F ′ : G′ → G.

When G is abelian so is G and ker(F ) ≃ Zk + F , for a finite group F .

It is at the passage from the locally definable group U in Theorem 1.1 to
the definable group K in Theorem 1.3 that we use [12, Theorem 3.10].

1.6. Compact Domination. The relationship between a definable group
G and the compact Lie group G/G00 has been the topic of quite a few papers.
In [9], [15], [17] the related so-called Compact Domination Conjecture was
solved for semi-linear groups and for groups definable in expansions of real
closed fields. Using the above analysis we can complete the proof of the
conjecture for groups definable in arbitrary o-minimal expansions of ordered
groups (see Section 7 for the original formulation of the conjecture).
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Theorem 1.4. Let G be a definably compact, definably connected group. Let
π : G→ G/G00 denote the canonical homomorphism. Then, G is compactly
dominated by G/G00. That is, for every definable set X ⊆ G, the set

π(X) ∩ π(G \X)

has Haar measure 0.

1.7. Notation. Let us finish this section with a couple of notational re-
marks. Given a group ⟨G, ·⟩ and a set X ⊆ G, we denote, for every n ∈ N,

X(n) =

n−times︷ ︸︸ ︷
(XX−1) · · · (XX−1)

We assume familiarity with the notion of definable compactness. When-
ever we write that a set is definably compact, or definably connected, we
assume in particular that it is definable.

Acknowledgements. We thank Alessandro Berarducci, Mario Edmundo
and Marcello Mamino for discussions which were helpful during our work.
We thank the referee for a very careful reading of the original manuscript.

2. Preliminaries I: locally definable groups, extensions of
abelian groups, pushout and pullback

As mentioned in the introduction, we work in a sufficiently saturated o-
minimal expansion of an ordered group a M = ⟨M,<,+, · · ·⟩. However, the
only use of this assumption is to guarantee a strong version of elimination
of imaginaries, which allows us to replace every definable quotient by a
definable set. Any structure in which this is true will be just as good here,
or, if we are willing to work in Meq, then any o-minimal structure will work.

2.1. Locally definable groups, compatible subgroups and definable
quotients.

Definition 2.1. (See [5]) For a locally definable group U , we say that V ⊆ U
is a compatible subset of U if for every definable X ⊆ U , the intersection
X ∩ V is a definable set (note that in this case V itself is a countable union
of definable sets).

Clearly, the only compatible locally definable subsets of a definable group
are the definable ones. Note that if ϕ : U → V is a locally definable ho-
momorphism between locally definable groups then ker(ϕ) is a compatible
locally definable normal subgroup of U . Compatible subgroups are used in
order to obtain locally definable quotients. Together with [5, Theorem 4.2],
we have:
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Fact 2.2. If U is a locally definable group and H ⊆ U a locally definable
normal subgroup, then H is a compatible subgroup of U if and only if there
exists a locally definable surjective homomorphism of locally definable groups
ϕ : U → V whose kernel is H.

If M is an o-minimal structure and U ⊆ Mn is a locally definable group
then, by [2, Theorem 4.8], it can be endowed with a manifold-like topology
τ , making it into a topological group. Namely, there is a countable collection
{Ui : i ∈ I} of definable subsets of U , whose union equals U , such that each
Ui is in definable bijection with an open subset of Mk (k = dimU), and the
transition maps are continuous. Moreover the Ui’s and the transition maps
are definable over the same parameters as U . The group operation and group
inverse are continuous with respect to this induced topology. The topology
τ is determined by the ambient topology of Mn in the sense that at every
generic point of U the two topologies coincide. From now on, whenever we
refer to a topology on G, it is τ we are considering.

Definition 2.3. (See [1]) In an o-minimal structure, a locally definable
group U is called connected if there is no locally definable compatible subset
∅ $ V $ U which is both closed and open with respect to the group topology.

Remark 2.4. It is easy to see that, in an o-minimal structure, if a locally
definable group U is generated by a definably connected set which contains
the identity, then it is connected.

Definition 2.5. Given a locally definable group U and Λ0 ⊆ U a normal
subgroup, we say that U/Λ0 is definable if there is a definable group K and
a surjective locally definable homomorphism µ : U → K whose kernel is Λ0.

We now quote Theorem 3.10 from [12] (in a restricted case).

Fact 2.6. Let U be a connected, abelian locally definable group, which is
generated by a definably compact set. Assume that X ⊆ U is a definable set
and Λ 6 U is a finitely generated subgroup such that X + Λ = U .

Then there is a subgroup Λ′ ⊆ Λ such that U/Λ′ is a definably compact
definable group.

2.2. Pushouts and definability. In the following three subsections, all
groups are assumed to be abelian and all arrows represent group homomor-
phisms.

Several steps of the proof require us to construct extensions of abelian
groups with certain maps attached to them. All constructions are standard
in the classical theory of abelian groups but because we are concerned here
with definability issues we review the basic notions (see [14] for the classical
treatment). The proofs of these basic results are given in the appendix.
Although we chose to present the constructions below in the more common
language of pushouts and pullbacks, it is also possible to carry them out in
the less canonical (but possibly more constructive) language of sections and
cocycles.
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Definition 2.7. Given homomorphisms

A B

C

-α

?
β

the triple (D, γ, δ) (or just D) is called a pushout (of B and C over A via
α, β, γ, δ) if the following diagram commutes

A B

C D

-α

?
β

?
γ

-δ

and for every commutative diagram

(1)

A B

C D′

-α

?
β

?
γ′

-δ′

there is a unique ϕ : D → D′ such that ϕγ = γ′ and ϕδ = δ′.
If A,B,C,D and the associated maps are (locally) definable, and if for

every (locally) definable D′, γ′, δ′ there is a (locally) definable ϕ : D → D′

as required then we say that the pushout is (locally) definable.

Proposition 2.8. Assume that we are given the following diagram

A B

C

-α

?
β

(i) Let (D, γ, δ) be a pushout. Then

ker(γ) = α(ker(β)).

Moreover, if β is surjective, then so is γ. If α is injective, then so is δ.
(ii) Suppose that all data are definable. Then there exists a definable pushout
(D, γ, δ), which is unique up to definable isomorphism.
(iii) Suppose that all data are locally definable and α(A) is a compatible
subgroup of B. Then there exists a locally definable pushout (D, γ, δ), which
is unique up to locally definable isomorphism.

Assume now that α is injective. If we let E = B/α(A) and π : B → E
the projection map then there is a locally definable surjection π′ : D → E
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such that the diagram below commutes and both sequences are exact. In
particular, ker(π′) = δ(C) is a compatible subgroup of D.

0 A B E 0

0 C D E 0

-

?
β

-α

?
γ

-π

?
idE

-

- -δ -π′
-

We also need the following general fact, for which we could not find a
reference (see appendix for proof):

Lemma 2.9. Assume that we are given the following commutative diagram

(2)

A B

C D

E F

-α

?
β

?
γ

-δ

?
η

?
µ

-ξ

with D the pushout of B and C over A (via α, β, γ, δ), and F the pushout
of B and E over A (via α, ηβ, µγ and ξ). Then F is also the pushout of E
and D over C (via η, δ, µ, ξ).

2.3. Pullbacks and definability.

Definition 2.10. Given homomorphisms

B

C A
?
α

-
β

the triple (D, γ, δ) (or just D) is called a pullback (of B and C over A via
α, β, γ, δ) if the following diagram commutes

D B

C A

-γ

?
δ

?
α

-
β
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and for every commutative diagram

(3)

D′ B

C A

-γ′

?
δ′

?
α

-
β

there is a unique ϕ : D′ → D such that γϕ = γ′ and δϕ = δ′.
If A,B,C,D and the associated maps are (locally) definable, and if for

every (locally) definable D′, γ′, δ′ there is a (locally) definable ϕ : D′ → D
as required then we say that the pullback is (locally) definable.

Proposition 2.11. Assume that we are given the following diagram

B

C A
?
α

-
β

(i) Let (D, γ, δ) be a pullback. Then

γ(ker(δ)) = ker(α).

Moreover, if β is surjective, then so is γ. If α is injective, then so is δ.
(ii) Suppose that all data are definable. Then there exists a definable pullback
(D, γ, δ), which is unique up to definable isomorphism.
(iii) Suppose that all data are locally definable. Then there exists a locally
definable pullback (D, γ, δ), which is unique up to locally definable isomor-
phism.

Assume now that β is surjective. Let G = ker(γ) and H = ker(β). Then
G, H are locally definable and compatible in D and C, respectively. More-
over, there is a locally definable isomorphism j : G → H such that the
following diagram commutes and both sequences are exact.

0 G D B 0

0 H C A 0

-

?
j

-idG -γ

?
δ

?
α

-

- -idH -β -

2.4. Additional lemmas.

Lemma 2.12. Assume that the sequence

0 A B C 0- -i -π -

is exact and that we have a surjective homomorphism µ : C → D. Let A′ =
ker(µπ) ⊆ B. Then the following diagram commutes and both sequences are
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exact. If all data are locally definable then so is A′ and the associated maps.

0 A B C 0

0 A′ B D 0

-

?
i

-i

?
id

-π

?

µ

-

- -id -µπ -

Proof. This is trivial. �
Lemma 2.13. Assume that we have surjective homomorphisms F : B → G
and F ′ : B → G′ with ker(F ′) ⊆ ker(F ). Then there is a canonical surjective
homomorphism h : G′ → G, given by h(g′) = g if and only if there exists
b ∈ B with F ′(b) = g′ and F (b) = g. The kernel of h equals F ′(ker(F )) and
if all data are locally definable then so is h.

