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SEMI-LINEAR STARS ARE CONTRACTIBLE

PANTELIS E. ELEFTHERIOU

Abstract. Let R be an ordered vector space over an ordered division ring. We prove
that every definable set X is a finite union of relatively open definable subsets which are
definably simply-connected, settling a conjecture from [5]. The proof goes through the
stronger statement that the star of a cell in a special linear decomposition of X is definably
simply-connected. In fact, if the star is bounded, then it is definably contractible.

1. Introduction

This paper deals with the general problem of covering definable sets in an o-minimal struc-
ture R with topologically nice subsets. It was first proved by Wilkie [11] that if R expands
an ordered field, then every bounded open definable set X is a finite union of open cells. By
Andrews [1] and Edmundo-Eleftheriou-Prelli [6], the statement also holds if R expands an
ordered group, but not a field (and, in fact, without assuming X is bounded). In [5], some
strong consequences of the above covering statements were derived and applied to the study
of locally definable manifolds in R. Moreover, it was explained there how a positive solution
to the following conjecture is crucial in extending those consequences to a much wider context
(such as that of locally definable spaces).

Conjecture ([5]). Every definable set X is a finite union of relatively open definable subsets
which are definably simply-connected.

The virtue of the above statement over the known aforementioned results is that X is not
assumed to be open. We indicate below why this is indeed a significant step.

In this paper, we prove the conjecture in the semi-linear setting; that is, when R is a pure
ordered vector space. As pointed out in [5, Section 5], if R expands an ordered field, then the
conjecture can be replaced by (and, perhaps, follows from) the known triangulation theorem.
The triangulation theorem fails in the semi-linear setting (see, for example, [8, Example 1.1]). In
general, semi-linear geometry exhibits several intricate phenomena that have by now rendered
it into a separate subject admitting a totally different set of techniques (see [7] and [9]). In
this paper, we develop further semi-linear homotopy theory, featuring the notion of canonical
retractions of linear cells, which we then use to settle the conjecture. As a note, the conjecture
remains open in the ‘intermediate’ semi-bounded case, where R expands an ordered group only
by a bounded field ([4]).

Let us now describe the semi-linear setting. For the rest of this paper, we fix an ordered
vector space R = 〈R,<,+, 0, {x 7→ λx}λ∈Λ〉 over an ordered division ring Λ. By ‘definable’ or
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2 PANTELIS E. ELEFTHERIOU

‘semi-linear’ set, we mean a set definable in R, possibly with parameters. Equivalently, and
seen geometrically, semi-linear sets are exactly the Boolean combination of sets of the form

{x ∈ Rn : f(x) ≥ 0},

where f : Rn → R is an affine map with coefficients from Λ. The class of semi-linear sets is
closed under desirable geometric operations, such as Boolean combinations, cartesian products,
and images and fibers under coordinate projections. If R is the real vector space, then semi-
linear geometry amounts to classical PL-topology. Our setting, however, includes far more
general structures, whose role becomes very prominent in areas such as that of valued fields
and non-archimedean tame topology (Hrushovski-Loeser [10]). This generality owes partially
to the fact that we allow Λ to be non-commutative. For example, Λ could be the ordered ring
of generalized power series R((G)) with exponents from a non-abelian ordered group G (and R
could be Λ as an ordered vector space over itself). However, this level of generality is not the
sole reason for intriguing semi-linear phenomena to occur. To illustrate the last point, even in
the case of ordered abelian groups R (so, vector spaces over Q), there are semi-linear manifolds
that do not admit semi-linear embeddings into the affine space ([7]), as opposed to a classical
fact by Whitney [12] that PL-manifolds always do.

At this high level of generality, model theory has proven to be the right approach to semi-
linear geometry, since the first-order theory of R is so well-understood (see, for example, [3,
Chapter 1, §7] and [9]). Most notably, one can define the notion of a linear cell and prove a
linear cell decomposition theorem, which captures the aforementioned closure properties of the
class of semi-linear sets, all at once. This theorem alone has also been put into practice in [10,
Remark 14.3.4]. We postpone its precise formulation and any further terminology until Section
2, as we now proceed to describe the content of this paper.

Given a linear decomposition C of Rn and C ∈ C, the notion of the star stC(C) of C was
introduced in [5], as follows:

stC(C) =
⋃

{D ∈ C : C ∩ cl(D) 6= ∅}.

It was then proved there that, if C is special, stC(C) is an open (usual) cell. This implied the
conjecture for an open definable set X . Indeed, if C partitions X , the collection of all stars
of cells in X provide an open covering of X by open cells. To check moreover that every
cell D is definably simply-connected, observe that by Berarducci-Fornasiero [2, Lemma 3.2], a
bounded cell is definably contractible (and the boundedness assumption is necessary, see Fact
2.15 below). Then it is not hard to see that every definable loop in D is contained in a bounded
cell contained in D and hence it is definably homotopic (in D) to a constant loop (see Claim
2.14 below).

In order to apply the same strategy and prove the conjecture for any definable set X ⊆ Rn

(not necessarily open), we are led to consider the star stC(C) of a cell C ⊆ X in a special linear
decomposition C of X (instead of Rn). For example, C could be the restriction to X of a special
linear decomposition C′ of Rn that partitions X . In that case,

stC(C) = stC′(C) ∩X.

The main problem now is that stC(C) needs not be a cell anymore, and so it is far from clear
if it is contractible. For example, if we consider the definable contraction of stC′(C) from [2,
Lemma 3.2] (assuming further it is bounded), its restriction to stC(C) needs not stay inside
stC(C). As it turns out, proving the contractibility of stC(C) amounts to proving the following
general independent statement.
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Proposition 1. Let Y ⊆ Rn be a bounded definable set, C ⊆ Y a linear cell, and D a special
linear decomposition of Y that contains C. Assume that

∀D ∈ D, C ∩ cl(D) 6= ∅.

Then Y is definably contractible.

Proposition 1 is the heart of this paper and is proved in Section 4. In the rest of this introduction
we summarize its consequences and describe how it leads to the solution of the conjecture. We
also sketch the main idea behind its proof.

An immediate consequence of Proposition 1 is the following theorem.

