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Abstract. We prove that in a semi-bounded o-minimal expansion of an or-

dered group every non-empty open definable set is a finite union of open cells.

1. Introduction

We fix an arbitrary o-minimal expansion R = 〈R,<,+, 0, . . .〉 of an ordered
group. In this note we complete the proof of the following theorem.

Theorem 1.1. Every non-empty open definable set is a finite union of open cells.

This theorem is already known in two extreme cases. Let us explain the context.
By [12] and [3], we can have exactly the following cases:

A. R = 〈R,<,+, ·, 0, 1, . . .〉 expands a real closed field.
B. R does not expand a real closed field, but it contains a definable real closed

field whose domain is a bounded interval I ⊆ R.
C. No real closed field is definable.

A structure from cases (B) and (C) is called semi-bounded. In particular, a structure
from case (C), is called linear. A typical example of a linear structure is that of an
ordered vector space V = 〈V,<,+, 0, {d}λ∈D〉 over an ordered division ring D.

An important example of a semi-bounded structure is the expansion B of the
real ordered vector space Rvect = 〈R, <,+, 0, {d}d∈R〉 by all bounded semi-algebraic
sets. Every bounded interval in B admits the structure of a definable real closed
field. For example, the field structure on (−1, 1) induced from R via the semi-
algebraic bijection x 7→ x√

1+x2
is definable in B. By [13, 9, 10], B is the unique

structure that lies strictly between Rvect and the real field. The situation becomes
significantly more subtle when R is non-archimedean, and the study of definable
sets and groups in the general semi-bounded setting has recently regained a lot of
interest ([4, 6, 7, 11]).

Theorem 1.1 in the field case was proved by Wilkie in [14], and in the linear
case by Andrews in [1]. Here we prove it in the semi-bounded non-linear case.
We also prove a stronger result in the linear case, which we state next. For the
notion of ‘linear decomposition’ and ‘star’, see Section 2 below. For the notion
of ‘stratification’, see [2, Chapter 4, (1.11)]. By Lemma 2.6, Corollary 2.11 and
Proposition 2.13 below, we have:
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2 MÁRIO J. EDMUNDO, PANTELIS E. ELEFTHERIOU, AND LUCA PRELLI

Theorem 1.2. Assume R is linear. Let D be a linear decomposition of Rn. Then
there is decomposition C of Rn that refines D, such that for every C ∈ C, the star
of C is an open (usual) cell. Moreover, C is a stratification of Rn.

We expect that our main theorem on coverings by open cells (Theorem 1.1)
will find numerous applications in the theory of locally definable manifolds in o-
minimal structures. Some of those are exhibited in [5]. As stated in that reference,
a strengthened result of coverings would yield further applications. We state the
desired result here as a Conjecture:

Conjecture. Every definable set is a finite union of relatively open definable
subsets which are definably simply connected.

Structure of the paper. Section 2 contains the stratification result (Theorem 1.2)
for the linear case. Section 3 contains the covering by open cells (Theorem 1.1) for
the semi-bounded non-linear case.

N otation. We recall the standard notation for graphs and “generalized cylinders”
of definable maps.

• If f : X → R is a definable map, we denote by Γ(f) the graph of f .
• If f, g : X → R are definable maps or the constant maps −∞ and +∞ on
X with f(x) < g(x) for all x ∈ X, we write f < g and set:

(f, g)X = {(x, y) ∈ X ×R : f(x) < y < g(x)};
[f, g)X = {(x, y) ∈ X ×R : f(x) ≤ y < g(x)};
(f, g]X = {(x, y) ∈ X ×R : f(x) < y ≤ g(x)};
[f, g]X = {(x, y) ∈ X ×R : f(x) ≤ y ≤ g(x)}.

2. The linear case

We assume in this section that R is linear. By ([8]), there is an elementary
extension ofR which is a reduct of an ordered vector space V = 〈V,<,+, 0, {λ}λ∈D〉
over an ordered division ringD. We may thus assume thatR = 〈R,<, 0,+, {λ}λ∈D〉
is an ordered vector space over an ordered division ring D.

As mentioned in the Introduction, we will prove a ‘special linear cell decompo-
sition theorem’ in which the ‘star’ of every cell is an open usual cell.

A linear (affine) function on A ⊆ Rn is a function f : A → R of the form
f(x1, . . . , xn) = λ1x1 + . . . + λnxn + a, for some fixed λi ∈ D and a ∈ R. For a
definable set X ⊆ Rn, we set L(X) = {f : X → R : f is linear} and L∞(X) =
L(X) ∪ {±∞}, where we regard −∞ and +∞ as constant functions on X. If
f ∈ L(X), we denote by Γ(f) the graph of f . If f, g ∈ L∞(X) with f(x) < g(x) for
all x ∈ X, we write f < g and set (f, g)X = {(x, y) ∈ X × R : f(x) < y < g(x)}.
Then,

• a linear cell in R is either a singleton subset of R, or an open interval with
endpoints in R ∪ {±∞},
• a linear cell in Rn+1 is a set of the form Γ(f), for some f ∈ L(X), or

(f, g)X , for some f, g ∈ L∞(X), f < g, where X is a linear cell in Rn.

In either case, X is called the domain of the defined cell.
We refer the reader to [2, Chapter 3, (2.10)] for the definition of a decomposition

of Rn. A linear decomposition of Rn is then a decomposition C of Rn such that
each B ∈ C is a linear cell. The following can be proved similarly to [2, Chapter 3,
(2.11)].
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Theorem 2.1 (Linear CDT).