Proof. Algebraically, this is just the fact that if B1 ⊆ B2 ⊆ B then there is
a canonical homomorphism h : B/B1 → B/B2, whose kernel is B2/B1.

As for definability, assume that B,G,G′, and F, F ′ are
∨
-definable, and

take definable sets X ⊆ G and X ′ ⊆ G′. We want to show that the inter-
section of graph(h) with X ′ ×X is definable. Since F ′, F are

∨
-definable

and surjective, there exists a definable Y ⊆ B such that F ′(Y ) ⊃ X ′ and
F (Y ) ⊇ X. Now, for every g′ ∈ X ′ there exists b ∈ Y such that F ′(b) = g′,
and we have h(g′) = F (b). Thus, the intersection of graph(h) with X ′ ×X
is definable. �
Remark 2.14. All statements from Proposition 2.8 to Lemma 2.13 hold under
the more general assumption that M is any sufficiently saturated structure
(not necessarily o-minimal) which has strong definable choice. This is be-
cause the definability issues in the statements are all based on Fact 2.2,
which can be proved for such a more general M.

3. Preliminaries II: Semi-bounded sets

3.1. Long cones and long dimension. In this section we recall some
notions from [10] and prove basic facts that follow from that paper.

A k-long cone in Mn is a set of the form

C =

{
b+

k∑
i=1

λi(ti) : b ∈ B, ti ∈ Ji

}
,

where B is a short cell, each Ji = (0, ai) is a long interval (with ai possibly
∞) and λ1, . . . , λk are M -independent partial linear maps from (−ai, ai)
into Mn (by M -independent we mean: for all t1, . . . , tk ∈ M , if λ1(t1) +
· · ·+ λk(tk) = 0 then t1 = · · · = tk = 0). It is required further that for each

x ∈ C there are unique b and ti’s with x = b+
∑k

i=1 λi(ti) (we refer to this
as “long cones are normalized”). So dimC = dimB + k. A long cone is a
k-long cone for some k. By the normality condition, if C is a k-long cone of
dimension k then B must be a singleton.
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The long dimension of a definable set X ⊆Mn, denoted lgdim(X), is the
maximum k such that X contains a k-long cone. This notion coincides with
what we defined as long dimension in the Introduction. We call X strongly
long if lgdim(X) = dim(X).

Note that if C as above is a bounded cone (namely, all ai’s belong to M)
then we can take B′ = {b + (λ1(a1/2), . . . , λk(ak/2)) : b ∈ B} and write
C = B′ + ⟨C⟩ where

⟨C⟩ =

{
k∑

i=1

λi(ti) : ti ∈ (−ai/2, ai/2)

}
.

In this paper, we are interested in bounded cones so we replace B with B′

and write C = B + ⟨C⟩.

As is shown in [10, Section 5] the notion of short and long intervals gives
rise to a pregeometry based on the following closure operation:

Definition 3.1. Let M be an o-minimal expansion of an ordered group.
Given A ⊆ M and a ∈ M , we say that a is in the short closure of A,
a ∈ scl(A), if there exists an A-definable short interval containing a (in
particular, dcl(A) ⊆ scl(A)).

We say that B ⊆M is scl-independent over A if for every b ∈ B, we have
b /∈ scl(B∪A \ {b}). We let lgdim(B/A) be the cardinality of a maximal
scl-independent subset of B over A.

Notice that if M expands a real closed field then every set has long
dimension 0 over ∅. On the other hand if M is a reduct of an ordered vector
space then scl(−) = dcl(−). Thus, this notion is interesting when M is
non-linear and yet does not expand a real closed field (namely, non-linear
and semi-bounded).

As for the usual o-minimal dimension, the notion of long dimension for
definable sets is compatible with the scl-pregeometry in the following sense
(see [10, Corollary 5.10]):

Fact 3.2. If X is an A-definable set in a sufficiently saturated o-minimal
expansion of an ordered group then

lgdim(X) = max{lgdim(x/A) : x ∈ X}.

We say that a ∈ X is long-generic over A if lgdim(a/A) = lgdim(X).

By [10, Theorem 3.8], if X is A-definable of long dimension k and a is
long generic in X over A then a belongs to an A-definable k-long cone in X.

We are now ready to prove two facts which will be used later on.

Fact 3.3. Let F : B×C →M l be a definable map, where B ⊆Mm is a short
set and C ⊆Mn is strongly long (namely lgdim(C) = dim(C)). Then there
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is an open subset B1 of B and a strongly long X ⊆ C, with dimX = dimC,
such that F is continuous on B1 ×X.

Proof. We may assume that B,C and F are ∅-definable. Pick b generic in
B and c which is long-generic in C over b. Since B is short we have

lgdim(bc/∅) = lgdim(c/b) = lgdim(C) = lgdim(B × C).

Because dimC = lgdimC, c is also generic over b and, hence, we have

dim(bc/∅) = dimB × C.

That is, ⟨b, c⟩ is generic in B×C so there exists a ∅-definable relatively open
set Y ⊆ B × C containing ⟨b, c⟩, on which F is continuous. In particular,
there exists a relatively open neighborhood B1 ⊆ B, b ∈ B1, such that
B1 × {c} ⊆ Y . We may assume that B1 is given as the intersection of a
short rectangular neighborhood V0 and B. By shrinking V0 if needed, we
may assume that the set of parameters A defining V0 is scl-independent from
⟨b, c⟩ (and contains short elements). Hence lgdim(c/Ab) = lgdim(c/b) so c
is still long-generic in C over Ab. By genericity, we can find an Ab-definable
set X ⊆ C such that B1 × X ⊆ Y . Because c ∈ X, the set X must be
strongly long of the same (long) dimension as C. �
Fact 3.4. Let h : X → W be a definable map, where lgdimX = dimX > 0
and W ⊆ Mm is short. Then there exists a definable set Y ⊆ X, with
lgdimY < lgdimX such that h is locally constant on X \ Y .

Proof. Without loss of generality, X, W and h are ∅-definable. Take x long-
generic in X and let w = h(x). Because w ∈ W , we have lgdim(w/∅) = 0
and therefore x is still long-generic in X over w. It follows that there is a
w-definable set X0 ⊆ X, such that for every x′ ∈ X0, h(x

′) = w. The set X
is strongly long, so x is also generic in X over w. Hence, the set X0 contains
a relative neighborhood of x in X, so h is locally constant at x. This is true
for every long-generic element in X so the set of points at which h is not
locally constant must have smaller long dimension than that of X. �
3.2. A preliminary result about definably compact groups. We as-
sume that ⟨G,+⟩ is a definable abelian group. Recall that X ⊆ G is generic
if finitely many group translates of X cover G. Using terminology from [18],
a definable set X ⊆ G is called G-linear if for every g, h ∈ X there is an
open neighborhood U of 0 (here and below, we always refer to the group
topology of G), such that (g −X) ∩ U = (h−X) ∩ U . Clearly, every open
subset of a definable subgroup of G is a G-linear set. More generally, ev-
ery group translate of such a set is also G-linear. As is shown in [18], if a
G-linear subset contains 0 then it contains an infinitesimal subgroup of G.
When the group G is ⟨Mn,+⟩ a G-linear subset is also called affine. We call
a definable G-linear subset X ⊆ G a local subgroup of G if it is definably
connected and 0 ∈ X.

The G-linear set G0 ⊆ G and the H-linear set H0 ⊆ H are definably
isomorphic if there exists a definable bijection ϕ : G0 → H0 such that for
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every g, h, k ∈ G0, g− h+ k ∈ G0 if and only if ϕ(g)− ϕ(h) + ϕ(k) ∈ H0, in
which case we have ϕ(g − h+ k) = ϕ(g)− ϕ(h) + ϕ(k). An isomorphism of
local subgroups G0 ⊆ G and H0 ⊆ H, is further required to send 0G to 0H .
If ϕ : G0 → H0 is an isomorphism of local subgroups then for all g, k ∈ G0,
if g + k ∈ G0 then ϕ(g) + ϕ(h) ∈ H0 and we have ϕ(g + h) = ϕ(g) + ϕ(h).

Our starting point is Proposition 5.4 from [10], which comes out of the
analysis of definable sets in semi-bounded structures. Recall our notation
C = B+ ⟨C⟩ from Section 3. Below we use ⊕ and ⊖ for group addition and
subtraction in G and use + and − for the group operations in M.

Fact 3.5. [10, Proposition 5.4] Let ⟨G,⊕⟩ be a definably compact abelian
group of long dimension k. Then G contains a definable, generic, bounded
k-long cone C on which the group topology of G agrees with the o-minimal
topology. Furthermore, for every a ∈ C there exists an open neighborhood
V ⊆ G of a such that for all x, y ∈ V ∩ a+ ⟨C⟩,

(4) x⊖ a⊕ y = x− a+ y.

Our goal is to prove:

Proposition 3.6. Let ⟨G,⊕⟩ be a definably compact, definably connected
abelian group. Then there exists a definably connected, k-dimensional local
subgroup H ⊆ G and a definable short set B ⊆ G, dim(B) = dim(G) − k,
satisfying:

(1) ⟨H,⊕⟩ is definably isomorphic, as a local group, to ⟨H ′,+⟩, where
H ′ = (−e1, e1) × · · · × (−ek, ek) ⊆ Mk, with each ei > 0 tall in M .
In particular, dimH = lgdimH = k.

(2) The set B ⊕H = {b⊕ h : b ∈ B h ∈ H} is generic in G.

