NON-STANDARD LATTICES AND O-MINIMAL GROUPS

PANTELIS E. ELEFTHERIOU

ABSTRACT. We describe a recent program from the study of definable groups in certain
o-minimal structures. A central notion of this program is that of a (geometric) lattice.
We propose a definition of a lattice in an arbitrary first-order structure. We then use
it to describe, uniformly, various structure theorems for o-minimal groups, each time
recovering a lattice that captures some significant invariant of the group at hand. The
analysis first goes through a local level, where a pertinent notion of pregeometry and
generic elements is each time introduced.

1. INTRODUCTION

The study of groups definable in models of a first-order theory has been a core subject
in model theory spanning at least a period of thirty years. On the one hand, definable
groups are present whenever non-trivial phenomena occur in the models of a theory and
their study has played a prominent role in Shelah’s classification theory. On the other
hand, a large variety of classical groups turn out to be definable in certain structures
and their study via model-theoretic methods has given rich applications to other areas
of mathematics. For example, an algebraic group is definable in an algebraically closed
field and a compact real Lie group is definable in some o-minimal expansion of the real
field.

It is the second kind of examples which we seek to embark on here. O-minimal
structures provide a rich, yet tame, model-theoretic setting where definable sets enjoy
many of the nice topological properties that hold for semi-algebraic sets. For example,
a topological notion of dimension can be defined for every definable set. It is often
said that o-minimality is the correct formalization of Grothendieck’s ‘topologie modérée’
([Dries1]).

Groups definable in an o-minimal structure, in their turn, henceforth called ‘o-minimal
groups’, strikingly resemble real Lie groups. The starting point for the study of o-minimal
groups was Pillay’s theorem in [Pi] that every such group admits a definable manifold
topology that makes it into a topological group. Since then, an increasing number of
theorems have reinforced the resemblance of o-minimal groups with real Lie groups,
culminating in the solution of Pillay’s Conjecture (PC) in recent years. (PC) says, in
its simplified form, that every definably connected, definably compact o-minimal group
G admits a surjective homomorphism onto a real Lie group, whose dimension (as a Lie
group) is equal to the o-minimal dimension of G. The reader is referred to [Ot] for a
detailed account on the history of o-minimal groups.

Depending on what kind of ambient o-minimal structure we are dealing with, different
methods for analyzing definable groups have been developed. The main dichotomy has
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been whether the structure expands a real closed field or not. Let us recall some defini-
tions. An o-minimal structure M = (M, <, ...) is a structure with a dense linear order
< such that every definable subset of M is a finite union of open intervals and points.
The standard setting where definable groups have been studied is that of an o-minimal
expansion M = (M, <,+,0,...) of an ordered group (although, newly in [EPR], the
assumption of the ambient group structure is being removed.) It follows from [PeSt1]
and [Ed1] that we can have exactly the following cases:
A M= (M,<,+,-,0,1,...) expands an ordered field (which, by o-minimality, will
have to be a real closed field).
B. M does not expand a real closed field. Here we can further split into two subcases:
B1. M contains a definable real closed field whose domain is a bounded interval
I1C M.
B2. No real closed field is definable.
We refer to case (A) as the ‘field case’, to (B1) as the ‘semi-bounded case’ and to (B2)
as the ‘linear case’. The typical example of a linear structure is that of an ordered
vector space M = (M, <,+,0,{d}qep) over an ordered division ring D. An important
example of a semi-bounded structure is the expansion B of the real ordered vector space
Ryect = (R, <, +,0,{d}4er) by all bounded semi-algebraic sets. Every bounded interval
in B admits the structure of a definable real closed field. For example, the field structure

on (—1,1) induced from R via the semi-algebraic bijection = \/117 is definable in B.

By [PSS, MPP, Pet2], B is the unique structure that lies strictly between Ryeq and the
real field. The situation becomes more subtle when M is non-archimedean, where only
some intervals admit a definable real closed field. The relevant definitions are given in
Section 3.2 below.

When M expands a real closed field, a rich machinery from o-minimal algebraic topol-
ogy is at our disposal. For example, the triangulation theorem is known to hold in this
case, giving rise to (co)homology theory ([EdWo]). This machinery has been successfully
used to describe the torsion points of o-minimal groups ([EdOt]), a key point in the
solution of (PC).

On the contrary, if M does not expand a field, the above machinery is not always
present. We illustrate, for example, how the triangulation theorem fails in the linear
case.

Example 1.1. Let M = (M, <,+,0) be a non-archimedean ordered divisible abelian
group. This is naturally a vector space over the field of rationals. Consider the paral-
lelogram S = [0, a] x [0, b], where b is infinitely smaller than a; that is, for every n € N,
nb < a. It is easy to see that S cannot be written as a finite union of (closures of)
triangles. The reason is that the definable lines in M can only have rational slopes,
and therefore any triangle that can be placed inside the parallelogram will have sides of
length infinitely smaller than a.

