
THE DESCENDING CHAIN CONDITION FOR GROUPS
DEFINABLE IN O-MINIMAL STRUCTURES

PANTELIS E. ELEFTHERIOU

Our goal is to show the Descending Chain Condition for groups definable in o-
minimal structures. Let M be an o-minimal structure, and G = 〈G, ·, eG〉 a group
definable in M.

Theorem 0.1 (DCC). Let G be a definable group. Then there is no infinite proper
descending chain of definable subgroups of G:

G = H0 	 H1 	 H2 	 . . .

The DCC also holds if G is an ω-stable group. The proof in that case is based
on the following two properties of the Morley rank and Morley degree, which are
always defined and are ordinal valued. Let H be a definable subgroup of G. Then:

(1) RM(H) = RM(G) ⇔ [G : H] < ω, and
(2) deg(G) = [G : H]deg(H).

Thus, if Hn+1 is a proper definable subgroup of Hn, then its Morley rank is smaller
than that of Hn or its Morley degree is smaller than that of Hn. Since both Morley
rank and degree are ordinals, it follows that G has no infinite proper descending
chain of definable subgroups.

In case of a group G definable in an o-minimal structure M, we can replace
Morley rank by dimension and restate Property (1). But we have to rephrase
Property (2), as there is no analogue of Morley degree for definable sets in o-
minimal structures.

Proposition 0.2. Let H be a definable subgroup of G. Then:

dim H = dim G ⇔ [G : H] < ω.

Proposition 0.3. G contains a smallest definable subgroup G0 of finite index.

Proof of DCC based on Propositions 0.2 and 0.3. Assume, towards a contradiction,
that

G = H0 	 H1 	 H2 	 . . .

is a proper descending chain of definable subgroups of G. Since ∀i, dim Hi+1 ≤
dim Hi, there is some i ∈ N, such that ∀k ≥ i, dim Hi = dim Hk. But then the
sequence of [Hi : Hk], for k ≥ i, is a strictly increasing sequence of natural numbers
bounded by [Hi : (Hi)0], a contradiction. ¤

In what follows, M is a sufficiently saturated o-minimal structure, and
G a ∅-definable group. All topological notions concerning subsets of G
are taken with respect to the G-topology, unless stated otherwise.
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We are going to prove Propositions 0.2 and 0.3 below. In particular, we define:

G0 = the definably connected component of eG.

To prove Proposition 0.2, we need to recall some basic properties of the algebraic
closure operator acl.

1. Pregeometric theories - an interlude

Definition 1.1. A (finitary) pregeometry is a pair (S, cl), where S is a set and
cl : P (S) → P (S) is a closure operator satisfying, for all A,B ⊆ S and a, b ∈ S:

(i) A ⊆ cl(A)
(ii) A ⊆ B ⇒ cl(A) ⊆ cl(B)
(iii) cl

(
cl(A)

)
= cl(A)

(iv) cl(A) = {cl(B) : B ⊆ A finite}
(v) (Exchange) a ∈ cl(bA) \ cl(A) ⇒ b ∈ cl(aA).

Definition 1.2. If M is a structure, the algebraic closure operator acl : P (M) →
P (M) is defined as:

acl(A) = {a ∈ M : there are b̄ ⊆ A and φ(x, ȳ), |φ(M, b̄)| < ω &M ² φ(a, b̄)}.
A complete theory T is called pregeometric if for every model M ² T , (M, acl) is
a pregeometry.

Lemma 1.3. (i) For any structure M, (M, acl) satisfies 1.1(i)-(iv).
(ii) If T is o-minimal or strongly minimal, then T is a pregeometric theory.

Proof. (i) Easy.
(ii) See [Mac, p.102] and [Hart, p.134], respectively. ¤
Now let M be our fixed o-minimal structure.

Definition 1.4. Let A,B ⊆ M . We say that B is A-independent if for all b ∈ B,
b 6∈ acl

(
A ∪ (B \ {b})). A maximal A-independent subset of B is called a basis for

B over A.

By the Exchange property in a pregeometric theory, any two bases for B over A
have the same cardinality. This allows to define the algebraic dimension:

dim(B/A) = the cardinality of any basis of B over A.

In particular, the dimension of tuples in M satisfies several nice properties, among
which we distinguish the following.

Lemma 1.5. For all b̄, c̄, A,B ⊆ M :
(i) Additivity: dim(b̄c̄/A) = dim(b̄/c̄A) + dim(c̄/A).
(iii) Anti-reflexivity: dim(b̄/A) = 0 ⇒ b̄ ∈ acl(A).