(1) Given any definable sets A1, . . . , Ak ⊆ Rn, there is a linear decomposition
C of Rn that partitions each Ai.

(2) Given a definable function f : A → R, there is a linear decomposition C
of Rn that partitions A such that the restriction f|B to each B ∈ C with
B ⊆ A is linear.

Definition 2.2. Let C be a linear decomposition of Rn and X a definable subset
of Rn. Denote

StarC(X) = {D ∈ C : X ∩ cl(D) 6= ∅}.
The star of X with respect to C, denoted by stC(X), is then

stC(X) =
⋃

StarC(X).

We just write Star(X) and st(X) if C is fixed.

In what follows, if k > 0, then π : Rk+1 → Rk denotes the usual projection map
onto the first k-coordenates, and if C is a linear decomposition of Rk+1, then π(C)
denotes the linear decomposition {π(C) : C ∈ C} of Rk.

Lemma 2.3. Let C be a linear decomposition of Rn compatible with a definable
subset X of Rn. Then:

(i) If n > 1, then Starπ(C)(π(X)) = π(StarC(X)).
(ii) If X is an open union of cells in C, and C ∈ C with C ⊆ X, then st(C) ⊆ X.

Proof. (i) ⊆. Let D ∈ Star(π(X)). Since π is open, for any open set U
containing X, π(U) is an open set containing π(X). Thus D ∩ π(U) 6= ∅, which
implies π−1(D) ∩ U 6= ∅. Hence, by Linear CDT, there is some D′ ∈ Star(X) such
that π(D′) = D.
⊇. Let D ∈ Star(X). For any open set U containing π(X), π−1(U) is an open

neighborhood of X. Therefore π−1(U) ∩ D 6= ∅, and U ∩ π(D) 6= ∅. Hence π(D)
belongs to Star(π(X)).

(ii) Since X is open, for every B ∈ Star(C), B ∩X 6= ∅, and hence B ⊆ X. �

One would expect that stC(X) is an open set. However, the following example
shows that this is not the case.

Example 2.4. Consider points a−1 < a0 < a1 < a2 < a3 in R and let C be a linear
decomposition of R2 that contains the following cells: (a−1, a0)×(a0, a2), (a0, a1)×
(a0, a2), {a0}× (a0, a1), {a0}× (a1, a3) and the point (a0, a1). Then the star of the
point (a0, a1) is the union of the above cells, which is not open.

Below we define a special kind of a linear decomposition C of Rn that remedies
the above problem. In fact, such a C will give us that every stC(X) is an open (usual)
cell (see Proposition 2.13 below). From this we obtain the version of Theorem 1.1
for the linear case (see Corollary 2.14 below).

For every h ∈ L(X), where X ⊆ Rk, and h of the form h(x1, . . . , xk) = λ1x1 +
· · ·+λkxk+c, we define the extension of h to Rk to be the linear function g : Rk → R
with g(x1, . . . , xk) = λ1x1+· · ·+λkxk+c. We say that g extends h. In what follows,
if h ∈ L(X), X ⊆ Rk, and c ∈ cl(X), we denote h(c) := limt→c h(t), which always
exists and is equal to g(c), where g extends h.

The next definition is by induction on n.
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Definition 2.5. A special linear decomposition of R is any linear decomposition
of R. A special linear decomposition of Rk+1, k > 0, is a linear decomposition C of
Rk+1 with the following two properties:

• Let C,C ′ ∈ C be two linear cells of the form

C = (f, g)B and C ′ = (f ′, g′)B′ ,

where B,B′ ⊆ Rk are disjoint, f < g in L∞(B) and f ′ < g′ in L∞(B′).
Then, for every c ∈ cl(B)∩ cl(B′), if π−1(c)∩ cl(C)∩ cl(C ′) is infinite, then

π−1(c) ∩ cl(C) = π−1(c) ∩ cl(C ′).

Equivalently, for every c ∈ cl(B)∩cl(B′), if π−1(c)∩cl(C)∩cl(C ′) is infinite,
then

f(c) = f ′(c) and g(c) = g′(c).

• π(C) = {π(D) : D ∈ C} is a special linear decomposition of Rk.

Before providing the nice consequences of special linear decompositions, we prove
that they always exist.

Lemma 2.6. For any linear decomposition D of Rn, there is a special linear de-
composition C of Rn that refines D (that is, every linear cell in D is a union of
linear cells in C).

Proof. By induction on n. For n = 1, take C = D. Now assume that n = k + 1
and the lemma holds for k > 0. Let D be a linear decomposition of Rk+1. Let F be
the collection of linear maps that appear in the definitions of the linear cells that
are contained in D. Now let

F = {g : Rk → R : g extends some f ∈ F}

and set

G = {Γ(f) ∩ Γ(g) : f, g ∈ F} and G′ = {π(A) : A ∈ G}.
Clearly, G′ is a finite collection of definable subsets of Rk. By (Linear CDT and) the
inductive hypothesis, there is a special linear decomposition C′ of Rk that partitions
each B ∈ G′.

Claim 2.7. For every two distinct f, g ∈ F , and X ∈ C′,

f|X < g|X or f|X = g|X or f|X > g|X .