A substitute for o-minimal cohomology in arbitrary o-minimal structures was recently
proposed in [EdPe, EJP]|. However, a serious consequence of the failure of the triangula-
tion theorem was illustrated in [Ell] by an example of a semi-linear group which cannot
be definably, homeomorphically embedded in the affine space.

Despite the lack of machinery from algebraic topology, a straightforward analysis of
definable groups in case (B) has been proposed. This analysis differs from the previous
approaches for studying o-minimal groups in that any algebraic topological facts about
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definable groups follow from the analysis rather than being used in it. The analysis
consists of two steps:

Step I. Study the group behavior locally, around suitable generic elements.
Step II. Extend the local analysis to a global one.

The structure theorems for definable groups that are obtained from this approach have
one aspect in common: each time a lattice is recovered which captures some significant
invariant of the group at hand.

In this communication, we aim to introduce the notion of a lattice for an arbitrary
first-order structure and exemplify its role in the study of o-minimal groups. Through
various theorems and conjectures, we suggest that the above program has the potential
to find further applications in other o-minimal settings, as well as in the general study
of definable groups in model theory.

Structure of this paper.

In Section 2, we introduce the notion of a lattice and discuss briefly some of its
properties. In Section 3, we use lattices to describe structure theorems for o-minimal
groups and conjecture a similar result in a broader context. In Section 4, we deal with
the aforementioned Step I: the local analysis. In Section 5, we motivate the study of
lattices from a different viewpoint.

2. LATTICES

We first recall the standard definition of a lattice in R™ and then proceed to generalize
it. Even though our definition makes sense in an arbitrary first-order structure, our main
intention is to employ lattices within the o-minimal setting.

Definition 2.1. A (geometric) lattice L in R™ of rank m (< n) is a subgroup of (R", +)
which satisfies any of the following equivalent statements:

(1) L is discrete and spans an m-dimensional subspace of R" (over R).

(2) L is discrete and is generated by m Z-independent elements of R™.

(3) L is generated by m R-independent elements of R™.

(4) L is generated by m elements of R” and the quotient group R"™/L is a connected
Lie group (equipped with the quotient topology).

For example, Z" is a lattice in R™ of rank n and R"/Z" is the well-known n-torus.

We propose below a definition of a lattice in the non-standard setting which we view
as a ‘definable analogue’ of statement (4) of the above definition. The choice of our
definition is motivated by our wish to view a lattice also as a topological object, besides
an algebraic one.

When we deal with an arbitrary vector space, not necessarily topological, one can find
in the literature the following adaptation of statement (3) of the last definition:

(*) Let V be a vector space over a field K. Then a lattice in V of rank m is a subgroup
of V which is generated by m K-independent elements of V.

From our perspective this definition involves the following subtlety. If we consider
the reals as a vector space over the rationals, then according to (*) any number of Q-
independent elements of R generates a lattice. In particular, such a lattice need not
be discrete. This situation may of course seem natural in the setting of the infinite
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dimensional vector space R over the rationals. But it is also exactly what shows that
the topological nature of a lattice is not taken into account in Definition (*).

On the other hand, requiring further that a lattice be discrete, as in (1) and (2)
above, only imposes a trivial restriction in the non-standard setting. Indeed, in a non-
archimedean extension R of the real field any number of Z-independent elements always
generates a discrete subgroup of (R, +), by saturation.

We thus consider possibility (4). A direct adaptation of that statement would also
be problematic, albeit in a minor way. If R is a non-archimedean extension of the real
ordered group (R, <,+,0), the quotient R/Z is very distant from being a connected Lie
group. Yet, we would like to have Z as a lattice. We remedy this by replacing R by its
finite part Fin(R) = U, cn(—n,n); the subgroup of R consisting of all elements of R
bounded by some natural number. Then the quotient group F'in(R)/Z is isomorphic to a
group definable in R, namely the group ([0, 1), ®, 0) with operation 2@y = z+y mod 1.
The latter group, in its turn, projects under the standard part map onto the real 1-torus,
illustrating a simple case of (PC), and establishing the connection with Lie groups in
this case. We conclude that it is more suitable to speak of lattices in \/-definable groups,
such as F'in(R), rather than lattices in R.

Our plan is to define the notion of a \/-definable group and then give our definition of a
lattice. Our definition will be stricter than Definition (*). Besides the above motivations,
our choice will be further supported in the next section where lattices will show up as
natural objects in the study of o-minimal groups.

Let M be any sufficiently saturated first-order structure. By a ‘definable’ set or
function, we mean ‘definable in M possibly with parameters’.

Definition 2.2. [PeSt2, Ed2] A \/-definable group is a group (U,-) whose universe is
a directed union U = J;c; X; of definable subsets of M™, for some fixed n, where I is
countable, and for every ¢,j € I, the restriction of the group multiplication to X; x X
is a definable function (by saturation, its image is contained in some Xj).

A map ¢ : U — H between \/-definable groups is called \/-definable if for every
definable X' C U the restriction ¢;x is definable.

In the case where the ambient structure M is o-minimal, we define the dimension of
U to be the maximum dimension among all X;’s.