Theorem A. Let X ⊆ Rn be a definable set, C a special linear decomposition of X, and C ∈ C
with C ⊆ X. If stC(C) is bounded, then stC(C) is definably contractible.

Proof. Let D = {D ∈ C : C ∩ cl(D) 6= ∅}. By Proposition 1, stC(C) = ∪D is definably
contractible. �

In order to establish the conjecture, we need to get rid of the boundedness assumption, much
alike we did in the case of an open set X . This is achieved in Lemma 4.2, which, together with
Proposition 1, implies:

Proposition 2. Let Y ⊆ Rn be a definable set, C ⊆ Y a linear cell, and D a special linear
decomposition of Y that contains C. Assume that

∀D ∈ D, C ∩ cl(D) 6= ∅.

Then Y is definably simply-connected.

Proposition 2 implies our second theorem.

Theorem B. Let X, C and C be as in Theorem A. Then stC(C) is definably simply-connected.

Proof. Let D = {D ∈ C : C ∩ cl(D) 6= ∅}. By Proposition 2, stC(C) = ∪D is definably simply-
connected. �

As a corollary, we settle the conjecture:

Corollary.

(1) Every definable set is a finite union of relatively open definable subsets which are defin-
ably simply-connected.

(2) Every bounded definable set is a finite union of relatively open definable subsets which
are definably contractible.

Proof. Let X be a definable set, C′ a special linear decomposition of Rn partitioning it, and
C its restriction to X . Then X is clearly the finite union of all stars stC(C) = stC′(C) ∩ X ,
for C ∈ C. Since each stC′(C) is open, stC(C) is relatively open in X . It is also definably
simply-connected, by Theorem B. If, moreover, X is bounded, then stC(C) is also definably
contractible, by Theorem A. �

The main idea of the proof of Proposition 1. Our strategy is to construct, for each D ∈ D,
a canonical retraction of cl(D) to the closure of the half-cell C′ ⊆ C. The virtue of such a
retraction is two-fold. First, its restriction to C ∪ D is a deformation retraction of C ∪ D to
C′ (Lemma 3.5). Second, if E is another cell in D, contained in the boundary of D, then
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the canonical retraction of cl(D) to cl(C′) extends that of cl(E) to cl(C′) (Lemma 3.6). As a
consequence, we can combine the above retractions together and obtain a deformation retraction
of Y to C′ (Proposition 4.1). Finally, we observe that C′ is definably contractible (Lemma 2.16).

The canonical retraction is in fact given relative to some corner c of C. To simplify the
presentation, we first define it for a canonical linear cell D, a face C of D and c = 0 (Definition
3.3). For an arbitrary bounded linear cell, the construction is delayed until Definition 3.12.
Definition 3.3 is by recursion on n and runs in parallel with Claim 3.4, where we prove that, at
the recursive step, the resulting map Hn is indeed a deformation retraction with the required
properties. The definition is rather intricate and to facilitate its reading we illustrate it with
Example 3.1. The choice of our construction, and especially of retracting Y to C′ as opposed
to C, is provided with an explanation in Remark 3.7.

Structure of the paper. In Section 2, we introduce our terminology and prove some basic facts.
In Section 3, we give the construction of a canonical retraction. In Section 4, we conclude the
proofs of Propositions 1 and 2.

2. Preliminaries

Let us first fix some notation of this paper. By 0 we denote the origin of the space at hand.
We let R0 = {0}. We also denote by 0 : X → R the map 0(x) = 0, whereas by 1X we denote
the identity map on X . We write [a, a] for {a}, and Im(f) and Γ(f) for the image and graph,
respectively, of a function f . By a box we mean a bounded set of the form

B = (a1, b1)× · · · × (an, bn),

where ai, bi ∈ R. If m ≤ n, then πm : Rn → Rm denotes the projection onto the first m
coordinates. We write π for πn−1. If C is a collection of sets in Rn, by πm(C) we mean the
collection of their projections on Rm. If Y ⊆ Rn is a definable set, then the restriction of C
to Y is the collection of sets {C ∩ Y : C ∈ C}. If σ = (j1, . . . , jn) and τ = (i1, . . . , in) are
in {0, 1}n, then σ ≤ τ (respectively, σ < τ) means that for every m, jm ≤ im (respectively,
jm < im). If a ∈ R and X ⊆ R, then a < X means that a < x for all x ∈ X .

2.1. Special linear decompositions and stars. We recall some basics for semi-linear sets,
revisit special linear decompositions and stars from [6], and prove a few simple facts. A function
f : Rn → R is called linear (or affine), if it is of the form

f(x1, . . . , xn) = λ1x1 + . . .+ λnxn + a,

where λi ∈ D and a ∈ R. For a non-empty set X ⊆ Rn, we denote by L(X) the set of
restrictions to X of linear functions and by L∞(X) the set L(X) ∪ {±∞}, where we regard
−∞ and +∞ as constant functions on X . Obviously, if f ∈ L(X) then it extends uniquely to
a linear map, and hence we write f(a) for its value at a, even if a 6∈ X . We also write f|Y for
its restriction to a set Y , and Γ(f)Y for the graph of f|Y . If f, g ∈ L∞(X) with f(x) < g(x)
for all x ∈ X , we write f < g and denote

(f, g)X = {(x, y) ∈ X ×R : f(x) < y < g(x)}.

The notations [f, g)X , (f, g]X and [f, g]X obtain the obvious meanings. By [6, Lemma 2.8], if
C = (f, g)X , then π(cl(C)) = cl(π(C). We use this fact repeatedly.

A linear cell in Rn is defined similarly to [3, Chapter 3, (2.3)], recursively, as follows:

• C ⊆ R is a linear cell if it is a singleton, or an open interval with endpoints in R∪{±∞}.
• C ⊆ Rn, n > 1, is a linear cell if it is a set of the form Γ(f), for some f ∈ L(X), or
(f, g)X , for some f, g ∈ L∞(X), and X is a linear cell in Rn.
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We call π(C) the domain, and f, g the cell-maps, of C. We may attach an index (i1, . . . , in) ∈
{0, 1}n to each linear cell C, such that im = 0 if and only if πm(C) is the graph of a function.