Proof. Indeed, let A = Γ(f) ∩ Γ(g) 6= ∅. Since π(A) ∈ G′ and C′ partitions
π(A), we have either X ⊆ π(A) or X ⊆ Rk \ π(A). The former implies f|X = g|X ,
whereas the latter implies one of the two other cases. �

We can thus write C′ = {X1, . . . , Xm}, such that for each i ∈ {1, . . . ,m}, fi1 <
· · · < fin(i) are the distinct functions in L(Xi), each being a restriction of some

f ∈ F , and exhausting all possible such. Then

Ci = {(−∞, f1|Xi
), (f1|Xi

, f2|Xi
), . . . , (fl|Xi

,∞),Γ(f1|Xi
), . . . ,Γ(fl|Xi

)}

is a partition of π−1(Xi), and C = C1 ∪ · · · ∪ Ck is a linear decomposition of Rk+1

which refines D. We show that C is special. Let C = (f, g)B and C ′ = (f ′, g′)B′ be
as in Definition 2.5. We need to check that

f(c) = f ′(c) and g(c) = g′(c)
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for every c ∈ cl(B)∩ cl(B′). If not, then since π−1(c)∩ cl(C)∩ cl(C ′) is infinite, we
have either

f(c) < f ′(c) < g(c) or f ′(c) < g(c) < g′(c).

In the first case, the extension h of f ′ restricted to B satisfies:

f < h|B < g.

This contradicts the definition of Ci with i such that Xi = B. In the second case
we also get a contradiction by considering i such that Xi = B′.

Finally, notice that π(C) = C′ is a special linear decomposition of Rk. �
We now aim towards Proposition 2.13 below. We will often use without men-

tioning the following result which is proved in arbitrary o-minimal expansions of
ordered groups for the case of bounded cells in [2, Chapter 6, (1.7)]. It is remarked
there that the boundedness assumption is necessary. However, in the linear case,
it is not.

Lemma 2.8. For any linear cell C ⊆ Rn, π(cl(C)) = cl(π(C)).

Proof. We do the case C = (f, g)π(C), since the other case is easier. By
continuity of π we have π(cl(C)) ⊆ cl(π(C)). Let a ∈ cl(π(C)) and suppose a 6∈
π(C). We have to find b ∈ cl(C) such that π(b) = a. By curve selection [2,
Chapter 6, (1.5)] there is a continuous definable map γ : (0, ε)→ π(C) such γ(0) :=
limt→0+ γ(t) = a. Now define a continuous definable function λ : (0, ε)→ R by

λ(t) =


(
f(γ(t)) + g(γ(t))

)
/2 if f, g ∈ L(π(C)),

f(γ(t)) + 1 if f ∈ L(π(C)), g = +∞,
g(γ(t))− 1 if f = −∞, g ∈ L(π(C)),

0 if f = −∞, g = +∞.

This gives us continuous definable function β : (0, ε) → C, t 7→ (γ(t), λ(t)). As we
pointed out before, β(0) := limt→0+ β(t) exists and is in π(C). Since π(β(0)) =
γ(0) = a, we are done. �

Lemma 2.9. Let C be a special linear decomposition of Rn, n > 1, D,E ∈ C two
linear cells of the form

D = Γ(f) and E = Γ(g),

where f ∈ L(B), g ∈ L(B′), and A = cl(B) ∩ cl(B′) 6= ∅. Then:

f|A < g|A or f|A = g|A or f|A > g|A.

Proof. Assume not. Then there are points c, d ∈ A, such that f(c) = g(c) and
f(d) 6= g(d). Say, f(d) < g(d). Let F,G ∈ C be special linear cells of the form
F = (h, k)B , G = (l,m)B′ such that

f|A = h|A < k|A and g|A = l|A < m|A.

We next claim that there is a point e ∈ A, such that f(e) < g(e) < k(e).
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g(d)

k(d)

f(d)

k(e)

g(e)

f(e)

k(c)

f(c) = g(c)

If g(d) < k(d), then let e = d. So assume k(d) ≤ g(d). We will choose e to be
“between” c and d. We first see that there is q0 ∈ (0, 1] ∩Q, such that

q0g(d) + (1− q0)g(c) < q0k(d) + (1− q0)k(c)

Indeed, if not, then k(c) ≤ g(c). But g(c) = f(c) < k(c), a contradiction. On the
other hand, since f(d) < g(d) and f(c) = g(c), we have that for every q ∈ (0, 1]∩Q,

qf(d) + (1− q)f(c) < qg(d) + (1− q)g(c).

Hence, if we let e = q0d+ (1− q0)c, we have f(e) < g(e) < k(e), proving our claim.
Now, since f(e) = h(e) and g(e) = l(e), we have h(e) < l(e) < k(e). This

implies that π−1(e)∩ cl(F )∩ cl(G) is infinite, but π−1(e)∩ cl(F ) 6= π−1(e)∩ cl(G),
contradicting the fact that C is special. �

Lemma 2.10. Let C be a special linear decomposition of Rn, n > 1, and D,E ∈ C
such that D ∩ cl(E) 6= ∅. Then:

π(D) ⊆ cl(π(E)) ⇒ D ⊆ cl(E).

Proof. The statement trivially holds if D = E, hence assume D 6= E. Let
E = (f, g)B or E = Γ(f), for some f, g ∈ L∞(B). If D has domain B, then
E = (f, g)B , and D = Γ(f) or D = Γ(g). Hence, D ⊆ cl(E). So now assume that
D has domain B′ = π(D), disjoint from B = π(E), and, for a contradiction, that
B′ ⊆ cl(B) but D 6⊆ cl(E). Let A = cl(B) ∩ cl(B′) 6= ∅.