Note: the condition that I is countable is often relaxed in the literature to the condition
that I be small, relative to the saturation of M. In our context, countability of I is used
to guarantee that certain quotients of a \/-definable group are \/-definable (Fact 2.4
below).

Definition 2.3. [Ed2] A \/-definable subset A of U is called compatible in U if for every
definable X C U, the intersection X N A is a definable set.

Clearly, the kernel of a \/-definable map ¢ : U/ — V between two \/-definable groups
is a compatible normal \/-definable subgroup of ¢/. In the o-minimal setting, we also
obtain the converse.

Fact 2.4. [Ed2, Theorem 4.2] IfU is a \/-definable group in an o-minimal structure and
H C U is a \/-definable normal subgroup, then H is a compatible subgroup of U if and
only if there exists a \/-definable surjective homomorphism ¢ : U — V of \/-definable
groups whose kernel is H.
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We think of the above locally definable group V as the quotient of & by H, and we
are interested in the case where this quotient is actually definable.

Definition 2.5. [EISt, EP1] Given a \/-definable group &/ and a normal subgroup L C U,
the quotient group U /L is called definable if there is a definable group K and a surjective
\/-definable homomorphism ¢ : i/ — K whose kernel is L. We write K =U/L.

Here is our definition of a lattice.

Definition 2.6. Let U be a \/-definable group and m an integer. A normal subgroup
L C U is called a lattice in U of rank m if it is generated by m Z-independent elements,
and the quotient U /L is definable.

Being the kernel of a \/-definable homomorphism, a lattice L in U is a compatible
\/-definable subgroup of U. Note also that since L is finitely generated, it has small size
relative to the saturation of M. Hence, for a definable set X, the condition that X N L
be definable amounts to X N L be finite. It follows that any subgroup of a lattice L will
be compatible as well.

As an example, if R is a non-archimedean extension of the real ordered group (R, <
,+,0), the group Z is a lattice in Fin(R), according to our earlier discussion.

In the rest of this section, we list a number of desirable properties about lattices which
have been proved under some (broad enough) assumptions. In the next section we will
present the main theorems for o-minimal groups and lattices. The results of this section
are independent of those theorems.

First, we recall some standard definitions.

Definition 2.7. Let G be a definable group in an o-minimal structure. By [Pi], G admits
a unique definable manifold topology that makes it a topological group. We simply refer
to this topology as the group topology. We call G definably compact if for every definable
map f from an open interval (a,b) into G, the limits of f(z) as = tends to a and to b
(with respect to the group topology) exist. We call G definably connected if it contains
no proper non-empty definable subset which is both closed and open.

A \/-definable group U can also be endowed with a manifold topology that makes it
into a topological group. We refer the reader to [BaOt, Theorem 4.8] for details. We call
U connected ([BE]) if it contains no \/-definable compatible proper non-empty subset
which is both closed and open.

Definition 2.8. Given a \/-definable group U, let us say that U admits a lattice if there
is a lattice in U.

In Facts 2.9-2.11 below we assume the following:

(1) M is a sufficiently saturated o-minimal expansion of an ordered group.
(2) U is a connected abelian \/-definable group which admits a lattice.

Fact 2.9 ([EP1)). If L and L' are lattices in U, then L and L' are isomorphic.
Fact 2.10 ([EP3]). If L is a lattice in U, then rank(L) < dim(U).

Fact 2.11. If L is a compatible subgroup of U isomorphic to some Z'™, then L extends
to a lattice; that is, there is a lattice L' in U with L C L'.

The last fact does not appear in the literature but follows easily from the results we
quote in Section 5 below. We include a proof there. For the moment, we remark that
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the assumption of L being compatible in I/ is necessary. Indeed, if L extends to a lattice
L', then as remarked earlier, L’ is compatible and, thus, so is L.

Example 2.12. Let M = (M, <,+,0) and a, b be as in Example 1.1, i the subgroup
of (M,+) generated by [—a,a] and L = Zb. Then L N [—a,a] is not definable, so L is
not compatible in Y. Hence, L does not extend to a lattice. On the other hand, Za is a
lattice in U.

Here is an example of a \/-definable group U that does not admit any lattice.

Example 2.13. Let M = (M, <,+,0) be as in the previous examples and consider an
infinite increasing sequence of elements 0 < a; < as < --- such that, for every n € N, we
have na; < ajt1. The subgroup U = J,(—as, a;) of (M, +) is a \/-definable group which
does not admit a lattice. Indeed, for every b € (—a;, a;), the set ZbN (—a;+1,a;+1) is not
definable.

Observe that in the last example U is not generated by any definable set. In Conjecture
3 in Section 5 below, we suggest that this is the only obstacle to a \/-definable group
admitting a lattice.

3. STRUCTURE THEOREMS FOR O-MINIMAL GROUPS

This section contains the main theorems about lattices and o-minimal groups. Un-
less stated otherwise, M = (M, <,+,0,...) denotes a sufficiently saturated o-minimal
expansion of an ordered group.