We refer the reader to [3, Chapter 3, (2.10)] for the definition of a decomposition of Rn. A
linear decomposition of Rn is then a decomposition C of Rn such that each B ∈ C is a linear
cell. The linear cell decomposition theorem can be proved similarly to [3, Chapter 3, (2.11)]
and has already been observed in [9, Section 3]:

Linear cell decomposition theorem.

(1) Given any definable sets A1, . . . , Ak ⊆ Rn, there is a linear decomposition C of Rn that
partitions each Ai.

(2) Given a definable function f : A → R, there is a linear decomposition C of Rn that
partitions A such that the restriction f↾B to each B ∈ C with B ⊆ A is linear.

The notion of a ‘special linear decomposition’ was introduced in [6] and we recall it here, in
a slightly different version. First, let us define a linear decomposition of a definable set Y as
the restriction to Y of a linear decomposition of Rn that partitions Y . (Equivalently, one could
follow [3, Chapter 4 (2.5)], where simply the properties of a decomposition of Rn are required
for a partition of Y .)

Definition 2.1. A special linear decomposition of a definable set Y ⊆ Rn is defined recursively
on n, as follows. Any linear decomposition of Y is special. A linear decomposition C of Y ,
n > 1, is special if:

(1) π(C) is a special linear decomposition of R.
(2) For every two cells Γ(f)S and Γ(g)T in C and V ∈ π(C),

f|V < g|V or f|V = g|V or f|V > g|V .

(3) For every two cells Γ(h)S and (f, g)T in C,

there is no c ∈ cl(S) ∩ cl(T ) such that f(c) < h(c) < g(c).

The above definition differs from [6, Definition 2.5] in that, (a) it is given for any set Y and
not just Rn, and (b) it further requires property (2). Point (a) will be handy when stating
Lemma 4.2 below, whereas none of (a) or (b) causes serious diverging from [6], since the proof
of [6, Lemma 2.6] actually shows:

Fact 2.2. Let Y ⊆ Rn be a definable set. Then for any linear decomposition D of Y , there is
a special linear decomposition C of Y that refines D (that is, every cell in D is a union of cells
in C).

We include the proof of the above fact in the Appendix, for completeness. Perhaps redundantly,
a special case of property (2) for Y = Rn was proved in [6] in a separate lemma ([6, Lemma
2.12]). Let us recall here another important corollary from [6], which we will use in the proof
of Proposition 4.1.

Fact 2.3. Let Y ⊆ Rn be a definable set, C a special linear decomposition of Y , and D,E ∈ C
such that D ∩ cl(E) 6= ∅. Then D ⊆ cl(E).

Proof. The proof in [6, Corollary 2.15] uses [6, Lemma 2.14]. Both references hold with Y in
place of Rn, with identical proofs, after replacing Rn by Y , and [6, Lemma 2.12] by Definition
2.1(2). �

Remark 2.4. If C′ is a special linear decomposition of Rn that partitions a definable set X ,
then its restriction C to X is clearly a special linear decomposition of X . In fact, every special
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linear decomposition C of X can be obtained in this way, but we do not prove or make use of
this fact here.

We finally define the notion of a star, which however plays no further role in this paper than
it did in the introduction.

Definition 2.5 (Stars). Let X be a definable set, C a linear decomposition of X and C ∈ C.
The star of C in X with respect to C, denoted by stC(C), is the set

stC(C) =
⋃

{D ∈ C : C ∩ cl(D) 6= ∅}.

2.2. Canonical linear cells, faces and half-cells. The canonical retraction in Section 3 is
a deformation retraction of a canonical linear cell to the closure of the half-cell of one of its
faces. In this section we introduce these three notions.

Definition 2.6. Let D ⊆ Rn be a linear cell. For every i = 1, . . . , n, let hi be either

• the unique linear map hi : πi−1(D) → R with πi(D) = Γ(hi), or
• the unique pair of linear maps hi = (fi, gi) with πi(D) = (fi, gi)πi−1(D).

We call h1, . . . , hn the defining maps of D. We call D a canonical linear cell if it is bounded,
and for every i, hi = 0 or hi = (0, gi).

Note: since R0 = {0}, a canonical linear cell in R is just an interval (0, a), a ∈ R.

Definition 2.7 (Faces). Let D ⊆ Rn be a canonical linear (i1, . . . , in)-cell and h1, . . . , hn its
defining maps. Let σ = (j1, . . . , jn) ∈ {0, 1}n with σ ≤ (i1, . . . , in). We define the σ-face C of
D, recursively on n, as follows. Let B be the (j1, . . . , jn−1)-face of A = π(D). Then C is the
linear (j1, . . . , jn)-cell:

• Γ(0)B, if D = Γ(0)A,
• Γ(0)B, if D = (0, g)A and jn = 0.
• (0, g)B, if D = (0, g)A and jn = 1.

A face of D is a σ-face of D, for some σ = (j1, . . . , jn).

We make a few observations. The closure of a face of D contains the origin. A σ-face C
of an (i1, . . . , in)-cell of D, with σ < (i1, . . . , in), is contained in the boundary of D. The
(0, . . . 0)-face of D consists only of the origin, whereas the (i1, . . . , in)-face of D is D itself. By
induction on n−m, one can easily see that if C ⊆ cl(D) is a (j1, . . . , jn)-face of D, then for all
m = 1, . . . , n, πm(C) ⊆ cl(πm(D)) is a (j1, . . . , jm)-face of πm(D). Moreover, by induction on
n, if E is a face of C and C is a face of D, then E is a face of D. Finally, a face of D is also a
canonical linear cell.

The following claim will be used later on.

Claim 2.8. Let C be a special linear decomposition of a definable set, and C,D ∈ C two
canonical linear cells with 0 ∈ cl(C) ⊆ cl(D). Then C is a face of D.

