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Abstract. In this paper we study locally definable manifolds and we prove:

(i) the existence of universal locally definable covering maps; (ii) invariance
results for locally definable covering maps, o-minimal fundamental groups and

fundamental groupoids; (iii) monodromy equivalence for locally constant o-

minimal sheaves; (iv) classification results for locally definable covering maps;
(v) o-minimal Hurewicz and Seifert - van Kampen theorems.

1. Introduction

We fix an arbitrary o-minimal expansion R = 〈R,<, 0,+, . . .〉 of an ordered
group. By “(locally) definable” we mean “(locally) definable in R, possibly with
parameters”. We work in the category of locally definable manifolds with mor-
phisms the locally definable continuous maps. Locally definable manifolds properly
generalize the definable manifolds (see Section 2). For background on basic o-
minimality we refer the reader to [9] for the definable setting and to [3] for the
locally definable setting. For algebraic topology relevant to this paper, the reader
should see [8], [22] and [23], for example.

The first main results of the paper are:

Theorem 1.1. Let X be a definably connected Lindelöf locally definable manifold.
Then the o-minimal fundamental group π1(X) of X is countable. In fact, if X is
definable, then π1(X) is finitely generated.

Theorem 1.2. Let X be a definably connected locally definable manifold. Then
there exists a universal locally definable covering map u : U → X. Moreover, if X
is Lindelöf (resp. paracompact), then U is also Lindelöf (resp. paracompact).

Similar results were known before only in o-minimal expansions of real closed
fields: in [4] Berarducci and Otero prove that the o-minimal fundamental group of
a definable set is finitely generated; in [3] Baro and Otero prove the existence of
o-minimal locally definable universal covers; in [6] Delfs and Knebusch prove the
existence of locally semi-algebraic universal covers. Note also that in [13] the first
two authors proved versions of the above theorems for definably connected locally
definable groups. See also [20] and [21] for the special case of definable groups when
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R is linear. For background on locally definable groups we refer the reader to [10],
[11], [13] and [25].

In this paper we also prove the following invariance results for both the universal
locally definable covering map and the o-minimal fundamental group of a definably
connected locally definable manifold:

Theorem 1.3. Let J be an elementary extension of R or an o-minimal expansion
of R. Let X be a definably connected locally definable manifold. Then the following
hold:

(1) A universal locally J -definable covering map of X is J -definably homeo-
morphic to a universal locally definable covering map of X.

(2) The o-minimal fundamental group of X in J is isomorphic to the o-minimal
fundamental group of X in R.

Similarly, we have:

Theorem 1.4. Suppose that R is an o-minimal expansion of the ordered group of
real numbers. Let X be a definably connected locally definable manifold. Then the
following hold:

(1) A topological universal covering map of X is topologically homeomorphic to
the o-minimal universal locally definable covering map of X.

(2) The topological fundamental group of X is isomorphic to the o-minimal
fundamental group of X.

Analogues of these invariance results for o-minimal fundamental groups were
proved before only for definable sets (resp. regular paracompact locally definable
spaces) in o-minimal expansions of real closed fields in [4] and also [2] (resp. [3]).
Versions of these invariance results for locally definable covering homomorphisms
were proved before in [16].

The theorems above are generalizations to locally definable manifolds in arbitrary
o-minimal expansions of ordered groups of the corresponding results by Baro and
Otero ([3]) in o-minimal expansions of fields, which in turn are generalizations of
similar results by Delfs and Knebusch ([6] and [7]) for locally semi-algebraic spaces.
In the context of o-minimal expansions of fields or in the semi-algebraic context
these results are consequences of o-minimal triangulation theorems [9] and [3] and
the semi-algebraic triangulation theorem [7]. In our more general context, Theorems
1.1 and 1.2 are based on the following generalization of a result of Wilkie [27] on
covering non-empty bounded open definable sets by finitely many open cells in o-
minimal expansions of real closed fields: in a semi-bounded o-minimal expansion of
an ordered group every non-empty open definable set is a finite union of open cells
([14]).

As we saw in Theorem 1.4 when R is an o-minimal expansion of the ordered
group of real numbers, for definably connected locally definable manifolds, the the-
ory developed in this paper coincides with the classical theory of topological cov-
ering maps ([22]). However, one should point out that, in an arbitrary o-minimal
expansion R of an ordered group, the theory of topological covering maps is in some
sense useless. In fact in that situation, if R is non archimedean, then all definably
connected locally definable manifolds are, with their natural topology, totally dis-
connected spaces and so have no non trivial covering spaces. Our Theorem 1.2
shows that it is possible to find a suitable replacement of the theory of topological
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covering maps which in the archimedean case coincides with the classical theory
and moreover it is preserved under elementary extensions (Theorem 1.3). As it
is known developing these algebraic topology tools in the o-minimal context has
proved to be very useful for example in the theory of definable groups ([17]).

In this paper we also obtain the monodromy equivalence for locally constant
o-minimal sheaves (in an arbitrary o-minimal expansion R of an ordered group):

Theorem 1.5. Let X be a locally definable manifold and let J be one of the cate-
gories: the category of sets; the category of G-torsors for a given discrete group G;
the category of k-modules over a ring k. Then the monodromy functor

µ : LCShJ(Xdef)→ Fct(Π1(X),J)

is an equivalence between the category of locally constant J-sheaves on the o-minimal
site Xdef on X and the category of representations of the o-minimal fundamental
groupoid Π1(X) of X in J.

From Theorem 1.5 we obtain several classification results for locally definable
covering maps. See Subsection 4.3. As a consequence of these classification results
for locally definable covering maps we obtain o-minimal Hurewicz and Seifert - van
Kampen theorems. Analogues of the o-minimal Hurewicz and Seifert - van Kampen
theorems for definable sets in o-minimal expansions of fields were proved before in
[17] and [4] respectively.

Structure of the paper.
In Section 2 we introduce preliminary notions and results about locally defin-

able covering maps, o-minimal fundamental groups and o-minimal fundamental
groupoids.

In Section 3 we prove the results on o-minimal fundamental groups and universal
locally definable covering maps (Theorems 1.1, 1.2, 1.3 and 1.4). In Section 4 we
prove the rest of the results of the paper namely: the monodromy equivalence
for locally constant o-minimal sheaves, classification results for locally definable
covering maps and o-minimal Hurewicz and Seifert - van Kampen theorems. In
Section 5 we observe that all our results can be generalized to other categories of
locally definable spaces in arbitrary o-minimal structures by pointing out exactly
what is required in the proofs.

Acknowledgement: The third author wishes to thanks Pietro Polesello for
his useful comments.

2. Locally definable covering maps

This section contains general results and useful facts about locally definable
covering maps. The results of the Subsection 2.1 hold in any o-minimal structure
while those of Subsections 2.2 and 2.3 are related to o-minimal fundamental groups
and fundamental groupoids and locally definable covering maps and so hold in o-
minimal expansions of ordered groups. These results generalize the corresponding
results for definable covering maps in o-minimal expansions of real closed fields that
appear in [17].

2.1. Locally definable covering maps. Here we introduce some terminology and
prove some preliminary results that will be useful later.
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A locally definable manifold (of dimension n) is a triple (S, (Ui, θi)i≤κ) where:

• S =
⋃
i≤κ Ui;

• each θi : Ui → Rn is an injection such that θi(Ui) is an open definable
subset of Rn;
• for all i, j, θi(Ui ∩ Uj) is an open definable subset of θi(Ui) and the tran-

sition maps θij : θi(Ui ∩ Uj) → θj(Ui ∩ Uj) : x 7→ θj(θ
−1
i (x)) are definable

homeomorphisms.

We call the (Ui, θi)’s the definable charts of S. If κ < ℵ0 then S is a definable
manifold.

A locally definable manifold S has a topology such that each Ui is open and the
θi’s are homeomorphisms: a subset U of S is open in this topology if and only if
for each i, θi(U ∩ Ui) is an open definable subset of θi(Ui).

We say that a subset A of S is definable if and only if there is a finite I0 ⊆ κ such
that A ⊆

⋃
i∈I0 Ui and for each i ∈ I0, θi(A ∩ Ui) is a definable subset of θi(Ui).

A subset B of S is locally definable if and only if for each i, B ∩ Ui is a definable
subset of S. We say that a locally definable manifold S is definably connected if
it is not the disjoint union of two open and closed locally definable subsets. Note
that in [6] and [3] “definably connected” is called “connected”, but here prefer to
make the distinction since often, e.g. when R is non-standard, definably connected
locally definable manifolds are totally disconnected topological spaces.