Definition 2.6 suggests that a lattice presupposes a definable group. The converse is
also true: given a definable group, we can always recover a lattice.

Theorem 3.1. [EdEl] Let G be an abelian, definably connected definable group. Then
there is a connected, divisible, torsion-free \/-definable group U and a lattice L in U such
that G =U/L.

This theorem is very general in nature. The \/-definable group U is the ‘universal
cover’ of G (see [EdE]]) and the lattice L is isomorphic to the fundamental group of G.
Observe, however, that no information is given about how U (or L) are related to the
ambient o-minimal structure. Moreover, no information is given about the rank of L,
even when G is definably compact. One motivation for the subsequent theorems is to
recover some of this information when we work in structures of sort (B1) or (B2) from
the Introduction. Let us first consider the linear case.

3.1. Linear case.

Theorem 3.2. [ElISt, ElI3] Assume M = (M, <,+,0,{d}4ep) is an ordered vector space
over an ordered division ring. Let G be a definably connected definable group of dimension
n. Then G =U/L, withUU and L as in Theorem 3.1 and, moreover:

(1) U is a subgroup of (M™,+) generated by a definable set.
(2) rank(L) = dim(G/H), where H is a maximal torsion-free definable subgroup of
G.

A few comments are in order. Observe that (1) implies that G is abelian. By [PeS],
we know that every abelian group G, definable in any o-minimal structure, contains a
maximal torsion-free definable subgroup H and that G/H is definably compact. We can
call dim(G/H) the compact dimension of G. Theorem 3.2, then, says that the lattice we
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recover in the linear case is a subgroup of (M", 4) which encodes the compact dimension
of G. A corollary is that the subgroup GJk] of k-torsion points of G is isomorphic to
(Z/KZ)®, where s is the compact dimension of G (see [El3, Corollary 3.12]). In the special
case where G is definably compact, we obtain that G[k]| is isomorphic to (Z/kZ)"™, where
n is the dimension of G. This was known to be a crucial step in establishing (PC) in
various cases, and indeed, together with work from [BOPP], (PC) in the linear case was
established in [EISt].

Example 3.3. 1. (Simplest example). Let M = (M, <,+,0) be an ordered divisible
abelian group. Pick any positive a € M and define:

e the \/-definable subgroup U, = |J,,cn[—na, na] of (M, +).
e the lattice L = Za in U,.

The quotient group G, = U, /L is then definable, definably compact and of dimension
1 = rank(L).

The rest of the examples have their origins in [Str] and [PeS].
2. (Two-dimensional examples). In the same M, we pick two positive elements a,b € M
and define:

o U = U, X Uy, with notation from Example 1.

o Ly =7Z(a,0)+ Z(0,b)

o Ly =17Z(a,t)+ 7Z(0,b), where 0 < t < b and t ¢ Qa.
Then Gy = U/Ly and Gy = U/Ls are both definable, definably compact of dimension
2 = rank(L;) = rank(L2). The group G; is the product of G, and G; (with notation
from Example 1), whereas G2 cannot be written as the product of two 1-dimensional
definable subgroups (the reason being that there is no definable line segment connecting
the origin to the point (a,t)). The domains of the corresponding definable groups K,
from Definition 2.5, are shaded in the following pictures.

e T M :
Z/{b ub :
b"_____] b“"““, :
; $(a.1) e (a,t)
R \ ! ) — H
“ oy, “ U, U
Ua XU _ Uy xM
G1 =Gy x Gy G2=m Gy = Z(i,t)

3. (Non-compact examples). In the same M, we pick a positive a € M, and define:

o U =U, x M

o L3 = Z(a, 0)

o Ly =17Z(a,t), where 0 <t € M and t € Qa.
Then Gs = U'/Ls and G4 = U’/ L4 are both definable, each of dimension 2 and compact
dimension 1 = rank(Ls) = rank(Ly4). The group G3 is the product of G, and M, whereas
(G4 cannot be written as the product of two 1-dimensional definable subgroups.
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3.2. Semi-bounded case. We now proceed to the semi-bounded case, (B1), from the
Introduction. Assume M = (M, <,+,0, I) is a semi-bounded o-minimal structure, where
I is a bounded interval on which there is definable real closed field. Following [Pet3], we
call an interval J C M short if it is in definable bijection with I; equivalently, if there
is a definable real closed field with domain J. Otherwise, we call J long. A definable
set X C M™ is called short if it is in definable bijection with a subset of I". Given a
definable set X C M", we define ([El4]) the long dimension of X to be the maximum k
such that X contains a definable homeomorphic image of J*, for some long interval .J.
Clearly, the long dimension of X is at most equal to the dimension of X. It holds that
a definable set is short if and only if it has long dimension 0.

A short \/-definable group U = |J;c; X; is a \/-definable group such that each Xj is
short.

Let A be the set of all (-definable partial endomorphisms of (M, <,+,0). A set which
is (\/-)definable in the reduct My;,, = (M, <,+,0, {A}rea) is called (\/-)semi-linear.