Proof. Let C ⊆ Rn be a (j1, . . . , jn)-cell and D ⊆ Rn a (i1, . . . , in)-cell. We prove the claim
by induction on n. For n = 1, it is immediate. For n > 1, we have 0 ∈ cl(π(C)) ⊆ cl(π(D))
and thus, by induction, π(C) is a face of π(D). If jn = 0, then it is immediate that C is a face
of D, so assume in = jn = 1. Let D = (f, g)A and C = (h, k)B , with B ⊆ cl(A). We want to
prove that h = f|B and k = g|B. Since cl(C) ⊆ cl(D), we know that for every t ∈ C,

f(t) ≤ h(t) < k(t) ≤ g(t),

and by Definition 2.1(3), the first and last inequalities cannot be strict. �

We now proceed to the notion of a half-cell.
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Definition 2.9. Let A ⊆ Rn−1 and g ∈ L(A). The half-map of g is the map F ∈ L(A) given
by

F (x) =
g(x)

2
.

It is clear that 0 < F|A < g|A and 0 ≤ F|cl(A) ≤ g|cl(A).

Now let C be a canonical linear cell. We define the half-cell of C, denoted simply by C′,
recursively, as follows:

(1) n = 1. If C is a singleton, then C′ = C. If C = (0, a), then C′ = (0, a
2 ].

(2) n > 1. Let A = π(C) and A′ its half-cell.
• If C = Γ(0)A, then C′ = Γ(0)A′ .
• If C = (0, g)A, then C′ = (0, F ]A′ , where F is the half-map of g.

By construction, the half-cell of π(C) equals π(C′).

Lemma 2.10. Let C = (0, g)B and D = (0, h)A be two canonical linear cells, such that C is
a face of D (and so B is a face of A). Let f ∈ L(B) be the half-map of g and e ∈ L(A) the
half-map of h. Then:

f = e|B.

Proof. Clear from the definition. �

It is also clear that for C and D as above, C′ is a face of D′, but we will not make use of
this fact here.

2.3. Homotopy. We recall the definable analogues of standard notions from algebraic topol-
ogy, and prepare the ground for the construction of a canonical retraction in Section 3.

Definition 2.11. Let A ⊆ X be two definable sets. We say that X deformation retracts to A
if there is a definable continuous H : [0, q]×X → X such that:

(1) H(0, X) = A
(2) ∀t ∈ [0, q], H(t,−)↾A = 1A
(3) H(q,−) = 1X .

We call H a deformation retraction of X to A. If A above is a singleton {c}, we say that X is
definably contractible (to c), and that H is a definable contraction of X to c.

Note that the above notion of a deformation retraction is often regarded as a ‘strong’ one
in the literature, because of (2). Note also that we have omitted the word ‘definable’ from our
terminology, for simplicity.

Definition 2.12. Let A ⊆ X ⊆ X ′ be three definable sets and suppose that H : [0, q]×X → X
and H ′ : [0, q′]×X ′ → X ′ are deformation retractions of X and X ′, respectively, to A. We say
that H ′ extends H if q ≤ q′ and for every (t, x) ∈ [0, q]×X ,

H(t, x) = H ′(t, x).

By a definable path we simply mean a definable continuous map γ : [0, p] → Rn. We call γ a
loop if γ(0) = γ(p). Given c ∈ Rn, the constant path εc is defined by εc(x) = c and its domain
can vary according to context. A definable set is called definably connected if every two points
of it are connected with a definable path.

Definition 2.13. Let X be a definable set and γ, δ : [0, p] → X two definable paths with
γ(0) = δ(0) and γ(p) = δ(p). We say that γ and δ are definably homotopic (in X) if there is a
definable continuous F : [0, q]× [0, p] → X such that:

(1) F (0,−) = γ.
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(2) ∀t ∈ [0, q], F (t, 0) = γ(0) and F (t, p) = γ(p).
(3) F (q,−) = δ.

We call X definably simply-connected if it is definably connected and every definable loop in it
is definably homotopic to a constant path.

Claim 2.14. Suppose that X is definably contractible. Then it is definably simply-connected.

Proof. Given a deformation retraction H : [0, q] × X → X of X to c, and a definable path
γ : [0, p] → X , the map F : [0, q]× [0, p] → X defined by

F (t, x) = H(t, γ(x))

witnesses that γ is definably homotopic to the constant path εc. Moreover, given any x ∈ X , the
map H(−, x) is a definable path from c to x, witnessing that X is also definably connected. �

By [2, Lemma 3.2], every bounded cell is definably contractible. We also know the converse.

Fact 2.15. An unbounded definable set is not definably contractible.

Proof. Let X be an unbounded definable set. Suppose H : [0, q] × X → X is a definable
contraction of X to a point c ∈ X . Consider the map f : [0, q] → R given by

x 7→ sup{|x1 + · · ·+ xn| : (x1, . . . , xn) ∈ H(t,X)}.

Then f is a definable map whose image contains an unbounded interval, since X is unbounded.
But that is a contradiction, because R has no poles; that is, there are no definable bijections
between bounded and unbounded sets ([4]). �

We note here that if R were to expand an ordered field, then unbounded cells could also be
shown to be definably contractible. For example, R itself would be definably contractible to 0
via H : [0, 1]×R → R with H(t, x) = tx. The lack of multiplication in our setting is obviously
one of its main particularities.

Lemma 2.16. Let C be a canonical linear cell. Then C′ is definably contractible.

Proof. By induction. Let n = 1. If C is a singleton, it is trivial, and if C = (0, a), let
H : [0, a

2 ] × C′ → C′ given by H(t, x) = max{a
2 − t, x}. Then H is a definable contraction of

C′ to {a
2}. Now let n > 1. By induction, there is a definable contraction

H1 : [0, q1]× π(C′) → π(C′)

of π(C′) to some c ∈ π(C′). If C = Γ(0)A, let H : [0, q1]× C′ → C′ with

H(t, x, y) = (H1(t, x), 0).

Then H is a definable contraction of C′ to (c, 0). If C = (0, g)A, let F be the half map of g,
and

H : [0, q1 + sup ImF ]× C′ → C′

with

H(t, x, y) =

{

(H1(t, x), F (H1(t, x))), if t < q1,

(x,max{F (x)− (t− q1), y}), if t ≥ q1.