Let U = {Uα}α∈I be a cover of S by open locally definable subsets. We say that
U is: (i) admissible if for each i ≤ κ, the cover {Uα ∩ Ui}α∈I of Ui admits a finite
subcover; (ii) locally finite if for each i ≤ κ, the set {α ∈ I : Uα ∩ Ui 6= ∅} is finite.
If V = {Vβ}β∈J is another cover of S by open locally definable subsets, we say that
V refines U , denoted by V ≤ U , if there is a map ε : J → I such that Vβ ⊆ Uε(β)

for all β ∈ J .

We say that a locally definable manifold S is Lindelöf if there exists an admissible
cover of S by countably many open definable subsets.

The following observation is immediate:

Remark 2.1. A locally definable manifold S is Lindelöf if and only if every ad-
missible cover of S by open locally definable subsets admits a refinement by an
admissible cover of S by countably many open definable subsets. In particular, S
is Lindelöf if and only if S has countably many definable charts.

The locally semi-algebraic analogue of Remark 2.1 is [7, Chapter I, Proposition
4.16]. Note also that by Remark 2.1 what is called “locally definable manifold” in
the paper [16] corresponds exactly to Lindelöf locally definable manifolds.

We say that a locally definable manifold S is paracompact if there exists a locally
finite (necessarily admissible) cover of S by open definable subsets.

The following observation is immediate:

Remark 2.2. A locally definable manifold S is paracompact if and only if every
admissible cover of S by open locally definable subsets admits a refinement by
a locally finite (necessarily admissible) cover of S by open definable subsets. In
particular, S is paracompact if and only if S has a locally finite family of definable
charts.
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The locally semi-algebraic analogue of Remark 2.1 is [7, Chapter I, Proposition
4.5]. And the locally semi-algebraic analogue of the next easy remark is [7, Chapter
I, Theorem 4.17]

Remark 2.3. A definably connected, paracompact locally definable manifold S is
Lindelöf.

The above remarks are also mentioned in [3] where as in the locally semi-algebraic
case ([6] and [7]) the notions of Lindelöf and paracompact play a more significant
role then in this paper. We refer the reader to those papers for concrete examples
of locally definable manifolds with or without these properties.

A map f : X → Y between locally definable manifolds with definable charts
(Ui, θi)i≤κX and (Vj , δj)j≤κY respectively is a locally definable map if for every
finite I ⊆ κX there is a finite J ⊆ κY such that:

• f(
⋃
i∈I Ui) ⊆

⋃
j∈J Vj ;

• the restriction f| :
⋃
i∈I Ui →

⋃
j∈J Vj is a definable map between definable

manifolds, i.e., for each i ∈ I and every j ∈ J , δj ◦ f ◦ θ−1
i : θi(Ui)→ δj(Vj)

is a definable map between definable sets.

Thus we have the category of locally definable manifolds with locally definable
continuous maps.

Remark 2.4. Let f : X → Y be a locally definable continuous map, D ⊆ Y a
locally definable subset of Y and V = {Vβ}β∈J an admissible cover of Y by open
locally definable subsets. Then

• f−1(D) is a locally definable subset of X.
• f−1V = {f−1(Vβ)}β∈J is an admissible cover of X by open locally definable

subsets.

Indeed, if (Ui, θi) is a definable chart ofX, then f−1(D)∩Ui = (f|Ui)
−1(f|Ui(Ui)∩D)

is definable since f|Ui : Ui → f(Ui) is definable and f|Ui(Ui) ∩D is also definable;

on the other hand the cover {f−1(Vβ)∩Ui}β∈J of Ui admits a finite subcover since
it is {(f|Ui)−1(f|Ui(Ui)∩Vβ)}β∈J and the cover {f|Ui(Ui)∩Vβ)}β∈J of the definable
subset f|Ui(Ui) admits a finite subcover.

Given a locally definable manifold S, a locally definable manifold X and an
admissible cover U = {Uα}α∈I of S by open definable subsets, we say that a con-
tinuous surjective locally definable map pX : X → S is a locally definable covering
map trivial over U = {Uα}α∈I if the following hold:

• p−1
X (Uα) =

⊔
i≤λα U

i
α a disjoint union of open definable subsets of X;

• each pX|Uiα : U iα → Uα is a definable homeomorphism.

A locally definable covering map pX : X → S is a locally definable covering map
trivial over some admissible cover U = {Uα}α∈I of S by open definable subsets.

We say that two locally definable covering maps pX : X → S and pY : Y → S
are locally definably homeomorphic if there is a locally definable homeomorphism
F : X → Y such that:

• pX = pY ◦ F.
Such F : X → Y is called a locally definable covering homeomorphism.
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A locally definable covering map pX : X → S is trivial if it is locally definably
homeomorphic to a locally definable covering map S ×M → S : (s,m) 7→ s for
some set M.

Remark 2.5. If pX : X → S is a locally definable covering map trivial over
U = {Uα}α∈I with S definably connected, then there exists a fixed λ such that:

• p−1
X (Uα) =

⊔
i≤λ U

i
α (a disjoint union) of open definable subsets of X;

• each pX|Uiα : U iα → Uα is a definable homeomorphism.

Remark 2.6. By Remark 2.1 what is called “locally definable covering map” in
the paper [16] corresponds exactly to locally definable covering maps pX : X → S
between Lindelöf locally definable manifolds with S definably connected. These
assumptions play no role in the proofs of that paper. Thus we will often use the
results from [16] in the more general setting of this paper.

Let D ⊆ Rm be a definable subset and Y a locally definable manifold with
definable charts (Vj , δj)j≤κ. We say that a map f : D → Y is a definable map if
there is a finite J ⊆ κ such that:

• f(D) ⊆
⋃
j∈J Vj ;

• f : D →
⋃
j∈J Vj is a definable map.

A definable map f : D → Y between a definable subset of Rm and a locally definable
manifold Y is continuous if it is continuous when we put on D the induced topology
from Rm.

Let pY : Y → T be a locally definable covering map, X be a locally definable
manifold and let f : X → T be a locally definable map. A lifting of f is a contin-

uous map f̃ : X → Y such that pY ◦ f̃ = f . Note that a lifting of a continuous
locally definable map need not be a locally definable map.

The proof of the following two lemmas can be easily be recovered adapting the
results of [13], Section 2.

Lemma 2.7. A locally definable covering map pX : X → S is a continuous open
surjection.

Lemma 2.8. Suppose that X is a locally definable manifold. Let pY : Y → T
be a locally definable covering map and let f, g : X → Y be two continuous locally
definable maps such that pY ◦f = pY ◦g. If X is definably connected and f(x) = g(x)
for some x ∈ X, then f = g.

2.2. Fundamental group and fundamental groupoid. Here we recall the def-
initions of o-minimal fundamental groupoid and o-minimal fundamental group and
prove their basic properties.

Let X be a locally definable manifold. A path α : [0, p] → X is a continuous
definable map. A path α : [0, p] → X is constant if α(0) = α(t) for all t ∈ [0, p].
A path α : [0, p] → X is a definable loop if α(0) = α(p). The inverse of a path
α : [0, p] → X is the path α−1 : [0, p] → X given by α−1(t) = α(p − t) for all
t ∈ [0, p]. A concatenation of two paths γ : [0, p] → X and δ : [0, q] → X with
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γ(p) = δ(0) is a path γ · δ : [0, p+ q]→ X with:

(γ · δ)(t) =

 γ(t) if t ∈ [0, p]

δ(t− p) if t ∈ [p, p+ q].

We say that X is definably path connected if for every u, v in X there is a definable
path α : [0, q]→ X such that α(0) = u and α(q) = v.

Lemma 2.9. Let X be a locally definable manifold. Then X is definably connected
if and only if X is definably path connected. In fact, for any definably connected
definable subset D of X there is a uniformly definable family of definable paths in
D connecting a given fixed point in D to any other point in D.

Proof. Suppose that X is definably connected with definable charts (Xi, θi)i∈I
each of which can be assumed without loss of generality to be definably connected.
Then any definably connected definable subset D of X is contained in an open
definably connected definable submanifold

⋃
i∈I0 Xi of X. Clearly, if each definable

connected component of each Xi∩D (i ∈ I0) is uniformly definable path connected,
then so is D. Thus we have to show that for each i ∈ I0, every definable connected
definable subset C of Xi is uniformly definably path connected or equivalently,
that every definable connected definable subset of θi(Xi) ⊆ RdimX is uniformly
definably path connected. But this follows from by [9, Chapter 6, (3.2)] and its
proof. The converse is immediate. �

Remark 2.10. The previous proof is similar to [13, Lemma 2.10] but in [13] the
argument uses group structure.

Let X be a locally definable manifold. Given two definable continuous maps
f, g : Y ⊆ Rm → X, we say that a definable continuous map F (t, s) : Y ×[0, q]→ X
is a definable homotopy between f and g if f = F0 and g = Fq, where ∀s ∈ [0, q],
Fs := F (·, s). In this situation we say that f and g are definably homotopic, denoted
f ∼ g.