Theorem 3.4. [EP2] Assume M is semi-bounded. Let G be an abelian, definably con-
nected, definably compact definable group of long dimension k. Then G = U /L, with U
and L as in Theorem 3.1 and, moreover, U is a group extension of
e a \/-definable group KC generated by a short definable set, by
e a \/-definable subgroup H of (MF*,+) generated by a semi-linear set of long di-
mension k.

0 H - U - K 0

G

That is, although the universal cover U of G may not be a subgroup of (M"™, +), we
can recover a subgroup H of U which is a subgroup of (M*, +), where k is the long
dimension of G and of H. Still, the lattice L we recover contains no information about
the long dimension of G. We can achieve this at a second step.

Theorem 3.5. [EP2] Assume M and G are as in Theorem 3.4. Then there is a divisible
\/-definable group U, a lattice L in U and a finite subgroup F C U, such that G =
U/(L x F) and
(1) U is a group extension of
e a short definably compact definable group K by
e a connected \/-definable subgroup H of (M¥* +) generated by a semi-linear
set of long dimension k.

0 - H - U - K -0

Q

(2) rank(L) = k.

Two remarks are in order. First, observe that G is almost a quotient of U by L; it
is not known if one can choose the finite F' to be trivial. Second, the universal cover U
of G has now been replaced by U, which is just a \/-definable cover of G (in the sense
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of [EdE]]). The improvement of Theorem 3.5 over 3.4 is that we have now recovered
a lattice L which encodes the long dimension of G. This is the first interpretation
of the comparison between the two theorems that we give in this paper. Three more
interpretations follow below. For the moment, let us give some examples.

Example 3.6. Let M = (M, <,+,0, R) be an expansion of an ordered divisible abelian
group by a real closed field R with bounded domain (0,a) C M. In particular, M is
semi-bounded and (0, a) is short. Let also b be any element in M such that (0, b) is long.
With the same notation as in Example 3.3, we define:

the 1-dimensional subgroup H = Uj, of (M, +).

U =U, x Uy

Ly =Z(a,t) + Z(0,b), where 0 < t < b and t & Qa.

Ly = Z(a,0) + Z(s,b), where 0 < s < a and s ¢ Qb.

Then the quotient groups G; = U/L; and G2 = U/ Ly are definable, definably compact
of dimension 2 and of long dimension 1.

Uy Uy
(s,0)
be----- ) br-e---,
¢ (a,?) :
—) —)
a u, a U,
Un xU _ _ UsxU
G = Z(a,t)iZ(bO,b) Ga = Z(a,O)iZ?s,b)

If we define further

the short definably compact definable group K = U, /Za.

a suitable extension U of K by H.

L1 = 7Z(0,b)

Ly = Z(s,b)

then we obtain G1 = U/L1, Go = (K x Uy)/Ls, and Ly, Ly have rank 1. Note that G5
does not contain any definable subgroups of long dimension 1.

Ub ﬂ : Ub?xub:
: (s,b)
bg-----! ]
| |
K e IBE
G]_:E G2:?Xub
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We observe that the groups GG; and G in this example are actually semi-linear groups.
However, we can easily equip the domain of K (and, hence, also that of U,) with a
different group structure (such as the multiplicative group structure of R), and obtain
groups (G1 and G2 which are not semi-linear.

Here is a second interpretation of Theorem 3.5 versus 3.4. On the one hand, we
know from the last example that a definable group G cannot always be an extension of
a short definable group by a long definable group, since it may not contain any definable
long subgroup in the first place. On the other hand, Theorem 3.4 says that the universal
cover U of G is always an extension of a short \/-definable group by a \/-semilinear group
H. What Theorem 3.5 advances is that this extension can actually be achieved ‘closer’
to G, in terms that the new cover U is now an extension of a short definable group by
H.

Before looking into the proofs of the above theorems, we conclude this section with a
conjecture about definable groups beyond the o-minimal setting.

3.3. Beyond the o-minimal setting. It is common among model-theorists to seek
extensions of the o-minimal framework that preserve nice behavior. Examples are:

(a) dense pairs ([Dries2]),

(b) expansions of the real field by a multiplicative subgroup with the Mann Property
(IDG)),

(c) structures with o-minimal open core ([MS], [DMS]).

These structures are not purely topological and tameness does not extend to all de-
finable sets in the structure, but it does extend to all open definable sets. Our goal of
studying definable groups in this setting is to analyze them in terms of their topological,
‘o-minimal part’, and their part that corresponds to the extra structure.

We fix ourselves at the general framework of an expansion of a real closed field by
a ‘small” predicate. These expansions include examples (a) and (b) above and, under
certain conditions, they have o-minimal open core (see [BEG]). The notion of smallness
appears in various places in the literature. We adopt here the definition from [Dries2]
and [BEG].

Definition 3.7. Let M = (M, <,...) be any o-minimal structure and P C M. We call
P large in M if there is some m and a definable function f : M™ — M such that f(P™)
contains an open interval in M. We call P small if it is not large.