It is easy to check that H is a definable contraction of C′ to (c, g(c)). �
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3. Canonical retractions

We are now ready to present the construction of a canonical retraction. As mentioned in
the introduction, we first give it for canonical linear cells (Definition 3.3) and then for arbitrary
bounded linear cells (Definition 3.12); this significantly reduces the notational complexity of
the presentation. Definition 3.3 is given recursively on n and runs in parallel with Claim 3.4,
where we verify that all necessary properties hold at the recursive step. Before stating the
(rather lengthy) definition, we illustrate it with an example.

Example 3.1. Let D = (0, g)(0,a) be a canonical linear cell in R2, f the half-map of g, C a
face of D, and C′ the half-cell of C. We illustrate Cases (II) and (III) of Definition 3.3 below.
Let q = a+ sup Img, and define the deformation retraction

H : [0, q]× cl(D) → cl(D)

of cl(D) to cl(C′), as follows.

Case (II): C = {0}. Then C′ = C and:

H(t, x, y) =

{

(t,min{y, t, f(t)}), if t < x,

(x,min{y, t, t− x+ f(x)}), if t ≥ x.

Case (III): C = {0} × (0, g(0)). Then C′ = {0} × (0, g(0)/2) and:

H(t, x, y) =

{

(t,min{y, f(t)}), if t < x,

(x,min{y, t− x+ f(x)}), if t ≥ x.

Case (II)

z1

z4

z3

z2

a

f

g

C′ = {0}

Case (III)

z5

z7

z6

a

f

g

C′

The above pictures depict the images of H(−, zi), for various zi = (x, y) ∈ D. Depending on
the location of zi, the map t 7→ H(t, zi)2 takes the following values:

z1 : t, y

z2 : t, f(t), y

z3 : t, f(t), t− x+ f(x)

z4 : t, t− x+ f(x)

z5 : y

z6 : f(t), y

z7 : f(t), t− x+ f(x)

Our canonical retractions have the additional property of being ‘nice’.

Definition 3.2. Let H : [0, q]×X → X be a deformation retraction of X to A ⊆ X . For every
x ∈ X , the fixing point of x under H is the point αx ∈ [0, q] given by

αx = min{t ∈ [0, q] : H(t, x) = x},

which exists by continuity of H . We call H nice, if for every x ∈ X and t ≥ αx, H(t, x) = x.
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Note that there may be more ways to handle Example 3.1. However, the suggested retractions
can generalize to an arbitrary n, as follows.

Definition 3.3 (Canonical retraction). Let D ⊆ Rn be a canonical linear (i1, . . . , in)-cell, and
C a (j1, . . . , jn)-face of D. Let C′ be the half-cell of C. The canonical retraction H of cl(D) to
cl(C′),

Hn : [0, qn]× cl(D) → cl(D),

is a nice retraction defined recursively on n, as follows. Let h1, . . . , hn be the defining maps of
D. So hi = 0 or hi = (0, gi).

n = 1. First, define

q1 =

{

0, if i1 = 0,

g1(0), if i1 = 1.
.

Now let y ∈ cl(D). If i1 = j1, then define H1(t, y) = y. If i1 > j1, define

H1(t, y) = min{t, y}.

n > 1. Let Hn−1 : [0, qn−1] × cl(π(D)) → cl(π(D)) be the canonical retraction of cl(π(D)) to
cl(π(C′)). If in = 1, we let f : π(D) → R be the half-map of gn, and so C′ = (0, f ]π(D). Recall
that for every x ∈ cl(π(D)), αx denotes the fixing point of x under Hn−1,

αx = min{t ∈ [0, qn−1] : Hn−1(t, x) = x}.

Now let

qn =

{

qn−1, if in = 0,

qn−1 + sup Imgn, if in = 1,

and for every (x, y) ∈ cl(D), define Hn(t, x, y) by cases, as follows.

(I) If in = jn = 0, then Hn(t, x, y) = (Hn−1(t, x), 0).

(II) If in > jn, then

Hn(t, x, y) =

{

(Hn−1(t, x),min{y, t, fHn−1(t, x)}), if t < αx,

(Hn−1(t, x),min{y, t, t− αx + fHn−1(t, x)}), if t ≥ αx.

(III) If in = jn = 1, then

Hn(t, x, y) =

{

(Hn−1(t, x),min{y, fHn−1(t, x)}), if t < αx,

(Hn−1(t, x),min{y, t− αx + fHn−1(t, x)}), if t ≥ αx.

Note: In Cases (II) and (III), for t ≥ αx, Hn−1(t, x) = x, since Hn−1 is nice.

We next verify that, at the recursive step, Hn has the required properties.

Claim 3.4. Hn is a nice deformation retraction of cl(D) to cl(C′).

Proof. We work by induction. For n = 1, all properties below are immediate and we omit their
proofs. Let n > 1. We denote g = gn.

(a) Hn is a map Hn : [0, qn]× cl(D) → cl(D).
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Let t ∈ [0, qn] and (x, y) ∈ cl(D). In all Cases (I), (II) and (III), the first n−1 coordinates of
Hn(t, x, y) equal Hn−1(t, x) ∈ cl(π(D)), by induction. So in Case (I), we are done. For Cases
(II) and (III), we need to check that

Hn(t, x, y)n ≤ gHn−1(t, x),

In both Cases (II) and (III), if t < αx, we have

Hn(t, x, y) ≤ fHn−1(t, x) ≤ gHn−1(t, x),

and if t ≥ αx, then
Hn(t, x, y)n ≤ y ≤ g(x) = gHn−1(t, x).

(b) Hn is a deformation retraction of cl(D) to cl(C′).

By induction, it is easy to verify that Hn is definable and continuous. We verify the three
properties of Definition 2.11.

(1) We prove that for every (x, y) ∈ cl(D), Hn(0, x, y) ∈ cl(C′). In all Cases (I), (II) and (III),
the first n − 1 coordinates of Hn(0, x, y) equal Hn−1(0, x) ∈ cl(π(C′)), by induction. In Case
(I), we are clearly done. In Cases (II) and (III), we only need to observe that

Hn(0, x, y)n ≤ fHn−1(0, x),

which is clear from their definition.

(2) We prove that for every (x, y) ∈ cl(C′) and t ∈ [0, qn], Hn(t, x, y) = (x, y). In all Cases
(I), (II) and (III), the first n − 1 coordinates of Hn(t, x, y) are Hn−1(t, x) = x, by induction.
Moreover, αx = 0. So we only need to prove that

Hn(t, x, y)n = y.