Two definable paths γ : [0, p] → X, δ : [0, q] → X, with γ(0) = δ(0) and
γ(p) = δ(q), are called definably homotopic if there is some t0 ∈ [0,min{p, q}], and
a definable homotopy F (t, s) : [0,max{p, q}] × [0, r] → X, for some r > 0 in R,
between

γ|[0,t0] · c · γ|[t0,p] and δ (if p ≤ q), or

δ|[0,t0] · d · δ|[t0,q] and γ (if q ≤ p).
where c(t) = γ(t0) and d(t) = δ(t0) are the constant definable paths with domain
[0, |p− q|].

Clearly, any two constant definable loops at the same point c ∈ X are definably
homotopic. We will thus write εc for the constant definable loop at c without
specifying its domain.

Let X be a locally definable manifold and x0, x1 ∈ X. If P(X,x0, x1) denotes
the set of all definable paths in X that start at x0 and end at x1, the restriction
of ∼, the relation of being definably homotopic, to P(X,x0, x1)×P(X,x0, x1) is an
equivalence relation on P(X,x0, x1).

If L(X, eX) denotes the set of all definable loops that start and end at a fixed
element eX of X (i.e. L(X, eX) = P(X, eX , eX)), the restriction of ∼ to L(X, eX)×
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L(X, eX) is an equivalence relation on L(X, eX). We define the o-minimal funda-
mental group π1(X, eX) of X by

π1(X, eX) := L(X, eX)/ ∼
and we set [γ] := the class of γ ∈ L(X, eX). Note that π1(X, eX) is indeed a group
with group operation given by [γ][δ] = [γ · δ]. Also this group depends on the
topology on X.

If f : X → Y is a locally definable continuous map between two locally definable
manifolds with eX ∈ X and eY ∈ Y such that f(eX) = eY , then we have an induced
homomorphism f∗ : π1(X, eX)→ π1(Y, eY ) : [σ] 7→ [f ◦ σ] with the usual functorial
properties.

We define the o-minimal fundamental groupoid Π1(X) of X to be the small
category Π1(X) given by

Ob(Π1(X)) = X,
HomΠ1(X)(x0, x1) = P(X,x0, x1)/ ∼ .

We set [γ] := the class of γ ∈ P(X,x0, x1). Note that Π1(X) is indeed a groupoid
with operations HomΠ1(X)(x0, x1) × HomΠ1(X)(x1, x2) → HomΠ1(X)(x0, x2) given
by [δ] ◦ [γ] = [γ · δ].

Note that if x ∈ X, then P(X,x, x) = L(X,x) and so

π1(X,x) = HomΠ1(X)(X,x, x).

If X is a locally definable manifold and x ∈ X, we define Π1(X,x) to be the
category given by

Ob(Π1(X,x)) = {x},
HomΠ1(X,x)(x, x) = π1(X,x).

If f : X → Y is a locally definable continuous map between locally definable man-
ifolds, then we have an induced functor f∗ : Π1(X)→ Π1(Y ) which is a morphism
of groupoids sending the object x ∈ X to the object f(x) ∈ Y and a morphism [γ]
of Π1(X) to the morphism [f ◦ γ] of Π1(Y ).

Lemma 2.11. Let X and Y be locally definable manifolds. Then

(1) If X is definably connected then the natural functor Π1(X,x) → Π1(X) is
an equivalence for every x ∈ X.

(2) The natural functor Π1(X × Y ) → Π1(X) × Π1(Y ) given by projection is
an equivalence.

Proof. (1) The functor Π1(X,x) → Π1(X) sends the object x of Π1(X,x) to
the object x of Π1(X) and sends a morphism of Π1(X,x) represented by a definable
loop at x to the morphim of Π1(X) represented by the same definable loop at x.
By definition this morphism is fully faithfull. By Lemma 2.9, X is definably path
connected, and so every object of Π1(X) is isomorphic to the object x. So the
functor is also essentially surjective. Therefore, it is an equivalence.

(2) The functor Π1(X × Y )→ Π1(X)×Π1(Y ) sends a morphism of Π1(X × Y )
represented by a definable path ρ in X × Y to the morphism of Π1(X) × Π1(Y )
represented in each coordinate by the definable paths q1 ◦ ρ in X and q2 ◦ ρ in Y
where q1 and q2 are the projections onto X and Y , respectively. This functor is an
isomorphism with inverse given by the functor Π1(X)×Π1(Y )→ Π1(X × Y ) that
sends the object (x, y) of Π1(X) × Π1(Y ) to the object (x, y) of Π1(X × Y ) and
sends a morphism of Π1(X)×Π1(Y ) represented by a pair of definable paths γ in
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X and δ in Y to the morphism of Π1(X × Y ) represented by the definable path in
X × Y with coordinates γ and δ. �

Corollary 2.12. Let X and Y be locally definable manifolds with eX ∈ X and
eY ∈ Y . Then

(1) If X is definably connected then π1(X, eX) ' π1(X,x) for every x ∈ X.
(2) π1(X, eX)× π1(Y, eY ) ' π1(X × Y, (eX , eY )).

Notation: As usual for a definably connected locally definable manifold X if there
is no need to mention a base point eX ∈ X, then by Corollary 2.12 (1), we may
denote π1(X, eX) by π1(X).

2.3. Locally definable covering maps and fundamental groups. Below we
introduce the crucial results relating the o-minimal fundamental groups and the
locally definable covering maps. These results have analogues in the classical theory
of topological covering maps and once we prove the locally definable analogue of
the crucial lemma (Lemma 2.13) the remaining proofs are similar and so we omit
them and refer reader to [22] or to [17], Section 2 for the definable case.

Lemma 2.13. Suppose that pX : X → S is a locally definable covering map. Then
the following hold.

(1) Let γ : [0, p] → X be a definable path in S and x ∈ X. If pX(x) = γ(0),
then there is a unique definable path γ̃ : [0, p] → X in X, lifting γ, such
that γ̃(0) = x.

(2) Suppose that F : [0, p] × [0, r] → X is a definable homotopy between the
definable paths γ and σ in S. Let γ̃ be a definable path in X lifting γ.

Then there is a unique definable lifting F̃ : [0, p] × [0, r] → X of F , which
is a definable homotopy between γ̃ and σ̃, where σ̃ is a definable path in X
lifting σ.

Proof. The proof can be obtained adapting the results of [17], Section 2. Let
U = {Uα}α∈I be an admissible cover of S by open definable subsets over which
pX : X → S is trivial.

(1) Let L ⊆ I be a finite subset such that γ([0, p]) ⊆
⋃
l∈LUl. Then [0, p] ⊆⋃

l∈L γ
−1(Ul), with the γ−1(Ul)’s open in [0, p]. Then, by [9, Chapter 6, (3.6)], for

each l ∈ L there is a Wl ⊂ [0, p], open in [0, p] such that Wl ⊂ Wl ⊂ γ−1(Ul) and
[0, p] ⊆

⋃
l∈LWl. Therefore, there are 0 = s0 < s1 < · · · < sr = p such that for each

i = 0, . . . , r−1 we have γ([si, si+1]) ⊂ Ul(i) (and γ(si+1) ∈ Ul(i)∩Ul(i+1)). Lift γ1 =

γ|[0,s1] to γ̃1, with γ̃1(0) = x, using the definable homeomorphism pi0|Ul(0) : U i0l(0) →
Ul(0), where U i0l(0) is the definable connected component of p−1(Ul(0)) in which x

lays. Repeat the process for each γi+1 = γ|[si,si+1] with γ̃i(si) (intead of x). Patch
the liftings together. Uniqueness follows (in each step) from Lemma 2.8.

(2) Let L ⊆ I be a finite subset such that F ([0, p] × [0, r]) ⊆
⋃
l∈LUl. Then

[0, p] × [0, r] ⊆
⋃
l∈L F

−1(Ul), with the F−1(Ul)’s open in [0, p] × [0, r]. Then, by
[9, Chapter 6, (3.6)], we have that for each l ∈ L there is a Wl ⊂ [0, p]× [0, r], open
in [0, p] × [0, r] such that Wl ⊂ Wl ⊂ F−1(Ul) and [0, p] × [0, r] ⊆

⋃
l∈LWl. Now

take a cell decomposition of R2 compatible with the Wl’s. This cell decomposition
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induce a cell decomposition (0 = t0 < t1 < · · · < tr = p) of [0, p]. For each two-
dimensional cell C and each s ∈ L such that C ⊂ Ws, we have F (C) ⊂ Us and
for any two-dimensional cells C1 and C2 in [0, p] × [0, r], and for each s1, s2 ∈ L
such that C1 ⊂ Ws1 and C2 ⊂ Ws2 we also have F (C1 ∩ C2) ⊂ Us1 ∩ Us2 . Now
we proceed as above lifting each F|C using the relevant definable homeomorphism

and then patching the liftings together (as in the classical case but working with
the two–dimensional cells instead of rectangles); we start with the closure of the
bottom two–dimensional cell above (t0, t1) and continue with the rest of the two-
dimensional cells above (t0, t1), patching the liftings together; then we consider the
next column of two-dimensional cells above (t1, t2) and we continue this way until
we finish with the whole rectangle.