Proof. We fix a definably connected short set B and a k-long cone C =
B + ⟨C⟩ as in Fact 3.5.

For b ∈ B, let Cb be the fiber b + ⟨C⟩. Note that for every x ∈ Cb, and
a sufficiently small neighborhood V of x, we have V ∩ Cb = V ∩ x + ⟨C⟩.
Note also that each Cb is an affine subset of ⟨Mn,+⟩. Thus, condition (4)
implies that each Cb, locally near every a ∈ Cb, is a G-linear subset of G,
and furthermore the identity map is locally an isomorphism of ⟨Cb,+⟩ and
⟨Cb,⊕⟩. Because the affine topology and the group topology agree on C
(and because C is definably connected in Mn), each fiber Cb is definably
connected with respect to the group topology. By [18, Lemma 2.4], each Cb

is therefore a G-linear (not only locally) subset of G and the identity map
is an isomorphism of the affine set ⟨Cb,+⟩ and the G-linear set ⟨Cb,⊕⟩.

Let us summarize what we have so far: On one hand, the set C = B+⟨C⟩
is a generic set in G, which can be written as a disjoint union of affine sets∪

b∈B Cb. Furthermore, for each a, b ∈ B the map

fa,b(x) = x− a+ b
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is an isomorphism of the affine sets Ca and Cb. On the other hand, each Cb

is also a G-linear set, and the same maps fa,b : Ca → Cb are isomorphisms of
G-linear sets (because the identity is an isomorphism of ⟨Ca,+⟩ and ⟨Ca,⊕⟩).

Our next goal is to show that, for many a, b in B, each map fa,b(x) is not
only a translation in the sense of the group ⟨Mn,+⟩ but also a translation
in ⟨G,⊕⟩.

We define on B the following equivalence relation: a ∼ b if there exists
g ∈ G such that we have fa,b(x) = x⊕ g for all x ∈ Ca. Note that for every
a, b, c ∈ B, we have fb,d ◦ fa,b = fa,d, so it is easy to check that ∼ is an
equivalence relation.

Claim 3.7. There are only finitely many ∼-equivalence classes in B.

Proof. Assume towards contradiction that there are infinitely many classes.
By definable choice, we can find an infinite definable set of representatives
for B/ ∼. We then replace B by a definably connected component of this set,
calling it B again. So, we may assume that any two a, b ∈ B are in distinct
∼-classes and that B is still infinite and definably connected. We fix some
a0 ∈ B and consider the map F : B ×Ca0 → G, given by F (b, x) = fa0,b(x).

Since Ca0 is strongly long, we can find an open subset B1 ⊆ B and a
strongly long set X ⊆ Ca0 , dimX = dimCa0 , such that F is continuous
on B1 × X with respect to the group topology (Fact 3.3). Without loss
of generality we can assume that X is definably compact (we first take a
bounded X, then shrink it slightly, and take its topological closure).

Let us fix a G-open chart V ⊆ G containing 0G, and a homeomorphism
with an open affine set ϕ : V → V ′ ⊆ M ℓ (ℓ = dimG). Without loss of
generality ϕ(0G) = 0 ∈ M ℓ. By identifying V and V ′, we may assume that
V ′ ⊆ G is an open set with respect to both the affine and the G-topology.

By the definable compactness of X, for every neighborhood W ⊆ M ℓ

of 0, there is a neighborhood B2 ⊆ B1 of a0, such that for all b′, b′′ ∈ B2

and x ∈ X, we have F (x, b′) ⊖ F (x, b′′) ∈ W . Indeed, if not then there are
definable curves x(t) ∈ X, b1(t), b2(t) ∈ B1, with b1(t), b2(t) tending to b
and such that for all t,

F (x(t), b1(t))⊖ F (x(t), b2(t)) /∈W.

Definable compactness of X implies that x(t) → x0 ∈ X, so by continuity
we have F (x0, b)⊖ F (x0, b) /∈W, contradiction.

We now fix W ⊆ M ℓ a short neighborhood of 0, and choose B2 accord-
ingly. If we take distinct b′, b′′ in B2 then we obtain a map h : X → W ,
defined by h(x) = F (x, b′) ⊖ F (x, b′′). Because X is strongly long, and
W is short, the map h must be locally constant outside a subset of X
of long dimension smaller than k (Fact 3.4). So, we have an open neigh-
borhood V ′′ ⊆ Ca0 and an element g ∈ G, such that for all x ∈ V ′′,
fa0,b′(x)⊖ fa0,b′′(x) = g.

We claim that for all x ∈ Ca0 , we have fa0,b′(x)⊖ fa0,b′′(x) = g.
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First take x ∈ V ′′ and choose any y, z ∈ Ca0 which are sufficiently close
to each other. Since Ca0 is a G-linear set, x ⊖ y ⊕ z is still in Ca0 and still
in V ′′. So we have

fa0,b′(x⊖ y ⊕ z) = fa0,b′(x)⊖ fa0,b′(y)⊕ fa0,b′(z)

and
fa0,b′′(x⊖ y ⊕ z) = fa0,b′′(x)⊖ fa0,b′′(y)⊕ fa0,b′′(z).

By subtracting the two equations (in G), we obtain

g = g ⊕ (fa0,b′(z)⊖ fa,b′′(z))⊖ (fa,b′(y)⊖ fa,b′′(y)),

so
fa0,b′(z)⊖ fa,b′′(z) = fa,b′(y)⊖ fa,b′′(y)

for all y, z ∈ Ca0 which are sufficiently close to each other. This implies
that the function fa0,b′ ⊖ fa0,b′′ is locally constant on Ca0 so by definable
connectedness, it must be constant on Ca0 . We therefore showed that fa0,b′⊖
fa0,b′′ = g, so in fact b′ ∼ b′′ contradicting our assumption. Thus ∼ has only
finitely many classes in B. �

We now return to the relation ∼ with its finitely many classes B1, . . . , Bm,
and consider the partition of C into

∪
b∈Bi

Cb, i = 1, . . . ,m. Note that for

each i = 1, . . . ,m and every b′, b′′ ∈ Bi, there exists g ∈ G such that x 7→ x⊕g
is an isomorphism of the G-linear sets Cb′ and Cb′′ .

Since C was generic in G, one of these sets is also generic in G (here we
use the definable compactness of G). So we assume from now on that for
every b1, b2 ∈ B there exists an element g ∈ G such that Cb1 = Cb2 ⊕ g.

Fix b0 ∈ B and for every b ∈ B choose an element g(b) in G such that
Cb = Cb0 ⊕ g(b). If we let B′ = {g(b)⊕ b0 : b ∈ B} and H = Cb0 ⊖ b0, then
C = B′ ⊕H.

Let’s see that H is as required. Indeed, the map x 7→ x ⊕ b0 is an
isomorphism of the local subgroups ⟨H,⊕⟩ and ⟨Cb0 ,⊕⟩. As we already
pointed out, the identity map is an isomorphism of ⟨Cb0 ,⊕⟩ and ⟨Cb0 ,+⟩.
Finally, y 7→ y−b0 is an isomorphism of the affine sets ⟨Cb0 ,+⟩ and ⟨⟨C⟩,+⟩.
The composition of these maps is an isomorphism of the local groups ⟨H,⊕⟩
and

H ′ =
⟨(

−a1
2
,
a1
2

)
× · · · ×

(
−ak

2
,
ak
2

)
,+

⟩
(it sends 0G to 0). This ends the proof of Proposition 3.6. �

4. The universal cover of G

4.1. Proof of Theorem 1.1. We first prove the abelian case. We proceed
with the same notation as in the previous seciton. Namely, ⟨G,⊕⟩ is a
definably connected, definably compact abelian group, and H ⊆ G is the
definable strongly long set from Proposition 3.6.

Let f ′ : ⟨H ′,+⟩ → ⟨H,⊕⟩ be the acclaimed isomorphism of local groups.
We let H = ⟨H⟩ be the subgroup of G generated by H. Since H is a
local abelian subgroup of G of dimension k, H is a locally definable abelian
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subgroup of G of dimension k (see [18, Lemma 2.18]). One can show that the

universal cover of H is a locally definable subgroup Ĥ of ⟨Mk,+⟩. Indeed,

let Ĥ = ⟨H ′⟩ be the subgroup of ⟨Mk,+⟩ generated by H ′. Then we can

extend f ′ to a map f : Ĥ → H with, for every x1, . . . , xl ∈ H ′,

f(x1 + · · ·+ xl) = f ′(x1)⊕ f ′(x2)⊕ · · · ⊕ f ′(xl)

is a
∨
-definable covering map for H. (The fact that f is well-defined is

provided by the same argument as for [13, Lemma 4.27]). Since Ĥ is divisible
and torsion-free, it is the universal cover of H.

We let H′
0 be the subset of Mk that consists of all short elements (by

this we mean all elements of Mk all of whose coordinates are short). By
[19, Lemma 3.4], ⟨H′

0,+⟩ is a subgroup of ⟨Mk,+⟩ and moreover, it is a
subset of H ′. It follows that H0 = f(H′

0) is a subgroup of H which is
isomorphic to H′

0 (note that by [19], H0 is a
∨
-definable set, but not, in

general, a definable one).
From now on, in order to simplify the notation, we will write + for the

group operation of G. In few cases we will also use + for the usual operation
on Mk, and this will be clear from the context.

We define B =
∪

n∈NB(n), where B is the definable short set from Propo-
sition 3.6, and the notation B(n) is given in Section 1.7. Since each B(n) is
a short definable set, B is a short locally definable subgroup of G.