In Case (I), it is clear. In Case (II), (x, y) ∈ cl(C′) implies that y = 0, and hence Hn(t, x, y)n =
y = 0. In Case (III), (x, y) ∈ cl(C′) implies y ≤ f(x), and since αx = 0, we have

y ≤ f(x) = fHn−1(0, x).

(3) We prove that for every (x, y) ∈ cl(D), Hn(qn, x, y) = (x, y). By induction, Hn−1(qn−1, x) =
x, and hence qn ≥ qn−1 ≥ αx. Therefore, in all Cases (I), (II) and (III), the first n−1 coordinates
of Hn(qn, x, y) equal Hn−1(qn, x) = x. So we only need to prove

Hn(qn, x, y)n = y.

Case (I) is clear, whereas for Cases (II) and (III), we need to show that

y ≤ qn and y ≤ qn − αx + f(x),

respectively. But in both cases, we have:

qn ≥ sup Img ≥ y,

and
qn − αx + f(x) = qn−1 + sup Img − αx + f(x) ≥ sup Img + f(x) ≥ y.

(c) Hn is nice.

We prove that for every (x, y) ∈ cl(D) and t ≥ α(x,y), Hn(t, x, y) = (x, y). First ob-
serve that for (x, y) ∈ cl(D), αx ≤ α(x,y). Indeed, since Hn(α(x,y), x, y) = (x, y), we have
Hn−1(α(x,y), x) = x and hence αx ≤ α(x,y). Now, Case (I) is clear, whereas for (II) and (III),
we need to prove that for t ≥ α(x,y),

Hn(t, x, y) = y.
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To that end, observe that for t ≥ α(x,y) ≥ αx, fHn−1(t, x) = f(x) is fixed. Hence each of

t, fHn−1(t, x), t− αx + fHn−1(t, x)

is increasing for t ≥ α(x,y). So if y is smaller or equal than some of them at t = α(x,y) then so
it is for t ≥ α(x,y). By definition of Cases (II) and (III), we are done. �

In the next two lemmas, if H is the canonical retraction of cl(D) to cl(C), then H1 denotes
the canonical retraction of cl(π(D)) to cl(π(C)).

Lemma 3.5. Let D be a canonical linear cell and C one of its faces. If H is a canonical
retraction of cl(D) to cl(C′), then H↾[0,q]×(C∪D) is a deformation retraction of C ∪D to C′.

Proof. The proof resembles that of Claim 3.4(a). For n = 1, it is immediate. Let n > 1,
t ∈ [0, qn] and (x, y) ∈ C ∪D. We need to check that H(t, x, y) ∈ C ∪D. In all Cases (I), (II)
and (III), the first n− 1 coordinates of H(t, x, y) equal H1(t, x) ∈ π1(C ∪D), by induction. So
in Case (I), we are done. For Cases (II) and (III), we need to check that

H(t, x, y)n < gH1(t, x),

and in Case (III), we need moreover 0 < H(t, x, y)n. The latter is clear since in Case (III),
(x, y) ∈ C ∪ D implies that both y and fH1(t, x) are positive. For the former, in both Cases
(II) and (III), if t < αx, we have

H(t, x, y) ≤ fH1(t, x) ≤ gH1(t, x).

If the last inequality if strict, we are done. Assume fH1(t, x) = gH1(t, x). By the definition
of half-maps, this can only happen if H1(t, x) ∈ π(C) and f|π(C) = g|π(C) = 0. However, that
would imply jn = 0, and hence

H(t, x, y) = (H1(t, x), 0) ∈ C.

If t ≥ αx, then

H(t, x, y)n ≤ y ≤ g(x) = gH1(t, x),

Again, if the second inequality is strict, we are done. On the other hand, the equation y = g(x)
can only happen if x ∈ π(C) and y = 0. But that would imply jn = 0, and hence again

H(t, x, y) = (H1(t, x), 0) ∈ C.

�

Lemma 3.6. Let C,E,D ⊆ Rn be three canonical linear cells, and assume that C is a face
of E, and E is a face of D. Let H and H ′ be the canonical retractions of cl(E) and cl(D) to
cl(C′), respectively. Then H ′ extends H.

Proof. For n = 1, this is immediate. Assume D is a (i1, . . . , in)-cell and E a (j1, . . . , jn)-cell,
n > 1. Let [0, q] and [0, q′] be the parameter sets of H and H ′, respectively. By induction,
it is easy to see that q′ ≥ q. Let t ∈ [0, q] and (x, y) ∈ cl(E). We need to prove that
H(t, x, y) = H ′(t, x, y). By induction, H1(t, x) = H ′

1(t, x). Hence, we only have to show

H(t, x, y)n = H ′(t, x, y)n.

If jn = 0, then y = 0, and clearly H(t, x, y)n = 0, by Case (I) of Definition 3.3, whereas
H ′(t, x, y)n = 0, by Cases (I) - (III).

So let in = jn = 1. Since H ′
1 extends H1, the corresponding fixing points αx and α′

x coincide,
whereas by Lemma 2.10, so do the half-maps of g and g′ on cl(π(E)). It follows immediately
that H(t, x, y)n = H ′(t, x, y)n. �
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Remark 3.7. It is possible to define a canonical retraction of cl(D) to cl(C), as opposed to cl(C′).
However, Lemma 3.5 then becomes more difficult to achieve. Indeed, resembling Definition 3.3,
we would first need to replace the notion of a half-map by some suitable map which equals g
on π(C). Then the resulting canonical retraction, restricted to C ∪D, would give a retraction
of C ∪ D to (0, g]π(C) instead of C = (0, g)π(C). To overcome this issue, one needs to give a
more elaborate definition of a canonical retraction, which we avoided doing here. We note that
our canonical retraction is not the concatenation of two retractions, one from cl(D) to cl(D′),
and then from cl(D′) to cl(C′).