As above, uniqueness follows from Lemma 2.8. �

Notation: If γ : [0, q]→ S is a definable path in S and x ∈ X, we denote by x ∗ γ
the final point γ̃(q) of the lifting γ̃ of γ with initial point γ̃(0) = x.

As a consequence of Lemma 2.13 we have

Corollary 2.14. Suppose that pX : X → S is a locally definable covering map with
eS ∈ S and eX ∈ X such that pX(eX) = eS . Then the following hold.

(1) If σ is a definable loop in S that starts and ends at eS, then eX = eX ∗ σ if
and only if [σ] ∈ pX∗(π1(X, eX)).

(2) If σ and σ′ are two definable paths in S from eS to s, then eX ∗σ = eX ∗σ′
if and only if [σ · σ′−1] ∈ pX∗(π1(X, eX)).

Here is an immediate consequence of Lemma 2.13 and Corollary 2.14:

Remark 2.15. Suppose that pX : X → S is a locally definable covering map.
Then, for each s ∈ S, there is a well defined right action

p−1
X (s)× π1(S, s)→ p−1

X (s) : (x, [σ]) 7→ x ∗ σ
such that the subgroup that acts trivially on a point x ∈ p−1

X (s) is pX∗(π1(X,x)).
If X is definably connected, then this action is transitive. So in this case, for a
fixed x ∈ p−1

X (s) there is a canonical bijection

π1(S, s)/pX∗(π1(X,x)) ' p−1
X (s).

If S is definably connected, then the action is transitive if and only if X is definably
connected.

We obtain from Lemma 2.13 the following result:

Lemma 2.16. Let p : X → S be a locally definable covering map. Then p∗ :
Π1(X)→ Π1(S) is a faithful morphism and essentially surjective.

Proof. Let [σ], [τ ] ∈ HomΠ1(X)(x0, x1) and suppose that we have [p ◦ σ] =
[p ◦ τ ] ∈ HomΠ1(S)(p(x0), p(x1)). By Lemma 2.13 a definable homotopy between
p ◦ σ and p ◦ τ lifts uniquely to a definable homotopy between σ (the unique lifting
of p◦σ starting at x0) and τ (the unique lifting of p◦ τ starting at x0). So [σ] = [τ ]
as required. Since p is surjective, then p∗ is essentially surjective. �

Corollary 2.17. Let pX : X → S be a locally definable covering map with eS ∈ S
and eX ∈ X such that pX(eX) = eS. Then pX∗ : π1(X, eX) → π1(S, eS) is an
injective homomorphism.
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We end this section with a necessary and sufficient condition for the existence
of liftings of continuous locally definable maps.

Proposition 2.18. Suppose pX : X → S is a locally definable covering map with S
definably connected. Let Y be a definably connected locally definable manifold and
f : Y → S a continuous locally definable map. Let eS ∈ S, eX ∈ X and eY ∈ Y
be such that pX(eX) = f(eY ) = eS . Then there is a continuous locally definable

map f̃ : Y → X with pX ◦ f̃ = f and f̃(eY ) = eX if and only if f∗(π1(Y, eY )) ⊆
pX∗(π1(X, eX)). Such a lifting f̃ , when it exists, is unique.

Proof. The necessity is clear from the functoriality of o-minimal fundamental
groups, and the uniqueness follows from Lemma 2.8. The main point is to see that

the lifting f̃ is locally definable.
Let U = {Uα}α∈I be an admissible cover of S by open definably connected,

definable subsets over which pX : X → S is trivial. So for each α ∈ I, p−1
X (Uα) =⊔

i≤λα U
i
α and pX|Uiα : U iα → Uα is a definable homeomorphism. For each α ∈ I, let

{V lα : l ∈ Lα} be the definably connected components of f−1(Uα). For all α ∈ I,
l ∈ Lα, choose ylα ∈ V lα such that if eY ∈ V lα then eY = ylα, and, by Lemma 2.9, let
ηlα be a definable path in Y from eY to ylα. Since each V lα is definably connected,
by Lemma 2.9 there is a uniformly definable family {γlα(w) : w ∈ V lα} of definable
paths in V lα from ylα to w. For w ∈ V lα, let δlα(w) be the definable path ηlα · γlα(w)
from eY to w. Let σlα(w) = f ◦ δlα(w). Then σlα(w) is a definable path from eS to

f(w). Set f̃(w) = eX ∗ σlα(w).
If w ∈ V lα∩V kβ then we have another definable path δkβ(w) from eY to w obtained

from V kβ , and f ◦ (δkβ(w) · (δlα(w))−1) = σkβ(w) · (σlα(w))−1 is a definable path from

eS to eS . By hypothesis, [σkβ(w) · (σlα(w))−1] ∈ f∗(π1(Y, eY )) ⊆ pX∗(π1(X, eX))

and by Corollary 2.14 (2), eX ∗ σlα(w) = eX ∗ σkβ(w) and so f̃ is well defined. Note

that the same argument shows that f̃ does not depend on the choice of the points
ylα ∈ V lα or of the definable paths ηlα. Furthermore, by construction, we clearly
have

f̃(eY ) = eX and pX ◦ f̃ = f.

We now show that f̃ is a locally definable continuous map. For this it is enough

to show that each restriction f̃|V lα is a definable continuous map. But for w ∈ V lα,

we have f̃(w) = eX ∗ σlα(w) which is the endpoint of the lifting σ̃lα(w) of σlα(w)

starting at eX . Since σlα(w) = (f ◦ηlα)·(f ◦γlα(w)), f̃(w) is the endpoint of the lifting

˜f ◦ γlα(w) of f ◦ γlα(w) starting at the endpoint f̃ ◦ ηlα(qηlα) of the lifting f̃ ◦ ηlα of

f ◦ ηlα starting at eX . Note that since f ◦ ηlα(qηlα) = f(ylα) ∈ Uα, there exists i such

that f̃ ◦ ηlα(qηlα) = eX ∗ (f ◦ ηlα) ∈ U iα. Furthermore, for each w ∈ V lα, the lifting

˜f ◦ γlα(w) of f ◦γlα(w) starting at f̃ ◦ ηlα(qηlα) is contained in this U iα (since f ◦γlα(w)

is contained in Uα and by Lemma 2.13 the lifting ˜f ◦ γlα(w) : [0, qγlα(w)]→ p−1
X (Uα),

where qγlα(w) is the end point of the domain of γlα(w), is continuous). Therefore,

by uniqueness of such a lifting (Lemma 2.13),

f̃|V lα(w) = (p−1
X|Uiα

◦ (f ◦ γlα(w)))(qγlα(w))

= p−1
X|Uiα

◦ f(w)
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and the restriction f̃|V lα is a definable continuous map as required. �
Proposition 2.18 implies the following result

Corollary 2.19. Suppose pX : X → S and pY : Y → S are locally definable
covering maps with X,Y and S definably connected. Let eS ∈ S, eX ∈ X and
eY ∈ Y be such that pX(eX) = pY (eY ) = eS . If pY ∗(π1(Y, eY )) = pX∗(π1(X, eX)),
then there is a locally definable homeomorphism φ : Y → X with pX ◦ φ = pY and
φ(eY ) = eX .

As an immediate consequence of Corollary 2.19 we have

Corollary 2.20. Suppose pX : X → S is locally definable covering map with
S definably connected and π1(S) = 1. Then pX : X → S is locally definably
homeomorphic to a trivial locally definable covering map.

3. O-minimal fundamental groups and universal covering maps

Here we prove one of the main results of the paper: (i) the existence of universal
locally definable covering maps; (ii) invariance results for locally definable covering
maps, o-minimal fundamental groups and o-minimal fundamental groupoids.

3.1. The o-minimal fundamental group. In this Subsection we will prove The-
orem 1.1.

We start with the following fundamental result concerning the topology of locally
definable manifolds, which is central to all our applications:

Proposition 3.1. Let X be a locally definable manifold. Then there is an admis-
sible cover {Os}s∈S of X by open definably connected definable subsets such that:

• {Os}s∈S refines the definable charts of X;
• for each s ∈ S, Os is definably homeomorphic to an open cell in RdimX , in

particular, the o-minimal fundamental group π1(Os) is trivial.