Definition 1.6. Let p be a partial type over A ⊂ M . Then,

dim(p) := max{dim(c̄/A) : c̄ ⊂ M satisfies p}.
It can be checked that the above notion is well-defined. The dimension of a

definable set is then defined to be the dimension of its defining formula. It can be
shown that this dimension coincides with the dimension of definable sets given in
[El].

Let A ⊆ M . For a ∈ X and X ⊆ Mn A-definable, we have:

dim(a/A) = dim(X) if and only if a is generic in X over A.
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2. The proof of Proposition 0.2

Proof of Proposition 0.2. The right-to-left direction is straightforward, since cosets
of H are bijective and thus have the same dimension.

Consider the following definable equivalence relation E on G:

g1 E g2 ⇔ g1 ∈ g2H.

By [Ed, Theorem 7.2], then there is a definable map α : G → G, such that α(x) =
α(y) ⇔ xEy. Assume [G : H] is infinite. By o-minimality, the dim

(
Im(α)

)
> 0.

Hence there is a ∈ Im(α) such that dim(a) > 0. Let h be generic in H over a, that
is dim(h/a) = dim(H). Let g = ha. Then a ∈ acl(g) (since α(g) = a). But then
also h ∈ acl(g, a) = acl(g). It follows that:

dim(g) ≥ dim(h, a) = dim(h/a) + dim(a) > dim(H).

So dim(G) > dim(H), a contradiction. ¤

3. The proof of Proposition 0.3

Remark 3.1. If H 6 G is a definable subgroup of G, then by uniqueness of the
definable manifold group topology, the H-topology coincides with the topology on
H induced by the G-topology of G. (One has to check that the latter is indeed a
definable manifold group topology on H.)

The next two claims are general facts that hold in all topological groups.

Claim 3.2. If H 6 G is a definable subgroup of G, then H is closed in G.

Proof. Let H denote the closure of H in G.

Subclaim 1. H 6 G ⇒ H 6 G.
Indeed, let a, b ∈ H, and let W be an open subset of G containing ab−1. By
continuity of ·, there are open U, V ⊆ G such that ∀x ∈ U,∀y ∈ V , xy−1 ∈ W . In
particular, if x, y ∈ H then xy−1 ∈ W ∩H. Thus, ab−1 ∈ H.

Subclaim 2. H is open in G ⇔ H has non-empty interior in G.
The left-to-right direction is trivial. For the right-to-left, let g ∈ H and v any point
in the interior of H in G. Then there is some open neighborhood V ⊆ G of v in H.
But then gv−1V is an open neighborhood of g in H.

Subclaim 3. H is open in G ⇒ H is closed in G.
Indeed, G \H =

⋃
g∈G\H gH.

Now let H 6 G be a definable subgroup of G. By Subclaim 1, H 6 G. By [vdD,
Chapter 4, Corollary (1.9)], [El, Lemma 1.5 (ii)] and the remark preceding it, H
has a non-empty interior in H. By Subclaim 2, applied to H and H, H is open in
H. By Subclaim 3, H is closed in H. Hence, by Remark 3.1, H = H is closed. ¤

Claim 3.3. [G : H] < ω ⇒ H is open. (In fact, ⇔ holds.)

Proof. Indeed, G \H =
⋃

g∈G\H gH. ¤

Proof of Proposition 0.3. G0 is a subgroup of G: let a ∈ G0. Since the map x 7→
x−1 is continuous, G−1

0 is also definably connected. Since G0∩G−1
0 6= ∅ (it contains

eG), it follows that G0 ∪G−1
0 is definably connected, and thus equal to G0. Hence,

a−1 ∈ G0 ∪G−1
0 = G0.



4 PANTELIS E. ELEFTHERIOU

Now let a, b ∈ G0. Since the map x 7→ ax is continuous, aG0 is definably
connected. Since a−1 ∈ G0, G0 ∩ aG0 6= ∅, it follows that G0 ∪ aG0 is definably
connected, and thus equal to G0. Hence, ab ∈ G0 ∪ aG0 = G0.

G0 has finite index: G0 is open, and therefore dim(G0) = dim(G). Then apply
Proposition 0.2.

G0 is the smallest definable subgroup of G of finite index: Let H 6 G be a de-
finable subgroup of G of finite index. Then H ∩G0 has finite index in G0. Hence,
H ∩G0 is a closed and open in G0 (in the G0-topology). By Remark 3.1, H ∩G0

is closed and open in G0 in the topology induced on G0 by the G-topology of G.
Since G0 is definably connected in that topology, H ∩G0 = G0. ¤
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