So now let (M, P) be an expansion of a real closed field M by a small (in M) predicate
P. For example, let M be the real field and P:

(A) the field of real algebraic numbers (yielding a dense pair)

(B) 2% or 223% or 29 (multiplicative subgroups with the Mann Property).

Given a definable set X C M™, we define the large dimension of X to be the maximum
k such that there is an injective function ¢ : M*¥ — M™ definable in M, and a large
J C M with g(J¥) C X. We call X small if it has large dimension 0. As can easily be
verified, this definition agrees with Definition 3.7 for X C M.

Together with A. Giinaydin, we conjecture the following.

Conjecture 1. Let (M, P) be a sufficiently saturated expansion of a real closed field M
by a small predicate P, such that (M, P) has o-minimal open core. Let G be an abelian

definable group which is ‘connected’ and has large dimension k. Then there is a divisible
\/-definable group U and a lattice L in U such that G =U/L, and
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(1) U is a group extension of
e a small definable group K by
e a\/-semialgebraic group H of dimension k generated by a semi-algebraic set.

0 - H - U - K -0

Q

(2) rank(L) = k.

A few comments are in order:

(a) We can again think of U as a \/-definable ‘cover’ of our group G, although the
theory of covers has not yet been developed in this context.

(b) There is a missing notion of ‘connectedness’ to be defined for G. We envision that
this will be one of the following two: either (1) G is connected if its topological closure
(in the topology of M) is definably connected (as a set definable in the o-minimal, open
core of (M, P)), or (2) G is connected if it does not contain any definable subgroups of
small (in the above sense) index.

(c) It is known by [GH] that the pairs (M, P) in examples (A) and (B) above have NIP.
The notion of ‘finitely satisfiable generics’ is a generalization of definable compactness
in the NIP context ([HPP1]). So it may be natural to impose further on G the condition
that it has finitely satisfiable generics, strengthening also the conclusion that K has
finitely satisfiable generics.

(d) Finally, the lattice L encodes the large dimension of G, which can be interpreted
as ‘how semi-algebraic’ G is.

We are now in a position to offer our third interpretation of Theorem 3.5 over
3.4. We believe that Theorem 3.5 is more natural, in the following sense. Conjecture
1 suggests that if we are to apply the proposed program to some general context of
expansions of well-behaved structures by a predicate, then we have to deal with the fact
that ‘small’ groups (with respect to the predicate) may not necessarily have universal
covers. This restriction leaves us with the possibility to express some cover of the group
in question as an extension of a small group by some \/-definable group over the reduct.
It is desirable then to have a result of this form in the semi-bounded case, as well.

Since each of the above structure theorems claims that a cover of our group G relates
to the ambient structure, it should be clear that at a local level a tighter connection
must exist between G and the ambient structure. This observation makes up Step I of
our proposed analysis in the Introduction. As we are about to see, the study of local
behavior of G in the above settings presents a remarkable uniformity.

4. LOCAL ANALYSIS

It is a general thrust of o-minimality that, given a definable set X, around its generic
elements the definable objects are best-behaved. For example, if X and f: X — M
are definable over A, then every element of X, generic over A, is contained in an open
neighborhood inside X on which f is continuous. The key point of our analysis is to
obtain, each time, a nice local behavior relative to the particular nature of the ambient
structure. To this end, we employ each time a relative notion of genericity. We assume
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the reader is familiar with the basic notions of pregeometries and generic elements, as
presented for example in [Mac].

Linear case. [EISt] Here we use generic elements with respect to the usual pregeometry
coming from the algebraic closure operator acl : P(M) — P(M), defined as:

acl(A) = {a € M : there are b C A and a formula ¢(z, ), such that
(M, b) is finite and M F ¢(a,b)}.

This pregeometry gives rise to generic elements, as well as to a notion of dimension for

definable sets that coincides with their topological dimension. We prove:

Proposition 4.1. Assume M is as in Theorem 3.2, and that G = (G, ®) is a definable
group of dimension n with G C M"™. Then every generic element a in G (over the
parameters that define G) is contained in an open neighborhood V, C G such that for
every x,y € Vg,

(1) Toady=z—a+y.

(‘®” and ‘©’ denote the group and inverse operations of G.)

That is, the local sum around a in the sense of G coincides with the one in the sense
of (M™ +). This yields a local isomorphism between G and (M"™,+) in the strongest
possible way.

Semi-bounded case. [El4] Here we introduce a new notion of a pregeometry, based on
the short closure operator shcl : P(M) — P(M), defined as:

shcl(A) = {a € M : there are b C A and a formula ¢(x,%), such that
(M, b) is a short interval and M E ¢(a,b)}.

A generic element with respect to the shcl-pregeometry is called long-generic. In [El4] it
is proved that the corresponding notion of dimension coincides with the long dimension
defined earlier. We prove:

Proposition 4.2. Assume M is as in Theorem 3.5, and that G = (G, ®) is a definable
group of long dimension k. Then every long-generic element a in G is contained in a
definable subset V, C G of long dimension equal to k such that for every x,y € V,,

roady=x—a-+y.
In particular, on V,, G is locally isomorphic to (M*, +).