Proof. If (Xi, θi)i∈I are the definable charts of X, then it is enough to show that
each Xi has a finite cover {Os}s∈Si by open definably connected definable subsets
each of which is definably homeomorphic to an open cell in RdimX . Equivalently
it is enough to show that each θi(Xi) which is an open definable subset of RdimX

has a finite cover by open definably connected definable subsets each of which is
definably homeomorphic to an open cell in RdimX . There are two cases to consider:

(i) R is an o-minimal expansion of a real closed field. Then we may replace
θi(Xi) by a definably homeomorphic copy and assume that θi(Xi) is a
bounded open definable subset of RdimX . In this situation, by [27], θi(Xi)
is a finite union of open cells; Alternatively in this case one could also use
the covers by proper sub-balls constructed in [5] or [12].

(ii) R is semi-bounded. Then by [14] and [1] we have that θi(Xi) is a finite
union of open cells;

The proof of [13, Proposition 3.3] shows that open cells in RdimX have triv-
ial o-minimal fundamental groups. Therefore, the same is true for the o-minimal
fundamental group of each Os. �

By Remark 2.1 and the proof of Proposition 3.1 we have:
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Remark 3.2. Let X be a Lindelöf locally definable manifold. Then there is a
countable admissible cover {Os}s∈S of X by open definably connected definable
subsets such that:

• {Os}s∈S refines the definable charts of X;
• for each s ∈ S, Os is definably homeomorphic to an open cell in RdimX , in

particular, π1(Os) = 1.

The proof of [13, Proposition 3.3] shows also that open cells in RdimX have trivial
topological fundamental groups. Thus by Proposition 3.1 we have:

Remark 3.3. Suppose that R is an o-minimal expansion of the ordered group of
real numbers. Let X be a locally definable manifold. Then there is an admissible
cover {Os}s∈S of X by open definably connected definable subsets such that:

• {Os}s∈S refines the definable charts of X;
• for each s ∈ S, Os is definably homeomorphic to an open cell in RdimX , in

particular, Os is connected and the topological fundamental group πtop
1 (Os)

is trivial.

Proof of Theorem 1.1: Let X be a definably connected Lindelöf locally definable
manifold with eX ∈ X.

Consider the countable admissible cover {Os}s∈S of X by open definably con-
nected, definably simply connected definable subsets given by Proposition 3.1 and
Remark 3.2. For each pair of distinct elements s, t ∈ S such that Os ∩ Ot 6= ∅
choose a point as,t ∈ Os ∩ Ot. For each pair (as,t, as′,t′) of distinct points and
l ∈ {s, t} ∩ {s′, t′} let σls,t,s′,t′ be a definable path in Ol from as,t to as′,t′ . Also, for

each as,t such that eX ∈ Os, let σseX ,s,t (respectively, σseX ,s,t) be a definable path
in Os from eX to as,t (respectively, from as,t to eX).

Let Σ be the countable collection of all definable paths σls,t,s′,t′ , σ
s
eX ,s,t and

σseX ,s,t as above. Let K be the possibly infinite but countable simplicial complex
of dimension one whose vertices are the end points of the definable paths in Σ
and whose edges are the images of the definable paths in Σ. Clearly we have a
homomorphism π1(|K|, eX) → π1(X, eX) which sends an edge loop in K into the
definable loop it determines in X. This is well defined since if two edge loops are
homotopic in |K| then they are obviously definable homotopic in X. We now show
that this homomorphism is surjective. Since the free group with generators set Σ
is countable (it is a countable union of countable sets), π1(|K|, eX) is a countable
group and hence so is π1(X, eX) as required.

Let γ : [0, p] → X be a definable loop in X at eX . Then since {Os}s∈S is
an admissible cover of X there exists a finite subset L ⊆ S such that γ([0, p]) ⊆⋃
l∈LOl. Then [0, p] ⊆

⋃
l∈L γ

−1(Ol), with the γ−1(Ol)’s open in [0, p]. Then, by
[9, Chapter 6, (3.6)], for each l ∈ L there is a Wl ⊂ [0, p], open in [0, p] such that
Wl ⊂ Wl ⊂ γ−1(Ol) and [0, p] ⊆

⋃
l∈LWl. Therefore, there are 0 = s0 < s1 <

· · · < sr = p such that for each i = 0, . . . , r − 1 we have γ([si, si+1]) ⊂ Ol(i) (and
γ(si+1) ∈ Ol(i) ∩ Ol(i+1)). Thus γ = γ0 · · · · · · · γr−1 where γi = γ|[si,si+1]. For
i = 0, . . . , r − 1, let εi be a definable path in Ol(i) from al(i),l(i+1) to γi(si+1) and
let δi+1 be a definable path in Ol(i+1) from al(i),l(i+1) to γi+1(si+1). Let σ0 be the

definable path σ
l(0)
eX ,l(0),l(1) in Ol(0) and let σl(r) be the definable path σ

l(r)
eX ,l(r−1),l(r) in

Ol(r). Finally, for i = 1, . . . , r− 1, let σl(i) be the definable path σ
l(i)
l(i−1),l(i),l(i),l(i+1)
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in Ol(i). Since by Proposition 3.1, π1(Ol(j)) = 1 for all j = 0, . . . , r, we have that

σ0 is definably homotopic to γ0 · ε−1
0 , σr is definably homotopic to δr · γr and, for

each i = 1, . . . , r− 1, σi is definably homotopic to δi · γi · ε−1
i . Hence, γ is definably

homotopic to σ0 · σ1 · · · · · σr as required.
Since π1(|K|, eX) is countable, π1(X, eX) is also countable. IfX is definable, then

K is finite simplicial complex of dimension one and as explained in [8, Chapter 3,
Subsection 3.5.3], the fundamental group of a (finite) simplicial complex is finitely
generated. Hence π1(X, eX) is also finitely generated. �

3.2. The universal locally definable covering map. In this Subsection we will
prove the existence of universal locally definable covering maps (Theorem 1.2).

Theorem 1.2 will be a consequence of the following stronger result:

Theorem 3.4. Let X be a definably connected locally definable manifold with eX ∈
X. For every subgroup L ≤ π1(X), eX there exists a locally definable covering
map vL : VL → X with eVL ∈ VL, VL definably connected, vL(eVL) = eX and
vL∗(π1(VL, eVL)) = L. Moreover, if X is Lindelöf (resp. paracompact), then VL is
also Lindelöf (resp. paracompact).

Proof. This result was showed in [6, Theorem 5.11] in the semialgraic case and
in [3, Fact 6.13] in o-minimal expansions of fields. By Proposition 3.1 one can do a
similar proof which we include for the readers convinience.

Given two definable paths σ : [0, qσ]→ X and λ : [0, qλ]→ X in X, we put σ ' λ
if and only if σ(0) = λ(0) = eX , σ(qσ) = λ(qλ) and [σ · λ−1] ∈ L ≤ π1(X, eX). The
relation ' is an equivalence relation and we denote the equivalence class of σ under
' by 〈σ〉.

Let V := {〈σ〉 : σ is a definable path in X such that σ(0) = eX} and consider the
well defined surjective map v : V → X : 〈σ〉 7→ σ(qσ). We will show that v : V → X
is a locally definable covering map. Consider the admissible cover {Os}s∈S of X
by open definably connected, definably simply connected definable subsets given
by Proposition 3.1. For each s ∈ S, we have v−1(Os) = {〈σ〉 : σ is a definable path
in X such that σ(0) = eX and σ(qσ) ∈ Os}. For each s ∈ S fix a definable path
σs : [0, qs] → X such that σs(0) = eX and σs(qs) ∈ Os. Furthermore, assume also
that if eX ∈ Os, then σs = εeX (the trivial definable path at eX).

Claim 3.5. There is a well-defined bijection

φs : v−1(Os)→ Os × π1(X, eX)/L : 〈λ〉 7→ (λ(qλ), L[λ · η · σ−1
s ]),

where η : [0, qη]→ Os is a definable path in Os such that η(0) = λ(qλ) and η(qη) =
σs(qs).

Proof. Clearly, φs is well-defined, i.e. it does not depend on the choice of η
since π1(Os) = 1 (Proposition 3.1) and for 〈λ〉 = 〈λ′〉 we have λ(qλ) = λ(qλ′) and

L[λ · η · σ−1
s ] = L[λ · λ′−1 · λ′ · η · σ−1

s ]
= L[λ · λ′−1][λ′ · η · σ−1

s ]
= L[λ′ · η · σ−1

s ].