Case A: D = Γ(g′), for some g′ ∈ L(B′). Then one of the pairs f, g′ or g, g′ must
contradict Lemma 2.9.

Case B: D = (f ′, g′)B′ , for some f ′, g′ ∈ L∞(B). Then, again by Lemma 2.9,
applied to each of the four pairs {f, f ′}, {f, g′}, {g, f ′}, {g, g′} that are involved,
the only remaining possibilities are the following:

f ′|A < g|A < g′|A or f ′|A < f|A < g′|A.

In the first case, let F ∈ C be a linear cell of the form F = (h, k)B , such that

g|A = h|A < k|A.

Then for any c ∈ A, f ′(c) < h(c) < g′(c). This implies that π−1(c) ∩ cl(D) ∩ cl(F )
is infinite, but π−1(c) ∩ cl(D) 6= π−1(c) ∩ cl(F ), contradicting the fact that C is
special. Similarly for the second case. �

Corollary 2.11. Let C be a special linear decomposition of Rn, n > 0, and D,E ∈ C
such that D ∩ cl(E) 6= ∅. Then D ⊆ cl(E).

In particular, C is a stratification of Rn.
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Proof. The statement trivially holds if D = E, hence assume D 6= E. We
work by induction on n. For n = 1, the assumption D ∩ cl(E) 6= ∅ implies that
E is an open interval and D is one of its endpoints. So now assume n > 1.
Clearly, π(D)∩cl(π(E)) 6= ∅ (using Lemma 2.8), and hence by inductive hypothesis,
π(D) ⊆ cl(π(E)). By Lemma 2.10, D ⊆ cl(E). �

Lemma 2.12. Let C be a special linear decomposition of Rn, n > 0. Then, for any
definable X ⊆ Rn, st(X) is open.

Proof. Let x ∈ st(X), and assume that x is not in the interior of st(X). Then
there is a linear cell E ∈ C, E ⊆ Rn \ st(X), such that x ∈ cl(E). We split cases:

Case A: x ∈ X. Then x ∈ X∩cl(E), contradicting the fact that E ⊆ Rn \ st(X).
Case B: x ∈ D, for some linear cell D ∈ C such that X ∩ cl(D) 6= ∅. Hence

x ∈ D∩cl(E) 6= ∅, and thus by Corollary 2.11, D ⊆ cl(E). Therefore cl(D) ⊆ cl(E),
and hence X ∩ cl(E) 6= ∅, contradicting the fact that E ⊆ Rn \ st(X). �

Proposition 2.13. Let C be a special linear decomposition of Rn, n > 0, and
C ∈ C. Then U = st(C) is an open (usual) cell.

Proof. By Lemma 2.12, U is open and thus has dimension n.
Let dim(C) = k ≤ n. If k = n, then U = C and the statement holds trivially.

We may thus assume that k < n. We work by induction on n. If n = 1, then C is
a point and U is an open interval. Now assume that n = k+ 1 and the Claim holds
for k > 0.

Assume first that C is a linear cell in C of dimension k which is the graph of a
linear function h : D → R. Then clearly

st(C) = (f, g)D,

for some f, g ∈ L∞(D) with f < h < g.
In all other cases, dim(π(C)) < dim(π(U)). Since C is a linear decomposition,

for every B ∈ Star(π(C)), π−1(B) ∩ U is a union of linear cells in C which are
either graphs of linear maps, or cylinders between linear maps, with domain B. By
Lemma 2.3(i), U ⊆

⋃
{π−1(B) : B ∈ Star(π(C))}, and hence

U =
⋃
{π−1(B) ∩ U : B ∈ Star(π(C))}.

Since U is open, we easily obtain that for every B ∈ Star(π(C)),

π−1(B) ∩ U = (fB , gB)B ,

for some fB , gB ∈ L∞(B) with fB < gB . Let D = st(π(C)), f =
⋃
B∈Star(π(C)) fB

and g =
⋃
B∈Star(π(C)) gB . Then

U = (f, g)D.

By inductive hypothesis, D is a usual cell. To show that f, g are continuous, we
need to show that for every B,B′ ∈ Star(π(C)), and c ∈ cl(B) ∩ cl(B′),

fB(c) = fB′(c) and gB(c) = gB′(c).

Let H = (h, gB)B be the upper-most linear cell in C contained in (fB , gB)B and
H ′ = (h′, gB′)B′ the upper-most linear cell in C contained in (fB′ , gB′)B′ . By
Corollary 2.11, C ⊆ cl(H) ∩ cl(H ′). Hence, if C = (l,m)A, for some l,m ∈ L(A),
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then π−1(c) ∩ cl(H) ∩ cl(H ′) is infinite. On the other hand, if C = Γ(l) for some
l ∈ L(A), then by Lemma 2.9,

h|A ≤ l and h′|A ≤ l,

and hence π−1(c) ∩ cl(H) ∩ cl(H ′) is again infinite. Since C is special,

h(c) = h′(c) and gB(c) = gB′(c).

Similarly, we can show that fB(c) = fB′(c).
It follows that U = (f, g)D is a cell. �

Corollary 2.14. If R = (R,<, 0,+, {λ}λ∈D) is an ordered vector space over an
ordered division ring D, then every non-empty open definable set is a finite union
of open cells.