Claim 4.1. H+ B = G.

Proof. By Proposition 3.6, the set H + B is a generic subset of G and is
contained in H+ B (we use here the fact that B ⊆ B since 0 ∈ B). Since G
is definably connected we have H+ B = G. �

The following claim is crucial to the rest of the analysis.

Claim 4.2. The group H0 ∩ B is compatible in B, so in particular locally
definable.

Proof. Let X ⊆ B be a definable set. The set B is a bounded union of short
definable sets, so X is contained in one of these and must also be short. We
prove that, in general, the intersection of any definable short X ⊆ G with
H0 is definable.

Since H0 ⊆ H we may assume that X is a subset of H. Let us consider
X ′ = (f ′)−1(X) ⊆ Mk. Because f ′ is injective the set X ′ is a finite union
of definably connected short subsets of Mk. It is easy to see that if one of
these short sets contains a short element then every element of it is short.
Thus, if one of these components intersects H′

0 non-trivially then it must be
entirely contained in H′

0 (since H′
0 is the collection of all short elements).

Hence, X ′∩H′
0 is a finite union of components of X ′ and therefore definable.

Its image under f ′ is the definable set X ∩H0. �
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Note: It is not true in general that H ∩ B is a compatible subgroup of B
(see Example 6.1 below).

The decomposition of Ĝ is done through a series of steps.

Step 1 By Claim 4.2 and Fact 2.2, the quotient K = B/(H0 ∩ B) is locally
definable and hence we obtain the following short exact sequence of locally
definable groups:

(5) 0 H0 ∩ B B K 0- -i0 -πB -

Claim 4.3. dimH + dimK = dimG.

Proof. Because H+ B = G, we have

dimH+ dimB − dim(H ∩ B) = dimG.

Indeed, this is true for definable groups, and can be proved similarly here
by considering a sufficiently small neighborhood of 0 in the locally definable
group H ∩ B.

But H0 is open in H and therefore dim(H0∩B) = dim(H∩B), so we also
have dimH+ dimB − dim(H0 ∩ B) = dimG. Because K = B/(H0 ∩ B), we
have dimB−dim(H0∩B) = dimK. We can now conclude dimH+dimK =
dimG. �
Step 2. Since H0 ∩ B embeds into H and H0 ∩ B is a compatible subgroup
of B, we can apply Lemma 2.8 and obtain a locally definable group D (the
pushout of H and B over H0 ∩ B) with the following diagram commuting

(6)

0 H0 ∩ B B K 0

0 H D K 0

-

?

id

-i0

?

γ

-πB

?

idK

-

- -j -πD -

The maps γ and j are injective. Note that since H and B are subgroups of
G, we also have a commutative diagram (with all maps being inclusions)

(7)

H0 ∩ B B

H G
?

-

?
-

It follows from the definition of pushouts that there exists a locally definable
map ϕ : D → G such that ϕγ : B → G and ϕj : H → G are the inclusion
maps. The restriction of ϕ to j(H) is therefore injective and furthermore,
the set ϕ(D) contains H+ B and hence, by Claim 4.1, ϕ is surjective on G.
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Step 3 Consider now the universal cover f : Ĥ → H where Ĥ is identified

with an open subgroup of ⟨Mk,+⟩ as before. As we saw, the group Ĥ has
a subgroup H′

0 which is isomorphic via f to H0. Hence, there is a locally

definable embedding β : H0∩B → Ĥ such that fβ = idH0∩B. Our goal is to
use this embedding in order to interpolate an exact sequence between the
two sequences in (6) (see (10) below).

We let D̂ be the pushout of Ĥ and B over H0 ∩ B. Namely, we have

(8)

0 H0 ∩ B B K 0

0 Ĥ D̂ K 0

-

?

β

-i0

?

γ′′

-πB

?

idK

-

- -δ̂ -
π
D̂ -

Step 4 Next, we consider the diagram

(9)

H0 ∩ B B

Ĥ D

?

β

-i0

?

γ

-jf

Since fβ = id, it follows from (6) that the above diagram commutes. Since

D̂ was a pushout, there exists a locally definable γ′ : D̂ → D such that

γ′γ′′ = γ and γ′δ̂ = jf .
Putting the above together with (6) and (8), we obtain

(10)

0 H0 ∩ B B K 0

0 Ĥ D̂ K 0

0 H D K 0

-

?

β

-i0

?

γ′′

-πB

?

idK

-

-

?

f

-δ̂

?

γ′

-
π
D̂

?

idK

-

- -j -πD -

Note that in order to conclude that the above diagram commutes, we still
need to verify that the bottom right square commutes, namely, (idK)πD̂ =
(πD)γ

′.
We now apply Lemma 2.9 and conclude that the group D is the pushout

of H and D̂ over Ĥ. As a corollary we conclude, by Lemma 2.8 (and the
fact that f is surjective),

(11) (i) π
D̂
= (πD)γ

′ (ii) ker(γ′) = δ̂(ker f) (iii) γ′ is surjective.
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In particular, (10) commutes.
If we now return to the surjective ϕ : D → G and compose it with γ′, we

obtain a surjection ϕγ′ : D̂ → G.
Let us summarize what we have so far:

(12)

0 Ĥ D̂ K 0

G

- -δ̂

?
ϕγ′

-
π
D̂ -

Step 5 Let µ : U → K be the universal cover of K, (see [6, Theorem 3.11] for
its existence and its local definability) and apply the pullback construction

from Proposition 2.11 to U , K and D̂.

We obtain a
∨
-definable group Ĝ (the pullback of U and D̂ over K), with

associated
∨
-definable maps such that the following sequences are exact and

commute (since the kernels of π
Ĝ

and π
Ĝ

are isomorphic we identify them

both with Ĥ and assume that the map between them is the identity). By
Proposition 2.11, we also have

(13) π
Ĝ
(ker(η)) = ker(µ).

(14)

0 Ĥ Ĝ U 0

0 Ĥ D̂ K 0

-

?
id

-i

?
η

-
π
Ĝ

?
µ

-

- -δ̂ -
π
D̂ -

Because µ is surjective, so is η, so we obtain a surjective homomorphism

F̂ := ϕγ′η : Ĝ → G. It can be inferred from what we have so far that

H = F̂ (i(Ĥ)).

Note that dim Ĝ = dimU + dim Ĥ and, since U is the universal cover of

K, dimU = dimK. By Claim 4.3, we have dim Ĝ = dimG. Note also that

U and Ĥ are divisible (as connected covers of divisible groups) and torsion-

free and therefore so is Ĝ. It follows that F̂ : Ĝ → G is isomorphic to the
universal cover of G.

We therefore obtain

(15)

0 Ĥ Ĝ U 0

G

- -i

?̂
F

-
π
Ĝ -

This ends the proof of the first part Theorem 1.1 for an abelian definably
connected, definably compact G.
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Assume now that G is an arbitrary definably compact, definably con-
nected group. By [17, Corollary 6.4], the group G is the almost direct
product of the definably connected groups Z(G)0 and [G,G], and [G,G] is
a semisimple group. The group G is then the homomorphic image of the
direct sum A ⊕ S with A abelian, S semi-simple, both definably compact,
and the kernel of this homomorphism is finite. We may therefore assume
that G = A⊕S. By [17, Theorem 4.4 (ii)], the group S is definably isomor-
phic to a semialgebraic group over a definable real closed field so it must be
short. It follows that lgdim(G) = lgdim(A). By the abelian case, we obtain

the following for the universal cover Â of A.

0 Ĥ Â U 0

A

- -

?̂
F

- -

Next, we consider p : Ŝ → S the universal cover of S (note that Ŝ is also a
compact group). By taking the direct product we obtain:
(16)

0 Ĥ Ĝ = Â⊕ Ŝ U ⊕ Ŝ 0

G = A⊕ S

- -i -π

?
F̂ ·p

-

In order to finish the proof of Theorem 1.1 we need to see:

Lemma 4.4. The group H = F̂ (i(Ĥ)) contains every connected,
∨
-definable

strongly long subgroup of G.

Proof. We first prove the analogous result for the universal cover Ĝ of

G, namely we prove that i(Ĥ) contains every connected, locally definable,

strongly long subgroup of Ĝ. For simplicity, we assume that Ĥ ⊆ Ĝ.

Assume that V ⊆ Ĝ is a connected,
∨
-definable subgroup with dim(V) =

lgdim(V) = ℓ. Because lgdim(Ĝ) = k we must have ℓ ≤ k. We will show

that the group V ∩ Ĥ has bounded index in V, so by connectedness the two
must be equal.

Consider U from Theorem 1.1. Because U is short, there exists at least
one u ∈ U such that lgdim(π−1(u)∩V) = ℓ (see [10, Lemma 4.2]). Since V is
a group we can use translation in V to show that for every u ∈ π(V), we must

have lgdim(π−1(u) ∩ V) = ℓ. In particular, lgdim(Ĥ ∩ V) = lgdim(π−1(0) ∩
V) = ℓ.

Write V =
∪

i Vi a bounded union of definable sets which we may assume
to be all strongly long of dimension ℓ. For every Vi, consider the definable
projection π(Vi) ⊆ U . By Lemma 9.1 (proved in the appendix), the set Fi
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of all u ∈ π(Vi) such that lgdim(π−1(u) ∩ Vi) = ℓ is definable, so because
dim(Vi) = ℓ, this set must be finite.