Also, for o ∈ Os and L[γ] ∈ π1(X, eX)/L we have φs(〈λ〉) = (o, L[γ]) for λ =
γ · σs · η−1, where η : [0, qη] → X is a definable path in Os such that η(0) = o
and η(qη) = σs(qs). Thus φs is surjective. On the other hand, suppose that
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φs(〈λ〉) = φs(〈λ′〉). Then λ(qλ) = λ′(qλ′) and L[λ · η · σ−1
s ] = L[λ′ · η′ · σ−1

s ].
Therefore [λ′ · η′ · σ−1

s ][λ · η · σ−1
s ]−1 ∈ L. But we also have

[λ′ · η′ · σ−1
s ][λ · η · σ−1

s ]−1 = [λ′ · η′ · σ−1
s ][σs · η−1 · λ−1]

= [λ′ · η · σ−1
s ][σs · η−1 · λ−1]

= [λ′ · λ−1]

(the fact π1(Os) = 1 (Proposition 3.1) implies that η and η′ are definably homotopic
and so λ′ ·η ·σ−1

s is definably homotopic to λ′ ·η′ ·σ−1
s ). Thus we have [λ ·λ′−1] ∈ L,

〈λ〉 = 〈λ′〉 and φs is injective. �

For each s ∈ S and L[γ] ∈ π1(X, eX)/L, set O
L[γ]
s := φ−1

s (Os × {L[γ]}). Then
by Claim 3.5 and its proof we have, for each s ∈ S,

• v−1(Os) =
⊔
L[γ]∈π1(X,eX)/LO

L[γ]
s ;

• each v|OL[γ]
s

: O
L[γ]
s → Os is a bijection.

By [16, Lemma 2.1 (1)] (see Remark 2.6), it follows that there exists a locally
definable manifold structure on V of dimension n := dimX such that v : V → X
is a locally definable covering map trivial over O = {Os}s∈S .

Note also that if eV := 〈εeX 〉 ∈ V (the equivalence class of the trivial definable
loop at eX), then v(eV ) = eX .

Claim 3.6. Let 〈λ〉 ∈ V with λ : [0, qλ] → X a definable path in X such that

λ(0) = eX . Then the unique continuous definable lifting λ̃ : [0, qλ]→ V of λ starting

at eV satisfies λ̃(q) = 〈λ|[0,q]〉 for all q ∈ [0, qλ]. In particular, V is definably path
connected and v∗(π1(V, eV )) = L ≤ π1(X, eX).

Proof. For q ∈ [0, qλ] let λq : [0, q] → X be the definable path in X given by

λq = λ|[0,q]. Note that λ0 = εeX and λqλ = λ. Let λ̃ : [0, qλ] → V be the unique

continuous definable lifting of λ starting at eV . So λ̃(0) = eV and v ◦ λ̃ = λ. We

have to show that λ̃(q) = 〈λq〉 for all q ∈ [0, qλ].
Since λ is a definable path and {Os}s∈S is an admissible cover of X by open

definable subsets, there exists points 0 = q0 < q1 < · · · < qk < qk+1 = qλ such
that for each j = 0, . . . , k, we have λ([qj , qj+1]) ⊆ Os(j) for some s(j) ∈ S. Since

λ̃ : [0, qλ]→ V is continuous, we have:

(1) If λ̃(qj) ∈ OL[γ]
s then λ̃(q) ∈ OL[γ]

s for all q ∈ [qj , qj+1].

On the other hand, we also have that:

(2) If 〈λqj 〉 ∈ O
L[δ]
s then 〈λq〉 ∈ OL[δ]

s for all q ∈ [qj , qj+1].

Indeed, for every q ∈ [qj , qj+1] we have L[δ] = L[λqj ·η1 ·σ−1
s ] = L[λq ·η2 ·σ−1

s ] since
if δ : [0, q−qj ]→ X is the definable path given by δ(t) = λ(qj + t), then λq = λqj ·δ
and δ · η2 is definably homotopic to η1 since π1(Os) = 1 (Proposition 3.1).

Now note that since v(λ̃(q)) = λ(q) = v(〈λq〉), we have λ̃(q) = 〈λq〉 if and only if

whenever λ(q) ∈ Os then both λ̃(q) and 〈λq〉 belong to the same O
L[γ]
s . But since

eV = 〈εeX 〉 ∈ O
L[εeX ]

s(0) and λ̃(0) = eV and λ0 = εeX , by (1) and (2) above we obtain

λ̃(q) = 〈λq〉 for all q ∈ [0, qλ] as required. �
From Claim 3.6, it follows in particular that V is definably path connected and so

by Lemma 2.9, V is definably connected. It remains to show that v∗(π1(V, eV )) = L.

By Lemma 2.13, any definable loop δ in V at eV is the unique lifting λ̃ of a definable
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loop λ = v ◦ δ in X at eX . By Claim 3.6, 〈εeX 〉 = eV = 〈λ〉. This implies that

[λ] ∈ L and so v∗([λ̃]) = [λ] ∈ L. Conversely, if [λ] ∈ L, then 〈εeX 〉 = eV = 〈λ〉 and

by Claim 3.6, [λ̃] ∈ π1(V, eV ) and [λ] = v∗([λ̃]) ∈ v∗(π1(V, eV )).
By construction and Remarks 2.1 and 3.2 (resp. Remark 2.2), if X is Lindelöf

(resp. paracompact), then V is also Lindelöf (resp. paracompact). �

By Lemma 2.8 and Theorem 3.4 we have:

Remark 3.7. Let p : Y → X be a locally definable covering map with eX ∈ X,
eY ∈ Y and p(eY ) = eX . If X and Y are definably connected, then p : Y → X is
locally definably isomorphic to a locally definable covering map vL : VL → X with
eVL ∈ VL as constructed in Theorem 3.4.

Let X be a definably connected locally definable manifold with eX ∈ X. A
locally definable covering map u : U → X with U is definable connected is a called
a universal locally definable covering map if:

• For every locally definable covering map p : Y → X with Y is definably
connected, there exists a locally definable covering map q : U → Y such
that u = p ◦ q.
• u : U → X is unique up to locally definable covering homeomorphisms

fixing the base points with the above universal property.

From Remark 3.7 we immediately obtain:

Remark 3.8. Let X be a definably connected locally definable manifold with
eX ∈ X. A locally definable covering map u : U → X with eU ∈ U , U definable
connected and u(eU ) = eX is a universal locally definable covering map if and only
if π1(U, eU ) = 1.

Proof of Theorem 1.2: LetX be a definably connected locally definable manifold.
If we fix eX ∈ X and take L = 1 in Theorem 3.4 we get a locally definable
covering map u : U → X with eU ∈ U , U is definable connected, u(eU ) = eX and
u∗(π1(U, eU )) = 1. Since by Lemma 2.17 the induced homomorphism is injective we
have π1(U, eU ) ' u∗(π1(U, eU )) = 1 and so the result follows from Remark 3.8. �

3.3. Regular locally definable covering maps. Let pX : X → S be a locally
definable covering map. The group of locally definable covering homeomorphisms
is AutpX (X/S) = {φ : X → X : φ is a locally definable homeomorphism such that
pX = pX ◦ φ}. (We often omit the subscript pX if it is clear from the context).
Note that if we put on Aut(X/S) the discrete topology, then we have a continuous
locally definable action

Aut(X/S)×X → X : x 7→ φ(x)

which induces an action on each fiber

Aut(X/S)× p−1
X (s)→ p−1

X (s)

where s ∈ S.
We say that a locally definable covering map pX : X → S with X and S definably

connected is regular if the action of Aut(X/S) on each fiber p−1
X (s) is transitive i.e.

for any x1, x2 ∈ p−1
X (s) there is φ ∈ Aut(X/S) such that φ(x1) = x2. Since X is
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definably connected, by Lemma 2.8 such φ is unique. Thus, pX : X → S is regular
if and only if for each x ∈ X the induces map

Aut(X/S)→ X : φ 7→ φ(x)

is a bijection.
As usual, given a subgroup L of a group G, we denote by NG(L) = {g ∈ G :

gL = Lg} the normalizer of L in G.
We have the following useful characterization of regular locally definable covering

maps.

Theorem 3.9. Let X be a definably connected locally definable manifold with eX ∈
X. If p : Y → X is a locally definable covering map with eY ∈ Y , Y definably
connected and p(eY ) = eX then there exists a canonical isomorphism

Nπ1(X,eX)(p∗(π1(Y, eY )))/p∗(π1(Y ))→ Aut(Y/X).

Moreover, p : Y → X is regular if and only if p∗(π1(Y, eY ))E π1(X, eX).

For the proof of this result we first require a couple of lemmas.

Lemma 3.10. Let X be a definably connected locally definable manifold, eX ∈ X,
L ≤ π1(X, eX) and vL : VL → X the corresponding locally definable covering map
with eVL ∈ VL and vL∗(π1(VL, eVL)) = L. For each [δ] ∈ π1(X, eX) the map

φ[δ] : VL → VL

given by φ[δ](〈λ〉) := 〈δ ·λ〉 is well defined if and only if [δ] ∈ Nπ1(X,eX)(L). Further-
more, for every [δ] ∈ Nπ1(X,eX)(L) the map φ[δ] : VL → VL is a continuous locally
definable map and we have:

• vL ◦ φ[δ] = vL;
• φ[δ] is a locally definable homeomorphism with inverse φ[δ]−1 ;
• φ[δ1][δ2] = φ[δ1] ◦ φ[δ2] for every [δ1], [δ2] ∈ Nπ1(X,eX)(L).