Proof. Let X ⊆ Rn be an open definable subset and take C a special linear
decomposition of Rn that partitions X. By Lemma 2.3(ii),

X =
⋃

C∈C, C⊆X

st(C).

Then apply Proposition 2.13. �

3. The semi-bounded non-linear case

We assume in this section that R is semi-bounded and non-linear. So there
exists a definable real closed field 〈I, 0I , 1I ,+I , ·I , <I〉 on some interval I ⊆ R
which, without loss of generality, can be assumed to be of the form I = (−e, e),
0I = 0 and <I is the restriction of < to I. For further details on semi-bounded
o-minimal structures we refer the reader to [3].

In this case, we use the existence of a “short” definable real closed field to adapt
Wilkie’s proof ([14]) in o-minimal expansions of real closed fields. We start with
the following preliminary lemmas:

Lemma 3.1. In a semi-bounded o-minimal expansion R of an ordered group a
definable map f : X → Rn is continuous if and only if its graph Γ(f) is closed in
X ×Rn.

Proof. By [2, Chapter 6, (1.15) Exercise 7], in an o-minimal expansion of an
ordered group a definable map f : X → Rn is continuous if and only if its graph
Γ(f) is closed in X×Rn and f locally bounded. So it suffices to show that in a semi-
bounded o-minimal expansion of an ordered group every definable map f : X → Rn

is locally bounded. Locally bounded means that every a ∈ X has an open definable
neighborhood U in X such that f(U) is bounded. Clearly, every a ∈ X has a
bounded open definable neighborhood U . On the other hand, by [3, Proposition
3.1 (3)], if U is bounded then f(U) is bounded. �

Lemma 3.2 ([14], Lemma 1). Let C be a cell in Rn. Then there exists an open
cell D in Rn with C ⊆ D and a definable retraction H : D → C (i.e. a continuous
map such that H|C = idC).

Lemma 3.3. Let C be a cell in Rn. Suppose that h : C → R is a continuous
definable map and let U be an open definable subset of Rn+1. Suppose further that
Γ(h) ⊆ U . Then there exist definable maps f, g : C → R and cells C1, . . . , Cm ⊆ C
such that:
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(1) f < h < g;
(2) C = C1 ∪ · · · ∪ Cm;
(3) for each i, f|Ci

and g|Ci
are continuous;

(4) for each i, Γ(h|Ci
) ⊆ [f|Ci

, g|Ci
]Ci
⊆ U .

Proof. Since U is open and Γ(h) ⊆ U , by definable choice ([2, Chapter 6, (1.2)]
there exists definable maps f, g : C → R such that f < h < g and [f, g]C ⊆ U. By
cell decomposition, there are cells C1, . . . , Cm ⊆ C covering C such that for each i,
f|Ci

and g|Ci
are continuous. Now the rest is clear. �

The following is also needed:

Lemma 3.4. Let C be a cell in Rn. Suppose that f, g : C → R are continuous
definable maps such that f < g and let V,W ⊆ U be open definable subsets of
Rn+1. Suppose further that (f, g)C ⊆ U , Γ(f) ⊆ V and Γ(g) ⊆ W . Then there
exist definable maps f ′, g′ : C → R and cells C1, . . . , Cm ⊆ C such that:

(1) C = C1 ∪ · · · ∪ Cm;
(2) for each i, f ′|Ci

and g′|Ci
are continuous;

(3) f < f ′ < g′ < g;
(4) for each i, Γ(f ′|Ci

) ⊆ V and Γ(g′|Ci
) ⊆W ;

(5) for each i, (f ′|Ci
, g|Ci

)Ci ⊆ U , (f|Ci
, g′|Ci

)Ci ⊆ U and [f ′|Ci
, g′|Ci

]Ci ⊆ U .

Proof. Since (f, g)C ⊆ U , Γ(f) ⊆ V and Γ(g) ⊆ W and V,W ⊆ U be open
definable subsets of Rn+1, by definable choice ([2, Chapter 6, (1.2)] there exists
definable maps f ′, g′ : C → R such that

(1) f < f ′ < g′ < g;
(2) Γ(f ′) ⊆ V and Γ(g′) ⊆W ;
(3) (f ′, g)C ⊆ U , (f, g′)C ⊆ U and [f ′, g′]C ⊆ U .

By cell decomposition, there are cells C1, . . . , Cm ⊆ C covering C such that for
each i, f|Ci

and g|Ci
are continuous. Now the rest is clear. �

Let d(n)(−,−) denote the usual euclidean distance in Rn, where the arguments
may be either elements or definable subsets of Rn. Also we let π : Rn+1 → Rn be
the projection onto the first n coordinates. We say that an open definable subset
U of Rn+1 has I-short height if for every x ∈ π(U) we have

sup{|t− s| : t, s ∈ Ux} ∈ I
where Ux = {y ∈ R : (x, y) ∈ U}.

We now prove the analogue of [14, Lemma 2] for open definable subsets with
I-short height. The argument of the proof is similar, one just has to observe that
the field operations are used in Wilkie’s proof in a uniform way and only along
fibers. Since in our case our fibers are I-short, such field operations, in the field I,
can also be used in exactly the same way. For completeness we include the details.