Expansion by a small predicate. Here we use the small closure operator smcl :
P(M) — P(M), defined in [BEG] as:

smcl(A) = {a € M : there are b C A and a formula ¢(x,%), such that
#(M,b) is a small set and M F ¢(a,b)}.

It is shown in [BEG] that, under certain conditions, smcl defines a pregeometry. To-
gether with A. Giinaydin, we conjecture that if (M, P) has o-minimal open core, then
smcl is a pregeometry. A generic element with respect to the smcl-pregeometry is called
large-generic. We conjecture that the corresponding notion of dimension coincides with
the large dimension defined earlier. Moreover, we conjecture:
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Conjecture 2. Assume (M,P) and G = (G,®) are as in Conjecture 1, and that
G C M"™. Then every large-generic element a in G is contained in a definable subset
Vo, € G of large dimension k, and there is a semi-algebraic function f : M?*" — M",
such that for every x,y € Vg,

roady = f(r,y).

That is, on V, the group G should ‘behave’ like a semi-algebraic group. Of course, here
the set V, contains a but it is not a ‘local neighborhood’ in the usual topological sense.

No ambient group assumption. Very recently, in [EPR], a similar notion of a prege-
ometry was introduced in a different context; namely, in the study of groups definable in
an arbitrary o-minimal structure. In this context, roughly speaking, an interval is called
group-short if it can be endowed with the structure of a definable group interval. We
define:

gcl(A) = {a € M : there are b C A and a formula ¢(z, ), such that
#(M,b) is a group-short interval and M F ¢(a,b)}.

The corresponding notion of generic elements is then employed to prove that every
definable group is in definable bijection with a product of group intervals. For details
and precise definitions, the reader is referred to [EPR].

4.1. From local to global. We will not be very extensive here. The methods involved
in each case appear to be different. One aspect in common, however, is that one needs
a structure theorem for definable sets first. In the general o-minimal setting it is well-
known that every definable set is a finite union of cells. In the linear case, the union can
be refined into linear cells ([EISt]). In the semi-bounded setting, a structure theorem
is proved which expresses every definable set as a finite union of cones ([Petl], [Ed1],
[El4]). In certain expansions of a real closed field M by a small predicate P, we have at
our disposal a structure theorem saying that every definable set is a boolean combination
of existentially definable formulas of the form

Jy P(y) A p(Z,y),

where ¢(Z, ) is a quantifier-free formula from the language of M. We conjecture with
A. Giinaydin that every definable set is a finite union of sets of the form

Elyp(y) A Qpl(xlvy) ARERA SOTL(;UTL)y)?

where each @;(x;,b) defines a large subset of M.

One of the uses of the structure theorems of sets is to prove that the nice behavior
around generic elements extends to a sufficiently large set X C G. Each of the ¢/ and
‘H from our theorems is a subgroup of some cartesian power of (M, +) generated by a
suitable such X.

5. \/—DEFINABLE GROUPS AND LATTICES

The study of lattices becomes important also from a different point of view. It is
clear that in order to derive Theorem 3.5 from Theorem 3.4 one needs to prove, among
others, that K admits a \/-definable homomorphism ¢ : K — K onto a definable group
K. Equivalently, K admits a lattice. This brings up an important conjecture which is
the theme of this last section.
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Let M be a sufficiently saturated o-minimal expansion of an ordered group. By a
bounded size we mean a size less than the saturation of M.

Conjecture 3. Let U be a connected abelian \/-definable group which is generated by a
definable set. Then U admits a lattice.

As we saw in Example 2.13 the assumption that U is generated by a definable set is
necessary.

This conjecture was posed in [EP1] and was proved to be equivalent to a number of
different statements. Given U as above, we say that L% exists if there is a smallest type-
definable subgroup of bounded index in ¢/, which we denote by U%°. A subset X C U is
called generic if boundedly many translates of it cover U.

Theorem 5.1. [EP1] If U satisfies the assumptions of Conjecture 3, then the following
are equivalent.

(1) U admits a lattice.
(2) U contains a definable generic set.
(3) U exists, it is torsion-free, and U /U ~ RF x T", where T" is the real r-torus.

Corollary 5.2. The group K from Theorem 8.4 admits a lattice.

Proof. Since U in Theorem 3.4 is a cover of a definable group G, it admits a lattice.
Hence it must contain a definable generic set X. Now the image of X under the map
:U — K is a definable generic subset of . Hence K admits a lattice. O

We now come to the fourth interpretation of Theorem 3.5 over 3.4 which also
concerns the most important application to the study of o-minimal groups. Recall from
the introduction that (PC) says that every definably connected, definably compact o-
minimal group G admits a surjective homomorphism 7 onto a real Lie group, whose
dimension (as a Lie group) is equal to the o-minimal dimension of G. The Compact
Domination Conjecture (CDC) says that for every definable X C G, if dim(X) < dim(G),
then the Haar measure of 7(X) is 0.