Proof. The map φ[δ] : VL → VL is well defined if and only if 〈δ · λ〉 = 〈δ′ · λ′〉
whenever 〈λ〉 = 〈λ′〉 and [δ] = [δ′]. Suppose the map is well defined. Then for all
[λ] ∈ L, we have 〈λ〉 = 〈εeX 〉 and so 〈δ · λ〉 = 〈δ〉 i.e., [δ][λ][δ]−1 = [δ · λ · δ−1] ∈ L.
Hence [δ]L[δ]−1 ⊆ L i.e., [δ] ∈ Nπ1(X,eX)(L). Conversely, if [δ] ∈ Nπ1(X,eX)(L), then
whenever 〈λ〉 = 〈λ′〉 and [δ] = [δ′] we have

[λ′ · λ−1] ∈ L ⇒ [δ][λ′ · λ−1][δ]−1 ∈ [δ]L[δ]−1 ⊆ L
⇒ [δ′][λ′ · λ−1][δ]−1 ∈ L
⇒ [δ′ · λ′ · (δ · λ)−1] ∈ L
⇒ 〈δ · λ〉 = 〈δ′ · λ′〉

and φ[δ] : VL → VL is well defined.
Now let [δ], [δ1], [δ2] ∈ Nπ1(X,eX)(L). Then it is clear from the definition that:

• vL ◦ φ[δ] = vL;
• φ[δ] is a bijection with inverse φ[δ−1];
• φ[δ1][δ2] = φ[δ1] ◦ φ[δ2].

It remains to show that φ[δ] : VL → VL is a continuous locally definable map.

For s ∈ S and L[γ] ∈ π1(X, eX)/L fix 〈λ0〉 ∈ O
L[γ]
s (with the notation from the

proof of Theorem 3.4). We claim first that for any other 〈λ〉 ∈ O
L[γ]
s we can

assume that λ = λ0 · σ for some σ : [0, qσ] → Os such that σ(0) = vL(〈λ0〉) and

σ(qσ) = vL(〈λ〉). In fact, since O
L[γ]
s is definably path connected, there is a definable
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path σ̃ : [0, qσ̃]→ O
L[γ]
s such that σ̃(0) = 〈λ0〉 and σ̃(qσ̃) = 〈λ〉, now take σ = vL◦σ̃.

Then the unique continuous definable lifting of λ0 · σ starting at eVL is λ̃0 · σ̃ and
by Claim 3.6, its endpoint is 〈λ0 · σ〉 = 〈λ〉.

Now observe that we have L[λ0 · η0 · σ−1
s ] = L[γ] = L[λ · η · σ−1

s ] for any other

〈λ〉 ∈ OL[γ]
s . Moreover, if λ = λ0 · σ as above, then we can take η = σ−1 · η0 and

obtain
L[δ · λ · η · σ−1

s ] = L[δ · (λ0 · σ) · (σ−1 · η0) · σ−1
s ]

= L[δ · λ0 · η0 · σ−1
s ].

Thus, if [γ′] := [δ · λ0 · η0 · σ−1
s ] ∈ π1(X, eX), then φ

[δ]|OL[γ]
s

: O
L[γ]
s → O

L[γ′]
s

is a bijection with inverse φ
[δ−1]|OL[γ′]

s
. Since vL ◦ φ[δ] = vL we have φ

[δ]|OL[γ]
s

=

(v
L|OL[γ′]

s
)−1 ◦ v

L|OL[γ]
s

and so φ[δ] : VL → VL is a continuous locally definable map

as required. �

Lemma 3.11. Let X be a definably connected locally definable manifold, eX ∈ X,
L ≤ π1(X, eX) and vL : VL → X the corresponding locally definable covering map
with eVL ∈ VL and vL∗(π1(VL, eVL)) = L. There exists a canonical continuous
locally definable action

Nπ1(X,eX)(L)/L× VL → VL

given by L[δ]〈λ〉 := φ[δ](〈λ〉) = 〈δ · λ〉, where on Nπ1(X,eX)(L) we put the discrete
topology. Furthermore, there exists a canonical isomorphism

Nπ1(X,eX)(L)/L→ Aut(VL/X)

and vL : VL → X is regular if and only if LE π1(X, eX).

Proof. First we show that the map Nπ1(X,eX)(L)/L× VL → VL is well defined.
But

L[δ] = L[δ′] ∧ 〈λ〉 = 〈λ′〉 ⇒ [δ′]L = L[δ] ∧ [λ′ · λ−1] ∈ L
⇒ [δ′]L[δ]−1 = L ∧ [λ′ · λ−1] ∈ L
⇒ [δ′ · λ′ · λ−1 · δ−1] ∈ L
⇒ [(δ′ · λ′) · (δ · λ)−1] ∈ L
⇒ 〈δ′ · λ′〉 = 〈δ · λ〉
⇒ L[δ′]〈λ′〉 = L[δ]〈λ〉.

By Lemma 3.10 the mapNπ1(X,eX)(L)/L×VL → VL is a continuous locally definable
map and so it remains to show that it is an action. But

•
L[δ2](L[δ1]〈λ〉) = L[δ2]〈δ1 · λ〉

= 〈δ2 · (δ1 · λ)〉
= 〈(δ2 · δ1) · λ〉
= L[δ2 · δ1]〈λ〉
= (L[δ2] · [δ1])〈λ〉
= (L[δ2] · L[δ1])〈λ〉

since [δ2]L = L[δ2] because [δ2] ∈ Nπ1(X,eX)(L).
•

L[εeX ]〈λ〉 = 〈εeX · λ〉
= 〈λ〉.

• For a fixed L[δ] ∈ Nπ1(X,eX)(L)/L, the map VL → VL : 〈λ〉 7→ L[δ]〈λ〉 =
φ[δ](〈λ〉) is a bijection by Lemma 3.10.
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By Lemma 3.10 we have a canonical homomorphism

Nπ1(X,eX)(L)→ Aut(VL/X) : [σ] 7→ φ[σ]

whose kernel is clearly L. So we must show that this homomorphism is surjective.
Take φ ∈ Aut(VL/X). Then φ is determined by φ(eVL) (by Lemma 2.8). (Recall
that eVL := 〈εeX 〉). Let 〈δ〉 := φ(eVL) = φ(〈εeX 〉). Note that 〈δ〉 ∈ v−1

L (eX)

(because φ acts on v−1
L (eX)) and by Claim 3.6 〈δ〉 is the endpoint of the unique

continuous definable lifting δ̃ of δ starting at eVL . So [δ] ∈ π1(X, eX). We have
to show that [δ] ∈ Nπ1(X,eX)(L) since that implies that φ[δ] is well defined, and
since φ(〈εeX 〉) = 〈δ〉 = φ[δ](〈εeX 〉), we obtain from Lemma 2.8 that φ = φ[δ]. Take
[λ] ∈ L. Then 〈εeX 〉 = 〈λ〉 and by Claim 3.6 the unique continuous definable lifting

λ̃ of λ starting at eVL is a definable loop at eVL (since 〈λ〉 is its endpoint). Since

vL ◦ φ = vL, φ ◦ λ̃ is the unique continuous definable lifting of λ starting at 〈δ〉
and it is a definable loop at 〈δ〉. Altogether this means that the unique continuous

definable lifting of δ ·λ·δ−1 starting at eVL is δ̃ ·φ◦λ̃· δ̃−1 which is a definable loop at
eVL . Hence, by Corollary 2.14 (1), [δ][λ][δ]−1 = [δ · λ · δ−1] ∈ L = vL∗(π1(VL, eVL))
as required.

Suppose that vL : VL → X is regular. Let [δ] ∈ π1(X, eX). Then 〈δ〉 ∈ v−1
L (eX)

and there is a unique φ ∈ Aut(VL/X) such that 〈δ〉 = φ(〈εeX 〉). By the above
[δ] ∈ Nπ1(X,eX)(L) and so π1(X, eX) = Nπ1(X,eX)(L). Conversely, suppose that

L E π1(X, eX). Let 〈δ〉 ∈ v−1
L (eX). Then [δ] ∈ π1(X, eX) = Nπ1(X,eX)(L), so

φ[δ] ∈ Aut(VL/X) and 〈δ〉 = φ[δ](〈εeX 〉). So the action of Aut(VL/X) on v−1
L (eX)

is transitive and since eX is arbitrary the same is true for the action on any other
fiber. �

Proof of Theorem 3.9: This now follows at once from Remark 3.7 and Lemma
3.11. �

3.4. The invariance results. In this Subsection we prove the invariance results
for the universal locally definable covering map, the o-minimal fundamental group
and the o-minimal fundamental groupoid.