3.1. Arbitrary linear cells. We now extend the definition of canonical retractions to arbitrary
bounded linear cells. The idea is simply to first map each such cell D to a canonical linear cell
T (D), such that if C ⊆ cl(D) is another linear cell and c is a common ‘corner’ of C and D, then
T (c) becomes the origin, and T (C) a face of T (D). We then pullback the canonical retraction
of cl(T (D)) to cl(T (C)), to a deformation retraction of cl(D) to cl(T−1(T (C)′), where T (C)′

is the half-cell of T (C).

Definition 3.8 (Corners of a linear cell). Let D ⊆ Rn be a linear (i1, . . . , in)-cell. We define,
recursively on n, the set of corners of D. Let (l1, . . . , ln) ≤ (i1, . . . , in).

(1) A point c ∈ R is an (l1)-corner of D if
• D is the singleton {c}, or
• if D is an interval, and c is the left endpoint, if l1 = 0, and the right endpoint, if
l1 = 1.

(2) A point c ∈ Rn is a (l1, . . . , ln)-corner of D if a = π(c) is a (l1, . . . , ln−1)-corner of
A = π(D) and

• D = Γ(f)A and c = (a, f(a)), or
• D = (f, g)A, and c = (a, f(a)), if ln = 0, and c = (a, g(a)) if ln = 1.

A corner of D is a (l1, . . . , ln)-corner for some (l1, . . . , ln).

Observe that ifD = (f, g)A with f(a) = g(a), then its (l1, . . . , ln−1, 0)-corner and (l1, . . . , ln−1, 1)-
corner coincide.

Lemma 3.9. Let C be a special linear decomposition of a definable set in Rn, C,D ⊆ C two
linear cells, and c a corner of C. If C ∩ cl(D) 6= ∅, then c is also a corner of D.

Proof. By Fact 2.3, we know that C ⊆ cl(D). We work by induction on n. For n = 1, it is
immediate. For n > 1, let A = π(D) and observe by induction that a = π(c) is a corner of
A = π(D). For D = Γ(f)A, it is then clear that (a, f(a)) is a corner of D. Now let D = (f, g)A.
Since C ⊆ cl(D), we have two cases:

Case I. C = Γ(h)B ⊆ (f, g)A, and B ⊆ cl(A). Since C is special, we have h = f|B or h = g|B,
and hence c = (a, f(a)) or c = (a, g(a)), respectively, which are both corners of D.

Case II. C = (k, h)B ⊆ (f, g)A. Since C is special, we must also have k = f|B and h = g|B,
and hence c = (a, f(a)) or c = (a, g(a)), which are both corners of D. �

Definition 3.10 (Canonical transformation of a bounded linear cell). Let D ⊆ Rn be a linear
(i1, . . . , in)-cell and c its (l1, . . . , ln)-corner. The canonical transformation TD,c associated to D
and c is a linear map T = TD,c : cl(D) → Rn, defined recursively as follows.

(1) For n = 1,
• if D = {c}, then T (c) = 0.
• if D is an interval, then T (x) = |x− c|.

(2) For n > 1, let A = π(D) and a = π(c).
• If D = Γ(f)A, then T (x, f(x)) = (TA,a(x), 0).
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• If D = (f, g)A, then

T (x, t) =

{

(TA,a(x), t − f(x)), if ln = 0,

(TA,a(x), g(x) − t), if ln = 1.

We call Dc = TD,c(D) the canonical transformation of D with respect to c.

Remark 3.11. It is straightforward to check that:

(1) Dc is a canonical linear (i1, . . . , in)-cell.
(2) If cl(C) ⊆ cl(D) and c is a common corner of C and D, then TD,c agrees with TC,c on

cl(C). Moreover, 0 ∈ cl(Cc) ⊆ cl(Dc), and hence, by Claim 2.8, Cc is a face of Dc.

Definition 3.12 (Canonical retractions of bounded linear cells). Let C be a special linear
decomposition of some definable set, C,D ∈ C with C ⊆ cl(D), and c a common corner of C
and D. Let C′

c be the half-cell of Cc and C′ = T−1
C,c(C

′
c). We call C′ the c-half-cell of C.

Now let H1 : [0, q] × cl(Dc) → cl(Dc) be the canonical retraction of cl(Dc) to cl(C′
c). We

define the c-canonical retraction of cl(D) to C′ to be the map Hc : [0, q]× cl(D) → cl(D), given
by:

Hc(t,−) = T−1
D,c ◦H1(t,−) ◦ TD,c.

Claim 3.13. The c-half-cell of C is definably contractible.

Proof. By Lemma 2.16. �

Claim 3.14. Let C,D, c, C′ and Hc be as above. Then (Hc)↾[0,q]×(C∪D) is a deformation
retraction of C ∪D to C′.

Proof. By Lemma 3.5 and Remark 3.11(2). �

Claim 3.15. Let C,E,D ⊆ Rn be three bounded linear cells satisfying C ⊆ cl(E) ⊆ cl(D), and
assume that c a common corner. Let Hc and H ′

c be the c-canonical retractions of cl(E) and
cl(D) to the c-half-cell C′ of C, respectively. Then H ′

c extends Hc.

Proof. By Lemma 3.6 and Remark 3.11(2). �

4. The proofs of Propositions 1 and 2

We begin with Proposition 1.

Proposition 4.1. Let Y ⊆ Rn be a bounded definable set, C ⊆ Y a linear cell, and D a special
linear decomposition of Y that contains C. Assume that

∀D ∈ D, C ∩ cl(D) 6= ∅.

Let c be a corner of C, and C′ the c-half-cell of C. Then Y deformation retracts to C′. In
particular, Y is definably contractible.

Proof. Let D = {D1, . . . , Dk}. By Lemma 3.9, c is also a corner of each Di. For every i, let

Hc
i : [0, qi]× cl(Di) → cl(Di)

be the c-canonical retraction of cl(Di) to cl(C′). Let q = maxi qi and define

H : [0, q]× Y → Y

via
H(t, x) = Hc

i (min{t, qi}, x), where x ∈ Di.

By Lemma 3.14, H is indeed a map with image in Y . Moreover, it is clear that H is a definable
map that satisfies properties (1) - (3) from Definition 2.11. So we only need to prove that it is
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continuous. For that, we need to check that if Di, Dj ∈ D with Di ∩ cl(Dj) 6= ∅, then Hc
i and

Hc
j agree on Di ∩ cl(Dj). But by Fact 2.3, Di ⊆ cl(Dj), and hence, by Claim 3.15, Hc

j extends
Hc

i .
The last clause is by Claim 3.13. �

For the proof of Proposition 2 we will need the following lemma.