Theorem 5.3. [EP2] (CDC) holds in any o-minimal expansion M of an ordered group.

Proof. (CDC) was only known in the linear ([El2]) and field ([HP, HPP2]) cases. For
the semi-bounded case, one can use Theorem 3.4 to reduce the problem to these cases.
Namely, first reduce the problem to the universal cover U of G and then to the \/-
definable groups H and K. We know that H is the universal cover of a semi-linear group,
and thus we obtain (CDC) for it. But unless we also know that K is a cover of a definable
group from the field case, we cannot (at least, we were not able to) conclude (CDC) for
it. The improvement to Theorem 3.5 handles this step. (Il

A positive answer to Conjecture 3 would have far-reaching consequences.

Theorem 5.4. [EP1] Let U be a connected abelian \/-definable group which admits a
lattice. Then U s divisible.

The conclusion that U is divisible is a rather desirable property. For example, very
recently in [BEM] it was proved that for such a group U, the subgroup of k-torsion
points is finite. Note that in the definable case, we already know by Strzebonski that a
connected abelian definable subgroup is divisible.
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Conjecture 3 is broadly open. We introduce below the notion of \/-dimension for U,
which may assist us in doing some inductive arguments. The \/-dimension intends to
count how ‘non-definable’ I/ is (recall the notion of ‘compatible’ from Section 2):

Definition 5.5. The \/-dimension of U, denoted by vdim(¥f), is the maximum & such
that U contains a compatible subgroup isomorphic to ZF, if such k exists, and oo, oth-
erwise.

In [EP3], we reduce Conjecture 3 to some properties of \/-dimension. Namely, Conjec-
ture 3 is true if and only if, for every U that satisfies the assumptions of the conjecture,
the following hold:

(1) If U is not definable, then vdim(U) > 0.

(2) vdim(U) < dim(U). (In particular, vdim() is finite.)
A positive answer is also obtained if ¢/ is a \/-definable subgroup of some cartesian power
of (M,+).

In the recent [BEM], property (2) was established. So Conjecture 3 now reduces to
property (1). Moreover, a result in [BEM] establishes (1) assuming that U satisfies a
suitable ‘convexity’ condition.

As far as divisibility of U is concerned, we do not know if the assumption that I/ is
generated by a definable set is necessary. The following conjecture has been asked in the
past by several authors (such as Edmundo in [Ed2]).

Conjecture 4. Let U be a connected abelian \/-definable group. Then U is divisible.

We conclude this paper with the proof of Fact 2.11 mentioned earlier.

Fact 5.6. Let U be a connected abelian \/-definable group which admits a lattice. If L
is a compatible subgroup of U isomorphic to some Z™, then L extends to a lattice; that
is, there is a lattice L' in U with L C L.

Proof. Let my : U — U /U™ ~ R* x T" be given by Theorem 5.1. We first claim that the
image of L under 7y is a discrete subgroup of R*¥ x T". Indeed, by [EP1, Lemma 3.3],
for every compact neighborhood W C U /U of 0, there is a definable set Z C U such
that 7TZ;1(W) C Z. Since L is compatible in U, Z N L is finite and hence W Ny (L) must
be finite. It follows that my, (L) is discrete.

We observe, moreover, that 4%° N I = {0}. Indeed, pick any definable Z C U such
that 4% C Z. Then U N L C Z N L is finite, as above. But U is torsion-free, so
Uu°nL=1{0}.

It follows that 7, restricted to L is injective, and hence my (L) ~ Z™. Let f : RExT" —
RF denote the projection onto the first k coordinates. Since T” is compact, we obtain
ker(f) N my(L) = {0} and hence also f(my(L)) ~ Z™. By a classical result a discrete
subgroup of RF must be generated by < k elements, and therefore m < k.

Denote B = f(my(L)). We can extend B to a lattice B’ of R* of rank k

B' = B+ Zbyyq + - - + Zby,

where by, 41, . .. by are some elements of R¥ which, together with the generators of B, are
all R-independent. Now pick any elements an,+1,...,ar € U such that f(my(a;)) = b;.
We claim that the subgroup L’ of U defined by

L' =L+ Zapmi1+ -+ Zay,
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is a lattice in U.

We need to show that U /L’ is definable. By [EP1, Lemma 2.1], it suffices to find a
definable Z C U such that Z + L' =U and Z N L’ is finite.

Fix some compact set H C R¥ x T7, such that H + B’ = R¥ x T". By [EP1, Lemma
3.3] there is a definable set Z C U which contains 7, L(H). But then:

Z+ L 2w (H) + g (B) = my (H + B) = m (RY x T7) = U,

To check that Z N L' is finite, we observe that, since by,11,...b, together with the
generators of B are all Z-independent, m;; restricted to L’ is injective. Hence Z N L' has

as many elements as H N B, that is, finitely many. U
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