Lemma 3.5. Let C be a cell in Rn. Suppose that f, g : C → R are continuous
definable maps such that f < g and let U be an open definable subset of Rn+1 with
I-short height. Suppose further that (f, g)C ⊆ U and that Γ(f) ⊆ U (respectively
Γ(g) ⊆ U). Then there exists an open definable subset V of Rn and continuous
definable maps F,G : V → R such that:

(1) C ⊆ V ;
(2) F|C = f and Γ(F ) ⊆ U (respectively Γ(G) ⊆ U);
(3) G|C = g;
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(4) F < G;
(5) for all x ∈ V and all y ∈ R with F (x) ≤ y < G(x), (respectively F (x) <

y ≤ G(x)), (x, y) ∈ U .

Proof. We prove the unparenthesized statement, the parenthetical one being
similar.

Applying Lemma 3.2 we obtain an open cell D in Rn, with C ⊆ D, and a
continuous definable retraction H : D → C.

Let

V = {x ∈ D : d(n)(x,H(x)) < d(n+1)((x, f ◦H(x)), U c)},
where U c = Rn+1\U. Clearly V is open in Rn and (1) holds since Γ(f) ⊆ U. Putting
F = f ◦H|V we see that (2) holds. Also note that for all x ∈ V , F (x) < g ◦H(x)
and

Jx := [0, g ◦H(x)− F (x)) ⊆ {t ∈ R≥0 : F (x) + t ∈ Ux} ⊆ I
since U has I-short height.

By o-minimality and the fact that Γ(F ) ⊆ U , there are well defined definable
maps z0 : V → I and y0 : V → R given by

z0(x) = sup{t ∈ Jx : [F (x), F (x) + t) ⊆ Ux}
and

y0(x) = F (x) + z0(x).

Now observe that y0 : V → R satisfies the conditions (3), (4) and (5) for G ((3) is
satisfied because (f, g)C ⊆ U , by hypothesis, and f = F|C), but maybe y0 is not
continuous. Thus we need to find a continuous definable map G : V → R such that
F < G ≤ y0 and G|C = y0.

Consider the definable set

S = {(x, y) ∈ Rn+1 : x ∈ V and F (x) ≤ y < g ◦H(x)}

and the definable continuous maps θ1, θ2 : S → I given by

θ1(x, y) = 1I −I (y − F (x)) ·I (g ◦H(x)− F (x))−I1I

where 1I is the neutral element for the multiplication ·I , −I is the diference and
−I1I is inversion in the field I, and,

θ2(x, y) = inf{d(n+1)((x, t), U c) : F (x) ≤ t ≤ y}.

Note that since U has I-short height we do have θ1(S) ⊆ I and θ2(S) ⊆ I.
Fix x ∈ V . Then the continuous definable map (θ1 ·I θ2)(x,−) decreases mono-

tonically and strictly from d(n+1)(x, F (x), U c) to 0I = 0 on [F (x), y0(x)] and is
identically 0I = 0 on [y0(x), g ◦H(x)]. In particular, the restriction (θ1 ·I θ2)(x,−)| :

[F (x), y0(x)]→ [0, d(n+1)(x, F (x), U c)] is injective and so by [2, Chapter 6, (1.12)],
this restriction is a homeomorphism. Since d(n)(x,H(x)) < d(n+1)((x, F (x)), U c)
(by definition of V ), it follows that there is a unique y1(x) ∈ [F (x), y0(x)] such
that (x, y1(x)) ∈ S and d(n)(x,H(x)) = (θ1 ·I θ2)(x, y1(x)). Now observe that
F (x) < y1(x) ≤ y0(x). In fact, if not then F (x) = y1(x) and we obtain (θ1 ·I
θ2)(x, y1(x)) = d(n+1)((x, F (x)), U c) contradicting the fact that d(n)(x,H(x)) <
d(n+1)((x, F (x)), U c).
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Now let G : V → R be given by G(x) = y1(x) for all x ∈ V. Then as we saw
above, G satisfies (3), (4) and (5). On the other hand, by the uniqueness in the
condition determining y1(x), we have

Γ(G) = {(x, y) ∈ V ×R : (x, y) ∈ S, d(n)(x,H(x)) = (θ1 ·I θ2)(x, y)},

showing that Γ(G) is closed in V ×R. By Lemma 3.1, G : V → R is continuous as
required. �

We need one more lemma:

Lemma 3.6. Let C be a cell in Rn. Suppose that f, g : C → R are continuous
definable maps such that f < g and let U be an open definable subset of Rn+1.
Suppose further that [f, g]C ⊆ U . Then there exists an open definable subset W of
Rn and continuous definable maps F,G : W → R such that:

(1) C ⊆W ;
(2) F|C = f and Γ(F ) ⊆ U ;
(3) G|C = g and Γ(G) ⊆ U ;
(4) F < G;
(5) for all x ∈W and all y ∈ R with F (x) ≤ y ≤ G(x), (x, y) ∈ U .

Proof. Applying Lemma 3.2 we obtain an open cell D in Rn, with C ⊆ D, and
a continuous definable retraction H : D → C.

Let W ′ be the intersection of

{x ∈ D : d(n)(x,H(x)) < d(n+1)((x, f ◦H(x)), U c)}

and

{x ∈ D : d(n)(x,H(x)) < d(n+1)((x, g ◦H(x)), U c)}
where U c = Rn+1 \ U. Clearly W ′ is open in Rn and (1) holds for W ′ since
Γ(f),Γ(g) ⊆ U. Also (2) and (3) hold for f ◦H|W ′ and g ◦H|W ′ . Also note that for
all x ∈W ′, f ◦H|W ′(x) < g ◦H|W ′(x) so (4) holds for f ◦H|W ′ and g ◦H|W ′ .