Let F =
∪

i Fi ⊆ π(V). We claim that F = π(V). Indeed, if u ∈ π(V) \ F
then by the definition of the Fi’s, lgdim(π−1(u) ∩ Vi) < ℓ for all i, which
implies that lgdim(π−1(u) ∩ V) < ℓ. This is impossible by our above obser-
vation, so we must have F = π(V).

Because F is a bounded union of finite sets it follows that the index of
V ∩ Ĥ in V is bounded. Since V is connected it follows that V ∩ Ĥ = V, so
V ⊆ Ĥ.

Assume now that V ⊆ G is a connected, locally definable, strongly long

subgroup of G and let V̂ ⊆ Ĝ be the pre-image of V under F̂ . The group

V̂ is strongly long and locally definable, and the connected component of

the identity (see [1, Proposition 1]), call it V̂0, is still strongly long (since

it has the same dimension and long dimension as V̂). By what we just

saw, V̂0 is contained in Ĥ and hence F̂ (V0) is a
∨
-definable subgroup of

H ∩ V, which has bounded index in V. Because V is connected it follows

F̂ (V0) = V ⊆ H. �

This ends the proof of Theorem 1.1.

5. Replacing the locally definable group U with a definable
group

We now proceed to prove Theorem 1.3. We first assume again that G is
abelian. The goal is to replace the locally definable group U in (15) with a
definable short group. We refer to the notation of (14) and (15).

Step 1 Let Λ = ker(F̂ ) and let Λ1 = π
Ĝ
(Λ) ⊆ U .

Claim 5.1. The universal cover U of K from (14), together with Λ1, satisfy
the assumptions of Fact 2.6. Namely, U is connected, generated by a defin-
ably compact set and there is a definable set X ⊆ U such that X + Λ1 = U .
Moreover, Λ1 is finitely generated.

Proof. The group Ĝ is the universal cover of G. We first find a definable,

definably connected, definably compact X ⊆ Ĝ which contains the identity,

such that F̂ (X) = G. We start with a definable X ⊆ Ĝ such that F̂ (X) = G
and then replace it with Cl(X). We claim that Cl(X) is definably compact.

Indeed, if not then by [5, Lemma 5.1 and Theorem 5.2], Ĝ has a definable,
1-dimensional subgroup G0 which is not definably compact. Because µ is

locally definable, its restriction to G0 is definable so ker(F̂ ) ∩ G0 is finite

and therefore trivial. Hence F̂ (G0) is a definable subgroup of G that is not
definably compact, contradicting the fact thatG is definably compact. Thus,

we can find a definably compact X ′ with X ′ + ker(F̂ ) = Ĝ. By [12, Fact

2.3(2)], X ′ generates Ĝ.
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By [6, Claim 3.8], Ĝ is path connected so we can easily replace X ′ by
X1 ⊇ X ′ which is definably compact and path connected (connect any two
definably connected components of X ′ by a definable path). To simplify we
call this new set X again.

Also, by [6, Theorem 1.4 and Corollary 1.5], ker(F̂ ) is isomorphic to the

fundamental group of G, πdef1 (G), which is finitely generated. It follows that
Λ1 is finitely generated, U = π

Ĝ
(X) + Λ1, and πĜ(X) is definably compact

and definably connected. Since X generates Ĝ, the set π
Ĝ
(X) generates U .

By Remark 2.4, U is connected. �

We can now apply Fact 2.6 and conclude that there is a definably compact
group K and a

∨
-definable surjection µ̂ : U → K with ker(µ̂) = Λ0 ⊆ Λ1.

Our goal is to prove: There are locally definable extensions G and G′ of

K, by the group Ĥ and H, respectively, and surjective homomorphisms from
G and G′ onto G.

First, by Lemma 2.12, we have a locally definable group Ĥ′ = ker(µ̂π
Ĝ
) =

π−1

Ĝ
(Λ0) ⊆ Ĝ such that (we write i for the identity on Ĥ on the top left) the

diagram commutes and the following sequences are exact.

(17)

0 Ĥ Ĝ U 0

0 Ĥ′ Ĝ K 0

-

?
i

-i

?
id

-
π
Ĝ

?̂
µ

-

- -id -
µ̂π

Ĝ -

Because ker(µ̂) ⊆ πĜ(Λ), the group Ĥ′ is contained in the group i(Ĥ)+Λ.

Since i(Ĥ) is a divisible subgroup of Ĥ′, there exists a subgroup Λ′ ⊆ Λ such

that Ĥ′ equals the direct sum of i(Ĥ) and Λ′. Because ker(π
Ĝ
) = i(Ĥ), the

group Λ′ is isomorphic, via π
Ĝ
, to Λ0, so Λ′ is finitely generated. We now

have a group homomorphism p : Ĥ′ → Ĥ, given via the identification of Ĥ′

with i(Ĥ)⊕ Λ′. Namely, p(i(h) + λ) = h.

We claim that p is a locally definable map. Indeed, Ĥ′ is the union of sets
of the form i(Hi) + Fi, where Hi is definable and Fi is a finite subset of Λ′.

Because the sum of Ĥ and Λ′ is direct, each element g of i(Hi) + Fi has a
unique representation as g = i(h)+ f , for h ∈ Hi and f ∈ Fi. Therefore the
restriction of p to i(Hi)+Fi is definable. It follows that p is locally definable.

Step 2. We apply Proposition 2.8 to the diagram

Ĥ′ Ĝ

Ĥ

-id

?
p
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and obtain a locally definable pushout G, such that the following diagram
commutes and the sequences are exact:

0 Ĥ′ Ĝ K 0

0 Ĥ G K 0

-

?
p

-id

?̂
α

-
µ̂π

Ĝ

?
id

-

- -i1 -
πG -

Because p is surjective the map α̂ : Ĝ→ G is also surjective. Moreover, by

Lemma 2.8, the kernel of α̂ equals ker p = Λ′ so is contained in Λ = ker(F̂ ).

Step 3. We now have surjective maps F̂ : Ĝ → G and α̂ : Ĝ → G, both∨
-definable with ker(α̂) ⊆ ker(F̂ ). By Lemma 2.13 we have a

∨
-definable

surjective F : G→ G, with ker(F ) = α̂(ker(F̂ )). We therefore obtained the
following diagram:

(18)

0 Ĥ G K 0

G

- -i1 -
πG

?
F

-

Finally, let us calculate ker(F ): Recall that Λ′ is isomorphic to Λ0 the
kernel of the universal covering map µ̂ : U → K. Because K is a short

definably compact group, it follows from [8] that ker(µ̂) = πdef1 (K) = Zd,

where πdef1 (K) is the o-minimal fundamental group of K and

d = dim(K) = dim(U) = dim(G)− k,

for k = lgdim(G). The map F̂ : Ĝ → G is the universal covering map

of G and therefore, as shown in [6, Theorem 1.4, Corollary 1.5], ker(F̂ ) =

πdef1 (G) = Zℓ, for some ℓ. Furthermore, for every m ∈ N, the group of
m-torsion points G[m] is isomorphic to (Z/mZ)ℓ. By [19, Theorem 7.6],

G[m] = (Z/mZ)dim(G), hence we can conclude

Λ = ker(F̂ ) = πdef1 (G) = ZdimG.

We now have ker(F ) = α̂(Λ) ≃ Λ/Λ′, with Λ ≃ Zdim(G) and Λ′ ≃
Zdim(G)−k. Hence, ker(F ) is isomorphic to the direct sum of Zk and a finite
group, as required.

Question Can K be chosen so that ker(F ) ≃ Zk?

Next, consider H ⊆ G as in Theorem 1.1. We want to see that we can

obtain a similar diagram to (18), withH instead of Ĥ. For simplicity, assume



DEFINABLE GROUPS 25

that i1 is the identity. First notice that by the last clause of Theorem 1.1, we

must have F (Ĥ) ⊆ H. However, using exactly the same proof as in Lemma

4.4, we can show that that F (Ĥ) is also the largest connected strongly long,
locally definable, subgroup of G, hence it equals H. We therefore have

Ĥ G

H

-i1

?
F �Ĥ

We can now obtain G′, the pushout of G and H over Ĥ:

0 Ĥ G K 0

0 H G′ K 0

-

?
F �Ĥ

-i1

?
α′

-
πG

?
id

-

- -i′ -πG′ -

Clearly, ker(F � Ĥ) ⊆ ker(F ), so by Proposition 2.8, ker(α′) = i(kerF �
H) ⊆ kerF . By Lemma 2.13, we have a homomorphism from G′ onto G as
we want. We therefore have:

(19)

0 H G′ K 0

G

- -i′ -
πG

?
h′

-

This ends the switch from (18) to (19), and with that the proof of Theorem
1.3 in the case that G is abelian. In order to conclude the same result for
arbitrary definably compact, definably connected G, we repeat the same
arguments as in the last part of the proof of Theorem 1.1. �

5.1. Special cases. As was pointed out earlier, we use Fact 2.6 to guarantee
that there is a definable group K and a

∨
-definable surjection µ̂ : U → K

with Λ0 := ker(µ̂) a subgroup of π
Ĝ
(ker F̂ ) (see notation of Theorem 1.1). In

certain simple cases we can see directly why such Λ0 exists, without referring
to Fact 2.6:

Assume G is abelian. Let K and H be as in Section 4.1. Namely, K is
the group obtained as the quotient of the locally definable subgroup B of G
by the compatible subgroup H0 ∩ B, and H is the largest locally definable,
connected strongly long subgroup of G.

(1) Assume that K is definable.