Lemma 4.2. Let Y ⊆ Rn be a definable set and C a special linear decomposition of Y . Then
for every box B1 ⊆ Rn, there is a bigger box B ⊇ B1 such that the collection

D = {B ∩D : D ∈ C}

is a special linear decomposition of B ∩ Y .

Proof. By induction on n. For n = 1, let B = B1 = (a, b), where a, b ∈ R. Then D is a linear
decomposition of B ∩ Y and hence is special.

Let n > 1, and assume that B1 = π(B1) × (d, e). By induction, there is a box A ⊆ Rn−1

containing π(B1) such that the collection

E = {A ∩E : E ∈ π(C)}

is a special linear decomposition of A ∩ π(Y ). Let F be the set of all linear maps that appear
in the definitions of cells in C, with images in R. Now take d′, e′ ∈ R such that

d′ is smaller than d and all Imf|A, for f ∈ F ,

e′ is bigger than e and all Imf|A, for f ∈ F ,

which exist since A is bounded and each f ∈ F is linear. Let B = A× (d, e). So D = {B ∩D :
D ∈ C} consists of linear cells with domain in E and cell-maps already in F , plus some linear
cells of the form

(∗) (d′, g)V or (f, e′)V ,

where f, g ∈ F and V ∈ E . We prove that D is a special linear decomposition of B ∩ Y . Since
E is special, we only need to check that:

(**) For every two cells D1 = Γ(f)S and D2 = Γ(g)T in D, and V ∈ π(D) = E ,

f|V < g|V or f|V = g|V or f|V > g|V .

(***) For every two cells D1 = Γ(h)S , D2 = (f, g)T ∈ D,

there is no c ∈ cl(S) ∩ cl(T ) such that f(c) < h(c) < g(c).

For (**): since B is open, f, g must belong to F , whereas V = A ∩ V ′ for some V ′ ∈ π(C).
Hence we can apply Definition 2.1(2) for f, g ∈ F and V ′.

For (***): again, since B is open, h ∈ F . So, if f, g ∈ F , we already know it. If not, then
by (*), either f = d′ or g = e′, say the former. So D2 = (d′, g)T = (−∞, g)T ∩ B, where
(−∞, g)T ⊆ (−∞, g)T ′ ∈ C, for some T ′ ∈ π(C). Also, Γ(h)S ⊆ Γ(h)S′ , for some S′ ∈ π(C).
By the choice of d′, f ′ = d′ < h|S, whereas applying Definition 2.1(2) for the cells Γ(h)S′ and
(−∞, g)T ′ of C, we obtain (***). �

We finally derive Proposition 2.

Proposition 4.3. Let Y ⊆ Rn be a definable set, C ⊆ Y a linear cell, and D a special linear
decomposition of Y that contains C. Assume that

∀D ∈ D, C ∩ cl(D) 6= ∅.

Then Y is definably simply-connected.
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Proof. Consider a definable loop γ : [0, α] → Y . Since Im(γ) is bounded, it is contained in
some box B1 ⊆ Rn. By Lemma 4.2, there is a bigger box B ⊇ B1 such that

D′ = {B ∩D : D ∈ D}

is a special linear decomposition of B ∩ Y . We now observe that Im(γ) ⊆ ∪D′ ⊆ Y , and

∀D ∈ D′, C ∩ cl(D) 6= ∅.

Therefore, by Proposition 4.1, ∪D′ is definably contractible. Hence, by Claim 2.14, γ is definably
homotopic in ∪D′ to a constant loop. Therefore it is definably homotopic in Y to a constant
loop.

It is also clear that Y is definably connected, since D contains the linear cell C and for every
D ∈ D, C ∩ cl(D) 6= ∅. �

5. Appendix

Fact 2.2. Let Y ⊆ Rn be a definable set. Then for any linear decomposition D of Y , there is
a special linear decomposition C of Y that refines D (that is, every linear cell in D is a union
of linear cells in C).

Proof. The proof is essentially a repetition of that of [6, Lemma 2.6]. By induction on n. For
n = 1, take C = D. Now assume that n > 1 and the lemma holds for n− 1. Let D be a linear
decomposition of Rn. Choose a finite collection F of linear maps f : Rn−1 → R such that any
linear map that appears in the definition of any linear cell from D is a restriction of a map from
F . Now set

G = {Γ(f) ∩ Γ(g) : f, g ∈ F} and G′ = {π(A) : A ∈ G} ∪ π(D).

Clearly, G′ is a finite collection of definable subsets of Rn−1. By the linear cell decomposition
theorem and induction, there is a special linear decomposition C′ of Rn−1 that partitions each
member of G′.

Claim. For any f, g ∈ F , either f < g or f = g or f > g on any V ∈ C′.

Proof of Claim. Let V ∈ C′ and let A = Γ(f) ∩ Γ(g). Since π(A) is a union of members of C′,
we have either V ⊆ π(A) or V ∩π(A) = ∅. In the first case f = g on V. In the second case, V is
a disjoint union of the open definable subsets {b ∈ V : f(b) < g(b)} and {b ∈ V : g(b) < f(b)}.
Since V is definably connected, one of the two sets is equal to V . �

Let C be the linear decomposition of Rn with π(C) = C′ such that for any V ∈ C′ the set of
cells in C with domain V is defined by all functions from F . Since C′ refines π(D), the choice
of F and Claim imply that C refines D.

To conclude, we need to prove (2) and (3) from Definition 2.1. Item (2), it simply holds by
the Claim. For (3), let (f, g)T ∈ C. Then f, g ∈ F and for any h ∈ F , again from Claim, we
have on T either h < f , or h = f , or h = g or h > g, and so either h(c) ≤ f(c) or g(c) ≤ h(c),
for any c ∈ cl(T ). In particular, for any Γ(h)S ∈ C there is no c ∈ cl(S) ∩ cl(T ) such that
f(c) < h(c) < g(c). �
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