Let B = [f ◦H|W ′ , g ◦H|W ′ ]|W ′ \ U where

[f ◦H|W ′ , g ◦H|W ′ ]|W ′ = {(x, y) ∈W ′ ×R : y ∈ [f ◦H|W ′(x), g ◦H|W ′(x)]},

and let

W = W ′ \ π(B).

Clearly W is open. We now show that C ⊆ W , verifying in this way (1). Suppose

not and let c ∈ C be such that c ∈ π(B). Let ε > 0 be such that E = [c − ε, c +
ε]n ⊆ W ′. By definable choice there is a definable map α : (0, ε) → π(B) ∩ E
such that limt→0+α(t) = c. By replacing ε we may assume that α is continuous.
Again by definable choice, we see that there exists a definable map β : (0, ε) →
B ∩ [f ◦H|E , g ◦H|E ]|E such that π ◦ β = α. By replacing ε we may assume that β
is continuous. Since the definable set B ∩ [f ◦H|E , g ◦H|E ]|E is closed and, by [3,
Proposition 3.1 (3)], β((0, ε)) is bounded, the limit limt→0+β(t) exists in this set. If
d is this limit, then π(d) = c since π◦β = α. So d ∈ [f ◦H|W ′(c), g◦H|W ′(c)]∩B 6= ∅
contradicting the fact that [f ◦H|W ′(c), g ◦H|W ′(c)] = [f(c), g(c)] ⊆ U.

If we put F = f ◦H|W and G = g◦H|W we see that (2), (3) and (4) hold. On the
other hand, if x ∈ W and y ∈ R are such that F (x) ≤ y ≤ G(x) and, by absurd,

(x, y) /∈ U , then (x, y) ∈ B and so x ∈ π(B) ⊆ π(B) contradicting the fact that

x /∈ π(B). Thus (5) also holds. �
Combining Lemmas 3.5 and 3.6 we obtain:
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Lemma 3.7. Let C be a cell in Rn. Suppose that f, g : C → R are continuous
definable maps such that f < g and let U be an open definable subset of Rn+1.
Suppose further that (f, g)C ⊆ U and that Γ(f) ⊆ U (respectively Γ(g) ⊆ U). Then
there exists a cell decomposition C1, . . . , Cl of C and for each i = 1, . . . , l there is
an open definable subset Vi of Rn and continuous definable maps Fi, Gi : Vi → R
such that:

(1) Ci ⊆ Vi;
(2) Fi|Ci

= f|Ci
and Γ(Fi) ⊆ U (respectively Γ(Gi) ⊆ U);

(3) Gi|Ci
= g|Ci

;
(4) F < G;
(5) for all x ∈ Vi and all y ∈ R with Fi(x) ≤ y < Gi(x), (respectively Fi(x) <

y ≤ Gi(x)), (x, y) ∈ U .

Proof. We prove the unparenthesized statement, the parenthetical one being
similar.

Let ε be a positive element in I and define E = (−ε, ε)n+1,

Uf = U ∩ (∪{(x, f(x)) + E : x ∈ C})

and

Ug = U ∩ (∪{(x, g(x)) + E : x ∈ C}).
Then Uf and Ug are open definable subsets of U with I-short height.

Since (f, g)C ⊆ U , Γ(f) ⊆ Uf and Γ(g) ⊆ Ug, by Lemma 3.4, there exist definable
maps f ′, g′ : C → R and cells C1, . . . , Cm ⊆ C such that:

(1) C = C1 ∪ · · · ∪ Cm;
(2) for each i, f ′|Ci

and g′|Ci
are continuous;

(3) f < f ′ < g′ < g;
(4) for each i, Γ(f ′|Ci

) ⊆ Uf and Γ(g′|Ci
) ⊆ Ug;

(5) for each i, (f ′|Ci
, g|Ci

)Ci
⊆ U , (f|Ci

, g′|Ci
)Ci
⊆ U and [f ′|Ci

, g′|Ci
]Ci
⊆ U .

Fix i = 1, . . . ,m. Then we can apply Lemma 3.5 to the data (Uf , f|Ci
, f ′|Ci

)

and obtain the data (Vf , F1, F
′
1) satisfying (1) to (5) of that lemma. Similarly, we

can apply Lemma 3.5 to the data (Ug, g
′
|Ci
, g|Ci

) and obtain the data (Vg, G
′
1, G1)

satisfying (1) to (5) of that lemma. On the other hand, we can apply Lemma 3.6 to
the data (U, f ′|Ci

, g′|Ci
) and obtain the data (W,F ′, G′) satisfying (1) to (5) of that

lemma .
Take Vi = Vf ∩ Vg ∩W and set F = F1|Vi

, G = G1|Ci
. Then clearly (1) to (5)

hold. �
The following is also required:

Lemma 3.8. Let C be a cell in Rn. Suppose that k : C → R is a continuous
definable map and let U be an open definable subset of Rn+1. Suppose further that
(k,+∞)C ⊆ U and Γ(k) ⊆ U (respectively (−∞, k)C ⊆ U and Γ(k) ⊆ U). Then
there exists an open definable subset W of Rn and a continuous definable map
K : W → R such that:

(1) C ⊆W ;
(2) K|C = k and Γ(K) ⊆ U ;
(3) for all x ∈ W and all y ∈ R with K(x) ≤ y (respectively y ≤ K(x)),

(x, y) ∈ U .
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Proof. We prove the unparenthesized statement, the parenthetical one being
similar.