In this case we take Λ0 = ker(µ), where µ : U → K. Obviously, U/Λ0

is definable, so we need only to see that Λ0 ⊆ π
Ĝ
(ker F̂ ). Let u ∈ ker(µ).
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By (13), u = π
Ĝ
(v), for some v ∈ ker(η). But then F̂ (v) = ϕγ′η(v) = 0,so

U ∈ π
Ĝ
(ker F̂ ).

(2) Assume that H is definable.

We denote by K the definable group G/H. From Theorem 1.1 and its
proof we obtain the following commutative diagram.

0 Ĥ Ĝ U 0

0 H G K 0

- -i

?
f

?
F̂

-
π
Ĝ -

- -id -πG -

But now there is a unique map µ : U → K which makes the above diagram

commute, and it is easy to verify by construction that ker(µ) ⊆ π
Ĝ
(ker(F̂ )).

We now take Λ0 = ker(µ).

6. Examples

In this section we provide examples that motivate the statements of The-
orem 1.1 and 1.3. More specifically, we give examples of definably compact
groups which cannot themselves be written as extensions of short (locally)
definable groups by strongly long (locally) definable subgroups. This is what
forces us to move our analysis to the level of universal covers.

In the following examples, we fix M = ⟨M,+, <, 0, R⟩ to be an expansion
of an ordered divisible abelian group by a real closed field R, whose domain
is a bounded interval (0, a) ⊆ M . In particular, M is semi-bounded, o-
minimal, and (0, a) is short. Let also b ∈ M be any tall positive element.
In the first two examples, we define semi-linear groups which have the same
domain [0, a)× [0, b) but different operations.

Example 6.1. Pick any 0 < v1 < a such that a and v1 are Z-independent.
Let L be the subgroup of ⟨M2,+⟩ generated by the vectors ⟨a, 0⟩ and ⟨v1, b⟩,
and let G = ⟨[0, a)× [0, b), ⋆, 0⟩ be the group with

x ⋆ y = z ⇔ x+ y − z ∈ L.

By [13, Claim 2.7(ii)], G is definable.
Let us see what the various groups of Theorems 1.1 and 1.3 are in this

case.
We let Ĝ be the subgroup of M2 generated by [0, a]× [0, b]. The group Ĝ

is torsion-free and it is easy to see that there is a locally definable covering

map F̂ : Ĝ → G. Hence, Ĝ is the universal cover of G. The group Ĥ =

{0} ×
∪

n(−nb, nb), is a locally definable compatible subgroup of Ĝ and the

quotient Ĝ/Ĥ is isomorphic to the short group
∪

n(−na, na).
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We have lgdim(Ĥ) = dim(Ĥ) = 1, so Ĥ is strongly long. As in the proof of

Proposition 4.4, the group Ĥ is the largest strongly long, connected, locally

definable subgroup of Ĥ.

Now, we let H = F̂ (Ĥ). This is the subgroup of G generated by the set
H = {0} × [0, b) and we can describe it explicitly. Let S ⊆ [0, a) be the set
containing all elements of the form n(a − v1) mod a. By the choice of v1,
the set S has to be infinite. By the definition of the operation ⋆, it is easy
to see that

H =
∪
s∈S

{s} × [0, b),

which is not definable (so in particular not compatible in G). This shows
the need in Theorem 1.1 to work with the universal cover of G rather than
with G itself. Note that F̂ restricted to Ĥ is an isomorphism onto H.

In fact, G does not contain any infinite strongly long definable subgroup.
Indeed, if it did, then its connected component should be contained in H
and therefore the pre-image of this component under F̂ � Ĥ would be a

proper definable subgroup of Ĥ and, thus, of ⟨M,+⟩, a contradiction.

Now consider the subgroup K = ⟨[0, a)× {0}, ⋆, 0⟩ of G and let K̂ be its
universal cover. We can write

G = H ⋆ K.

Of courseH∩K is infinite, so this is not a direct sum. However, the universal

cover Ĝ of G is a direct sum

Ĝ = Ĥ ⊕ K̂,

whereas, if we let

G = Ĥ ⊕K,

then we can define a surjective homomorphism F : G → G with kerF ≃
Z(0, b).

We finally observe in this example that H ∩K = S is not a compatible
subgroup of K, which indicates the need for passing to H0 in the proof of
Theorem 1.1 (see Claim 4.2).

Example 6.2. Pick any 0 < u2 < b such that u2 and b are Z-independent.
Let L be the subgroup of ⟨M2,+⟩ which is generated by the two vectors
⟨a, u2⟩ and ⟨0, b⟩, and let again G = ⟨[0, a)× [0, b), ⋆, 0⟩ be the group with

x ⋆ y = z ⇔ x+ y − z ∈ L.

Here we observe that H = {0} × [0, b) itself is the largest strongly long
locally definable subgroup of G and, hence, G is itself an extension of a short
definable group by H. However, H does not have a definable complement
in G; namely, G cannot be written as a direct sum of H with some definable
subgroup of it. The proof of this goes back to [22]. See also [21].
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The universal cover Ĥ of H is again the subgroup of M2 generated by

H. Let K be the subgroup of G generated by K = [0, a) × {0}, and K̂ its
universal cover. Then we can write

G = H ⋆K,

where again H ∩ K is not finite, so this is not a direct sum. The universal

cover Ĝ of G is again a direct sum

Ĝ = Ĥ ⊕ K̂.

If we let K = ⟨[0, a) × {0}, ⋆K , 0⟩ be the group with operation ⋆K = +

mod a, then we can define a suitable extension G of K by Ĥ

0 Ĥ G K 0- - - -

and a surjective homomorphism F : G→ G with kerF ≃ Z(0, b).

We finally give an example for Theorems 1.1 and 1.3 of a definable group
G which contains no infinite proper definable subgroup.

Example 6.3. Pick any 0 < v1 < a such that a and v1 are Z-independent,
and any 0 < u2 < b such that u2 and b are Z-independent. Let L be the
subgroup of ⟨M2,+⟩ which is generated by the vectors ⟨a, u2⟩ and ⟨v1, b⟩.
We define the group G with domain(

[0, a)× [0, b− u2)
)
∪
(
[v1, a)× [b− u2, b)

)
,

and group operation again

x ⋆ y = z ⇔ x+ y − z ∈ L.

It is not too hard to verify that the above is indeed a definable group - this
will appear in a subsequent paper ([11]).

In this case, G does not contain any infinite proper definable subgroup.
This again originates in [22]. We let H the subgroup of G generated by

H = {0} × [0, b − u2), and Ĥ its universal cover. We also let K be the

subgroup of G generated by K = [0, a) × {0}, and K̂ its universal cover.
Then we have:

G = H ⋆K,
with H ∩K infinite, and

Ĝ = Ĥ ⊕ K̂.

Finally, if we letK = ⟨[0, a)×{0}, ⋆K , 0⟩ be the group with operation ⋆K = +

mod a, then we can define a suitable extension G of K by Ĥ

0 Ĥ G K 0- - - -

and a surjective homomorphism F : G→ G with kerF ≃ Z(v1, b).
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7. Compact Domination

Let us first recall ([16, Section 7]) that for a definable, or
∨
-definable

group U , we write U00 for the smallest, if such exists, type-definable sub-
group of U of bounded index (in particular we require that U00 is contained
in a definable subset of U). Note that a type-definable subgroup H of U has
bounded index if and only if there are no new cosets of H in U in elemen-
tary extensions of M. A definable X ⊆ U is called generic if boundedly
many translates of X cover U . In [12, Theorems 2.9 and 3.9] we established
conditions so that U00 and generic sets exist.

Let G be a definably connected, definably compact, abelian definable
group and π : G → G/G00 the natural projection. We equip the compact
Lie group G/G00 with the Haar measure, denoted by m(Z), and prove: for
every definable X ⊆ G, the set of h ∈ G/G00 for which π−1(h) ∩ X ̸= ∅
and π−1(h) ∩ (G \X) ̸= ∅ has measure zero. As is pointed out in [16], it is
sufficient to prove that

(20) for every definable X ⊆ G, if dimX < dimG, then m(πX) = 0.

We say then that G (and π) satisfy Compact Domination. When G is locally
definable and G00 exists then G/G00 is locally compact (see [16, Lemma 7.5])
and so admits Haar measure as well. We still say that G satisfies compact
domination if (20) holds.

We split the argument into two cases:

I. G is abelian.

Consider the universal covering map ϕ : Ĝ → G and the commutative
diagram in [12, Proposition 3.8]

(21)

Ĝ G

Ĝ/Ĝ00 G/G00

?

π
Ĝ

-ϕ

?

πG

-ϕ′

.

Using the fact that kerϕ has dimension zero and kerϕ′ is countable, it is

not hard to see that G satisfies Compact Domination if and only if Ĝ does.

Our goal is then to prove (20) for the universal cover Ĝ.
Recall by Theorem 1.1 the sequence:

0 Ĥ Ĝ U 0- -i -f -

with Ĥ an open subgroup of ⟨Mk,+⟩, lgdim(Ĥ) = k = lgdim(Ĝ) and U a

short
∨
-definable group of dimension n. Note that Ĝ contains a definable

generic set (any definable set which projects onto G), and hence so does U .
By [12, Theorem 3.9], U has a definable, definably compact quotient K, and
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the homomorphism from U onto K has kernel of dimension zero. By [15],
the group K, with its map onto K/K00 satisfies Compact Domination, and
therefore πU : U → U/U00 also satisfies Compact Domination.

We now consider Ĥ and first claim:

(22) Ĥ00 exists and contains the set of all short elements in Mk.