Applying Lemma 3.2 we obtain an open cell D in Rn, with C ⊆ D, and a
continuous definable retraction H : D → C.

Let

W ′ = {x ∈ D : d(n)(x,H(x)) < d(n+1)((x, k ◦H(x)), U c)}
where U c = Rn+1\U. Clearly W ′ is open in Rn and (1) holds for W ′ since Γ(k) ⊆ U .
Also (2) holds for k ◦H|W ′ .

Let B = [k ◦H|W ′ ,+∞)|W ′ \ U where

[k ◦H|W ′ ,+∞)|W ′ = {(x, y) ∈W ′ ×R : k ◦H|W ′(x) ≤ y},

and let

W = W ′ \ π(B).

Clearly W is open. We now show that C ⊆ W , verifying in this way (1). Suppose

not and let c ∈ C be such that c ∈ π(B). Let ε > 0 be such that E = [c − ε, c +
ε]n ⊆ W ′. By definable choice there is a definable map α : (0, ε) → π(B) ∩ E
such that limt→0+α(t) = c. By replacing ε we may assume that α is continuous.
Again by definable choice, we see that there exists a definable map β : (0, ε) →
B ∩ [k ◦ H|E ,+∞)|E such that π ◦ β = α. By replacing ε we may assume that
β is continuous. Since the definable set B ∩ [k ◦H|E ,+∞)|E is closed and, by [3,
Proposition 3.1 (3)], β((0, ε)) is bounded, the limit limt→0+β(t) exists in this set.
If d is this limit, then π(d) = c since π ◦ β = α. So d ∈ [k ◦H|W ′(c),+∞) ∩ B 6= ∅
contradicting the fact that [k ◦H|W ′(c),+∞) = [k(c),+∞) ⊆ U.

If we put K = k ◦H|W we see that (2) holds. On the other hand, if x ∈W and
y ∈ R are such that K(x) ≤ y and, by absurd, (x, y) /∈ U , then (x, y) ∈ B and so

x ∈ π(B) ⊆ π(B) contradicting the fact that x /∈ π(B). Thus (3) also holds. �

Corollary 3.9. If R = (R,<, 0,+, {λ}λ∈D, {B}B∈B) is a semi-bounded non-linear
o-minimal expansion of an ordered group, then every non-empty open definable set
is a finite union of open cells.

Proof. This is done by induction on the dimension of the open definable set.
For dimension one this is clear. Let U be an open definable subset of Rn+1. Let D
be a cell decomposition of Rn+1 partitioning U . Clearly it is enough to show that
each cell D ∈ D with D ⊆ U can be covered by finitely many open cells (in Rn+1)
each of which is contained in U .

Case A: D = (f, g)C for some cell C in Rn and continuous definable maps
f, g : C → R such that f < g.

Let f ′ = 2f+g
3 and g′ = f+2g

3 . Then f ′, g′ : C → R are continuous definable
maps such that

• f < f ′ < g′ < g;
• Γ(f ′) ⊆ U and Γ(g′) ⊆ U ;
• (f ′, g)C ⊆ U and (f, g′)C ⊆ U .

Then we can apply Lemma 3.7 to the data (C,U, f, g′) and obtain the data (Ci, Vi, Fi, G
′
i)

with i = 1, . . . , l satisfying (1) to (5) of that lemma. By the inductive hypothesis
there exists a finite collection Ai of open cell in Rn contained in Vi which cover
Vi. By (4) and (5) of Lemma 3.7, for each A ∈ Ai, (Fi|A, G

′
i|A)A is an open cell

in Rn+1 contained in U , and by (1), (2) and (3) of that lemma, (f|Ci
, g′|Ci

)Ci ⊆
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∪{(Fi|A, G′i|A)A : A ∈ Ai}. Thus (f, g′)C ⊆ ∪{(Fi|A, G′i|A)A : A ∈ Ai and i =

1, . . . , l}.
Similarly, applying the parenthetical statement in Lemma 3.7 to the data (C,U, f ′, g),

we see that (f ′, g)C can be covered by finitely many open cells in Rn+1 each of which
is contained in U . Hence the same is true for (f, g)C = (f, g′)C ∪ (f ′, g)C .

Case B: D = Γ(h) for some continuous definable map h : C → R where C is a
cell in Rn. This case reduces to Case A above by Lemma 3.3.

Case C: D = (k,+∞)C (respectively D = (−∞, k)C) for some cell C in Rn and
continuous definable map k : C → R.

Then we can apply Lemma 3.8 to the data (C,U, k) and obtain the data (C,W,K)
satisfying (1) to (3) of that lemma. By the inductive hypothesis there exists a finite
collection A of open cell in Rn contained in W which cover W . By (3) of Lemma
3.8, for each A ∈ A, (K|A,+∞)A is an open cell in Rn+1 contained in U , and by
(1) and (2) of that lemma, (k|C ,+∞)C ⊆ ∪{(K|A,+∞)A : A ∈ A}.

Similarly for the case D = (−∞, k)C . �
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