Indeed, recall from Section 3.2 that Ĥ is generated by a subset H ′ ⊆Mk,

H ′ = (−e1, e1)× · · · × (−ek, ek),

with each ei > 0 tall in M . We define, for each n ∈ N, Hi =
1
nH

′, and claim
that

Ĥ00 =
∩
n

Hn.

Indeed,
∩

nHn is a torsion-free subgroup of Ĥ. Moreover, each Hn is generic

in Ĥ because we have Ĥ = Hn + Ze1 + · · · + Zek. It follows that
∩

nHn

has bounded index in Ĥ, and thus [12, Proposition 3.6] gives Ĥ00 =
∩

nHn.

Finally, since each ei is tall, it is easy to verify that each short tuple in Mk

must be contained in
∩

nHn.

We now claim that Ĝ00 ∩ i(Ĥ) = i(Ĥ00). This follows from the fact that

Ĝ00∩ i(Ĥ) has bounded index in i(Ĥ) and it is torsion-free ([12, Proposition

3.6]). Next, we claim that f(Ĝ00) = U00. Since f(Ĝ00) has bounded index it

must contain U00. Because Ĝ00 is torsion-free and ker(f) = i(Ĥ00) = i(Ĥ)∩
Ĝ00 is divisible ([12, Proposition 3.5]), it follows that f(Ĝ00) is torsion-free
so must equal U00. We therefore have the following commutative diagram
of exact sequences:

(23)

0 Ĥ Ĝ U 1

0 Ĥ/Ĥ00 Ĝ/Ĝ00 U/U00 0

- -i

?

πĤ

?

π
Ĝ

-f

?

πU

-

- -î -f̂ -

As in the proof of [12, Proposition 3.8], the map f̂ is continuous.

Assume now that X ⊆ Ĝ is a definable set of dimension smaller than
dim Ĝ. We want to show that π

Ĝ
(X) has measure 0. We are going to use

several variations of Fubini’s theorem so let us see that the setting is correct.

By [12], the group Ĝ/Ĝ00 is isomorphic to Rk×Rn and the bottom sequence
in the above diagram is just

(24) 0 Rk Ĝ/Ĝ00 Rn 0- -î -f̂ -
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The above sequence necessarily splits as a Lie group, so by Fubini, a set

Y ⊆ Ĝ/Ĝ00 has measure zero if and only if the set

{u ∈ Rn : mRk(f̂−1(u) ∩ Y ) > 0}

has measure zero in Rn. (By mRk(f̂−1(u) ∩ Y ) we mean the measure after
identifying Rk × {u} with Rk)

We are now ready to start the proof.

Case 1 dim f(X) < dimU .

Here we use Compact Domination in expansions of real closed fields (see
[15]), so by an earlier observation, U also satisfies it. Hence, we have
m(πU (f(X))) = 0, and therefore, by the commutation of the above dia-
gram and Fubini we must have m(π

Ĝ
(X)) = 0.

Most of the work goes towards the proof of the second case. For simplic-

ity, let us assume that Ĥ ⊆ Ĝ.

Case 2 dim f(X) = dimU .

We first establish two preliminary results.

Claim We may assume that lgdim(X) < k = lgdim(Ĝ).

Indeed, by Lemma 9.1, we can decompose f(X) into two definable sets
Y1 ∪ Y2 such that for every u ∈ Y1, we have lgdim(f−1(u) ∩ X) < k
and for every u ∈ Y2, lgdim(f−1(u) ∩ X) = k = dim(f−1(u)). Because

dimX < dim Ĝ and dim f(X) = dimU , the dimension of Y2 must be smaller
than dimU . By Case (1), we can ignore Y2 and assume now that for every
u ∈ f(X), lgdim(f−1(u)∩X) < k. Since U is short, it follows from [10] that
lgdim(X) < k.

In the rest of the argument we prove the more general statement:

Lemma 7.1. If X ⊆ Ĝ is definable and lgdim(X) < k then the measure of
π
Ĝ
(X) is zero.

Proof. We first prove a result for the group Ĥ. By [12, Proposition 3.8], the

group Ĥ/Ĥ00, equipped with the logic topology, is isomorphic to Rk.

Claim 7.2. If Y ⊆ Ĥ is definable and lgdim(Y ) < k then m(πĤ(Y )) = 0.

Proof. Recall that Ĥ is a subgroup of ⟨Mk,+⟩ and that the set of all short

elements of Mk is contained in Ĥ00. Hence, if B is any definably connected
short set, then πĤ(B) = {b} is a singleton.
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The set Y is a finite union of m-long cones, with m < k, hence we may as-

sume that Y is such a cone C = B+⟨C⟩, where ⟨C⟩ =
{∑k

i=1 λi(ti) : ti ∈ Ii

}
,

for long Ii = (−ai, ai) and partial linear maps λi : Ii →Mk. We have

πĤ(C) = b+

m∑
i=1

πĤ(λi(ti)).

Because πĤ is a homomorphism from ⟨Ĥ,+⟩ onto ⟨Rk,+⟩, it follows that
for each i = 1, . . . ,m, ti 7→ πĤ(λi(ti)) is a partial homomorphism from

Ii into ⟨Rk,+⟩. Hence, the image of the Ĝ-linear set {λi(t) : t ∈ Ii}
is a closed affine subset of Rk of dimension m. Since m < k we have
m(πĤ(Y )) = m(πĤ(C)) = 0. �

Claim 7.3. There exists a definable set U0 ⊆ U with U00 ⊆ U0, and a

definable section s : U0 → Ĝ (i.e. fs(u) = u for every u ∈ U0), such that
(i) the function s is continuous with respect to the topologies induced by U
and Ĝ and (ii) s(U00) ⊆ Ĝ00.

Proof. Let U1 ⊆ U be a definable generic set. By definable choice. there

exists a definable partial section s : U1 → Ĝ, namely, sf(u) = u for all u ∈
U1. The map s is piecewise continuous (with respect to the τ -topologies of U
and Ĝ) and therefore U1 has a definable, definably connected U0 ⊆ U1, still

generic in Ĝ such that s is continuous on U0. Using Compact Domination
for U , it follows from [16, Claim 3, p.590] that the set U0 contains a coset
of U00 so we may assume after translation in U that U0 contains U00 and

s : U0 → Ĝ is continuous. We may also assume that s(0) = 0.

It is left to see that s(U00) is contained in Ĝ00. Consider the map σ(x, y) =
s(x− y)− (s(x)− s(y)), a definable and continuous map from U0 × U0 into

Ĥ. Because the group topology on Ĥ is the subspace topology of Mk and
because U0 × U0 is a short definably connected set its image under σ is a

short, definably connected subset of Ĥ containing 0. As we pointed out

earlier, it must therefore be contained in Ĥ00.

We consider the set Ĝ1 = s(U00) + Ĥ00 and claim that Ĝ1 = Ĝ00. To see

first that Ĝ1 is a subgroup, we note that

(s(u1) + h1)− (s(u2) + h2) = s(u1 − u2) + (h1 + h2 − σ(u1, u2)).

When u1, u2 ∈ U00 we have σ(u1, u2) ∈ Ĥ00 and hence this sum is also in

Ĝ1. Because s is definable and both U00 and Ĥ00 are type-definable the

group Ĝ1 is also type-definable. Because U00 has bounded index in U and

Ĥ00 has bounded index in Ĥ it follows that Ĝ1 has bounded index in Ĝ.
Since Ĝ1 is torsion-fee it follows from [12, Proposition 3.6] that Ĝ1 = Ĝ00.

In particular, s(U00) is contained in Ĝ00. �
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Our goal is to show thatm(π
Ĝ
(X)) = 0. By Fubini, it is sufficient to show

that for every u ∈ U/U00, the fiber π
Ĝ
(X)∩ f̂−1(u) has zero measure in the

sense of Ĥ/Ĥ00. Namely, it is the translate in Ĝ/Ĝ00 of a zero measure

subset of Ĥ/Ĥ00.

Claim Fix u ∈ U/U00. Then there exists a a definable set Y ⊆ Ĥ with

lgdim(Y ) < k, and an element g ∈ Ĝ such that the fiber π
Ĝ
(X) ∩ f̂−1(u) is

contained in the set

π
Ĥ
(Y ) + π

Ĝ
(g).

Proof. Fix ū ∈ U such that πU (ū) = u. By translation in Ĝ and in U we may
assume that the domain of the partial section s which was defined above,

call it still U0, contains ū+U00. If we let g = s(ū) then s(ū+U00) ⊆ g+Ĝ00.

Consider the definable map x 7→ x−s(f(x)) from X∩f−1(U0) into Ĥ and
let Y be its image. Because lgdim(X) < k, we must also have lgdim(Y ) < k.

We claim that this is the desired Y . Indeed, we assume that f̂(π
Ĝ
(x)) = u

for some x ∈ X and show that π
Ĝ
(x) ∈ π

Ĥ
(Y ) + π

Ĝ
(g).

By the commuting diagram above, f(x) ∈ ū + U00 ⊆ U0 and therefore

x− s(f(x)) ∈ Y . Since s(ū+ U00) is contained in s(ū) + Ĝ00, we also have

s(f(x)) ∈ g + Ĝ00. We now have

π
Ĝ
(x) = π

Ĝ
(x− sf(x)) + π

Ĝ
(sf(x)) ∈ π

Ĥ
(Y ) + π

Ĝ
(g).

�
We can now complete the proof that π

Ĝ
(X) has measure 0. For every

u ∈ U/U00 we find a definable Y ⊆ Ĥ as above. By Claim 7.2, the set πĤ(Y )

has measure 0 in Ĥ/Ĥ00, hence the fiber π
Ĝ
(X)∩ f̂−1(u) is a translate of a

measure zero subset of Ĥ/Ĥ00. By Fubini the measure of π
Ĝ
(X) is zero.

This ends the proof of Lemma 7.1 and with it that of Compact Domination
for abelian G.

II. The general case (G not necessarily abelian).

Assume now that G is an arbitrary definably compact group. By [17], G
is the almost direct product of a definably connected abelian group G0 and
a definable semi-simple group S. It is enough to prove the result for a finite
cover of G hence we may assume that G = G0×S. By [17, Theorem 4.4 (ii)],
the group S is definably isomorphic to a semialgebraic group over a definable
real closed field so it must be short, and therefore lgdimG = lgdimG0 = k.
To simplify the diagram, we use G0 = G0/G

00
0 , S = S/S00, so we have

G/G00 = G0 × S.
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We have

0 G0 G0 × S S 0

0 G0 G0 × S S 0

- -i

?

πG0

?

πG

-f

?

πS

-

- -î -f̂ -

Assume now that X ⊆ G is a definable set and dim(X) < dim(G). If
dim(f(X)) < dim(S) then by Compact Domination in expansions of fields,
the Haar measure of πS(f(X)) in S is 0 and therefore m(πG(X)) in G/G00

is 0.
If dim(X) = dim(S) then, as in the abelian case, we may assume, after

partition, that for every s ∈ S, lgdim(f−1(s) ∩X) < k. Because S is short,
it follows that lgdim(X) < k and therefore the projection of X into G0,
call it X ′, has long dimension smaller than k. But now, by Lemma 7.1, the
Haar measure in G0 of πG0(X

′) equals to 0. By Fubini, the Haar measure
of πG(X) must also be zero.

This ends the proof of Compact Domination for definably compact groups
in o-minimal expansions of ordered groups. �

8. Appendix A - pullback and pushout

8.1. Pushout.

Proof of Proposition 2.8. We start with

A B

C

-α

?
β

and prove the existence of the pushout D. We first review the standard
construction of D (without verifying the algebraic facts). We consider the
direct product B × C and take D = (B × C)/H where H is the subgroup
H = {(α(a),−β(a)) : a ∈ A}. If we denote by [b, c] the coset of (b, c) mod
H then the maps γ, δ are defined by γ(b) = [b, 0] and δ(c) = [0, c]. Assume
now that we also have

A B

C D′

-α

?
β

?
γ′

-δ′

We define ϕ : D → D′ by ϕ([b, c]) = γ′(b) + δ′(c). Clearly, if all data are
definable then so are B×C and H, and therefore, using definable choice, D
and the associated maps are definable.



DEFINABLE GROUPS 35

If α is injective then δ is also injective, and if β is surjective then so is γ
(see observation (b) on p. 53 in [14])

Suppose that A,B,C and α, β are
∨
-definable and that α(A) is compat-

ible subgroup of B. Clearly B × C is
∨
-definable and it is easy to see that

H is a
∨
-definable subgroup. We want to show that H is a compatible sub-

group of B × C. For that we write A =
∪
Ai, B =

∪
Bj and C =

∪
Ck. It

follows that B×C =
∪

j,k Bj ×Ck. To show compatibility of H it is enough

to show that for every j, k, the intersection (Bj ×Ck) ∩H is definable. Be-
cause α(A) is compatible in B, the set Bj ∩ α(A) is definable. Hence, there
is some i0 such that α(Ai0) ⊇ Bj ∩ α(A). Moreover, because α is injective
α−1(Bj) ⊂ Ai0 . It follows that the intersection H ∩ (Bj × Ck) equals

{(α(a),−β(a)) ∈ Bj × Ck : a ∈ A} = {(α(a),−β(a)) ∈ Bj × Ck : a ∈ Ai0}.
The set on the right is clearly definable, hence H is a compatible subgroup
of B × C, so D = (B × C)/H is

∨
-definable (see Fact 2.2). It is now easy

to check that γ : B → D and δ : C → D are
∨
-definable.

If E = B/α(A) then, by the compatibility of α(A), we see that E is
∨
-

definable. If π : B → E is the projection then we define π′ : D → E by
π′([b, c]) = π(b). It is routine to verify that π′ is a well-defined surjective
homomorphism whose kernel is δ(C). It follows, using Fact 2.2, that δ(C)
is a compatible subgroup of D. Finally, it is routine to verify commutation
of all maps. �
Proof of Lemma 2.9. We have

(25)

B D F

A C E

-γ -µ

6
α

-β

6
δ

-η

6
ξ

with D the pushout of B and C over A and F the pushout of B and E over
A and we want to see that F is also the pushout of D and E over C.

It is sufficient to show that for every given commutative diagram

(26)

D F ′

C E

-µ′

6
δ

-η

6
ξ′

there is a map ϕ′ : F → F ′ such that ϕ′µ = µ′ and ϕ′ξ = ξ′ (according to
the definition we also need to prove uniqueness but this follows).

By commutativity we have µ′δ = ξ′η and hence µ′δβ = ξ′ηβ. Since
δβ = γα we also have (µ′γ)α = (ξ′)ηβ. We now use the fact that F is the
pushout of B and E over A and conclude that there is ϕ′ : F → F ′ such
that

(27) (i)ϕ′ξ = ξ′ and (ii)ϕ′µγ = µ′γ
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(i) gives half of what we need to show so it is left to see that ϕ′µ = µ′.
Consider the commutative diagram

(28)

B F ′

A C

-µ′γ

6
α

-β

6
ξ′η

Because D is the pushout of B and C over A, there is a unique map ψ :
D → F ′ with the property

(i)ψδ = ξ′η and (ii)ψγ = µ′γ.

If we can show that both maps µ′ and ϕ′µ from D into F ′ satisfy these
properties of ψ then by uniqueness we will get their equality. For ψ = µ′, (i)
is part of the assumptions, and (ii) is obvious. For ψ = ϕ′µ, we obtain (ii)
directly from (27)(ii). To see (i), start from (27)(i), ϕ′ξ = ξ′, and conclude
ϕ′ξη = ξ′η. By commutation, ξη = µδ so we obtain ϕ′µδ = ξ′η, as needed.
We therefore conclude that µ′ = ϕ′µ and hence F is the pushout of E and
D over C. �
8.2. Pullback.

Proof of Proposition 2.11. Consider the diagram

B

C A
?
α

-
β

We again review the algebraic construction of a pullback (which is simpler
because we take no quotients). We let

D = {(b, c) ∈ B × C : α(b) = β(c)},
and the maps are just γ(b, c) = b and δ(b, c) = c. Given

D′ B

C A

-γ′

?
δ′

?
α

-
β

we define ϕ(d′) = (γ′(d′), δ′(d′)) ∈ D.
Clearly, if all data are definable then so is D and the associated maps.

Similarly, if all data are
∨
-definable then so are D and the associated maps.

If G = ker(γ) then

G = {(b, c) ∈ D : b = 0} = {(0, c) ∈ B × C : β(c) = 0},
and then clearly j(0, c) = c is an isomorphism of G and H = ker(β). If
all given data are

∨
-definable then so are G,H and the associated maps.
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Furthermore, since G and H are kernels of
∨
-definable maps they are clearly

compatible in D,C, respectively.
If β is surjective then so is γ and the sequences in the diagram are exact

(and the diagram is commutative). �

9. Appendix B - Short and long set

We assume that M is an o-minimal semi-bounded expansion of an ordered
group

Lemma 9.1. Let S ⊆ M r be a definable short set and let A ⊆ S ×Mn be
a definable set. For s ∈ S, we let As = {x ∈ Mn : (s, x) ∈ A}. Then, for
every ℓ ≥ 0, the set ℓ(A) = {s ∈ S : lgdim(As) = ℓ} is definable.

Proof. By [10], the set A can be written as a union of long cones
∪
Ci. Since

lgdim(X1 ∪ · · · ∪Xm) = maxi(lgdim(Xi)), we may assume that A itself is a

long cone A = B +
∑k

i=1 λi(ti), where B ⊆ M r+n is a short cell, λ1, . . . , λk
are M -independent partial linear maps λi : Ii → M r+n and Ii = (0, ai) are

long intervals. We write λi = (λ1i , . . . , λ
r+n
i ), for i = 1, . . . , k, so each λji is

a partial endomorphism from Ii into M .
We claim that for every s ∈ S, lgdim(As) = k. This clearly implies what

we need.
For b = (b1, . . . , br+n) ∈ B, i = 1, . . . , k and ti ∈ Ii, we have bi + λi(ti) :

Ii → A. Therefore, we have (b1, . . . , br) + (λ1i (ti), . . . , λ
r
i (ti)) ∈ S. Each λji

is either injective or constantly 0 and hence, because S is short and each Ii
is long, for each j = 1, . . . , r and i = 1, . . . , k, we have λji ≡ 0. It follows
that for every b ∈ B, we have (b1, . . . , br) ∈ S.

For i = 1 . . . , k, we let

λ̂i = (λr+1
i , . . . , λr+n

i ) : Ii →Mn.

Because λ1, . . . , λk were M -independent, it is still true that λ̂1, . . . , λ̂k are
M -independent. We now have, for every s ∈ S,

As =

{
b+

k∑
i=1

λ̂i(ti) : b ∈ Bs, t ∈ Ii

}
and therefore the set As is a k-long cone, so lgdim(As) = k. �

References
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