By Proposition 3.1, Corollary 2.20 together with [16, Corollary 2.2] (see Remark
2.6) we have:

Remark 3.12. Let K be a reduct of R which is still an o-minimal expansion of
an ordered group or an elementary substructure of R. Let X be a K-definably
connected locally K-definable manifold defined without parameters and p : Y → X
a locally definable covering map. Let also {Os}s∈S be an admissible cover of X by
open K-definably connected K-definable subsets defined without parameters given
by Proposition 3.1. Then p : Y → X is locally definably homeomorphic to a locally
K-definable covering map trivial over {Os}s∈S .

By Proposition 3.1 , Corollary 2.20 together with [16, Corollary 2.3] (see Remark
2.6) we have:

Remark 3.13. Suppose that R is an o-minimal expansion of the ordered group of
real numbers. Let X be a definably connected locally definable manifold defined
without parameters and p : Y → X a topological covering map. Let also {Os}s∈S
be an admissible cover of X by open definably connected definable subsets defined
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without parameters given by Proposition 3.1. Then p : Y → X is topologically
homeomorphic to a locally definable covering map trivial over {Os}s∈S .

We also have the following converse of both Remarks 3.12 and 3.13:

Remark 3.14. Let K be a reduct of R which is still an o-minimal expansion of
an ordered group or an elementary substructure of R. Suppose pX : X → S is a
locally K-definable covering map defined without parameters with S and X both
K-definably connected. Then pX : X → S is a locally definable covering map
defined without parameters with S and X definably connected.

That pX : X → S is a locally definable covering map defined without parameters
is clear we just need to verify that S and X are also definably connected. Let
U = {Uα}α∈I be an admissible cover of S by open K-definably connected, K-
definable subsets defined without parameters over which pX : X → S is trivial.
So for each α ∈ I, p−1

X (Uα) =
⊔
i≤λ U

i
α and pX|Uiα : U iα → Uα is a K-definable

homeomorphism. Since, by cell decomposition, for K-definable sets defined without
parameters K-definably connected is the same as definably connected, using the sets
Uα’s and U iα’s the result follows.

Remark 3.15. Let R be an o-minimal expansion of the set of real numbers. Sup-
pose pX : X → S is a locally definable covering map defined with S and X both
definably connected. Then pX : X → S is a topological covering map with S and
X connected.

That pX : X → S is a topological covering map is clear we just need to verify that
S and X are also connected. Let U = {Uα}α∈I be an admissible cover of S by open
definably connected, definable subsets over which pX : X → S is trivial. So for each
α ∈ I, p−1

X (Uα) =
⊔
i≤λ U

i
α and pX|Uiα : U iα → Uα is a definable homeomorphism.

Since, by cell decomposition, for definable sets definably connected is the same as
connected, using the sets Uα’s and U iα’s the result follows.

Proof of Theorem 1.3: Suppose J is an elementary extension of R or an o-
minimal expansion ofR. Let X be a definably connected locally definable manifold.

Fix eX ∈ X. Clearly X(J) is a J -definable manifold. Consider the admissi-
ble cover {Os}s∈S of X by open definably connected definable subsets given by
Proposition 3.1. Using the J -definably connectedness of the Os(J)’s and the defin-
able connectedness of X it follows that X(J) is J -definably connected. Therefore,
by Theorem 1.2, X(J) has a universal locally J -definable covering map which is
by Remark 3.12, up to locally J -definably covering homeomorphism, of the form
wJ : W (J) → X(J) where w : W → X is a locally definable covering map, with
W definably connected, eW ∈ W and w(eW ) = eX . In particular, W (J) is also
J -definably connected and by Remark 3.8, we also have πJ1 (W (J), eW ) = 1.

Let u : U → X be a universal locally definable map with U definably connected,
eU ∈ U and u(eU ) = eX . By Remark 3.8, π1(U, eU ) = 1. Also there exists a locally
definable covering map q : U →W such that

U

u
""

q // W

w

��
X

is a commutative diagram and q(eU ) = eW . By Remark 3.14, uJ : U(J) →
X(J) and qJ : U(J) → W (J) are also locally J -definable covering maps. Since
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πJ1 (U(J), eU ) ' (qJ)∗(π
J
1 (U(J), eU )) ≤ πJ1 (W (J), eW ) = 1 (Corollary 2.17), by

Remark 3.8, uJ : U(J) → X(J) is a universal locally J -definable covering map.
Therefore, uJ : U(J) → X(J) and wJ : W (J) → X(J) are locally J -definably
homeomorphic as required.

We now show that the inclusion homomorphism

Aut(U/X)→ AutJ (U(J)/X(J)) : ϕ 7→ ϕJ

is an isomorphism. This homomorphism is clearly injective and it is surjective
since the elements of Aut(U/X) (resp. of AutJ (U(J)/X(J))) are determined by
their value at eU ∈ u−1(eX) ⊆ U (resp. eU ∈ (uJX)−1(eX) ⊆ U(J)) (Lemma
2.8), (uJ)−1(eX) = (u−1(eX))(J) = u−1(eX) and u : U → X is regular (Theo-
rem 3.9). By Theorem 3.9 we have π1(X, eX) ' Aut(U/X) and πJ1 (X(J), eX) '
AutJ (U(J)/X(J)). Therefore, π1(X, eX) ' πJ1 (X(J), eX). �

Proof of Theorem 1.4: Suppose that R is an o-minimal expansion of the ordered
group of real numbers. Let X a definably connected locally definable manifold.

Fix eX ∈ X. Clearly X is a topological manifold. Consider the admissible cover
{Os}s∈S of X by open definably connected definable subsets given by Proposition
3.1. Using the connectedness of the Os’s and the definable connectedness of X
it follows that X is connected. Applying Proposition 3.1 to an open definable
neighborhood and using the definable connectedness of the corresponding Os’s and
Lemma 2.9 it follows that X is locally path connected. We also have that X is
semilocally simply connected (i.e. every point has a neighborhood, namely some
Os, such that every loop in the neighborhood is homotopic in X to a constant
path). Therefore, by [22, Theorem 13.20], X has a topological universal covering
map which is, by Remark 3.13, up to topological covering homeomorphism, a locally
definable covering map w : W → X with W connected, eW ∈W and w(eW ) = eX .

Let u : U → X be a universal locally definable map with U connected, eU ∈ U
and u(eU ) = eX . By Remark 3.8, π1(U, eU ) = 1. Also then there exists is a locally
definable covering map q : U →W such that

U

u
""

q // W

w

��
X

is a commutative diagram and q(eU ) = eW . By Remark 3.15, u : U → X and q :

U → W are also topological covering maps. Since πtop
1 (U, eU ) ' q∗(π

top
1 (U, eU )) ≤

πtop
1 (W, eW ) = 1 ([22, Lemma 13.1]), by the definition of topological universal

covering map on [22, page 186], u : U → X is a topological universal covering map.
Therefore, u : U → X and w : W → X are topologically homeomorphic by [22,
Corollary 13.6] as required.

We now show that the inclusion homomorphism

Aut(U/X)→ Auttop(U/X) : ϕ 7→ ϕ

is an isomorphism. This homomorphism is clearly injective and it is surjective since
the elements of Aut(U/X) (resp. of Auttop(U/X)) are determined by their value
at eU ∈ u−1(eX) ⊆ U (Lemma 2.8) (resp. [22, Lemma 11.5]) and u : U → X is
regular (Theorem 3.9). By Theorem 3.9 we have π1(X, eX) ' Aut(U/X) and by [22,

Theorem 13.11] πtop
1 (X, eX) ' Auttop(U/X). Therefore, π1(X, eX) ' πtop

1 (X, eX).
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�
We have the following invariance results for the o-minimal fundamental groupoid,

generalizing the one for the o-minimal fundamental group. First we have:

Theorem 3.16. Let J be an elementary extension of R or an o-minimal expansion
of R. Let X be a locally definable manifold. Then the inclusion functor

Π1(X)→ ΠJ1 (X(J))

is an equivalence of categories.

Proof. (1) the inclusion is faithful. Let x0, x1 ∈ X and consider [σ], [τ ] ∈
HomΠ1(X)(x0, x1) such that their image in HomΠJ1 (X(J))(x0, x1) are equal, i.e. they

are J -definably homotopic. Let Y be a definably connected component of X such
that Y (J) which is J -definably connected contains the image of this J -definable
homotopy. Then the image of [σ·τ−1] under the inclusion π1(Y, x0)→ πJ1 (Y (J), x0)

is trivial. By Theorem 1.3 (2), π1(Y, x0)→ πJ1 (Y (J), x0) is an isomorphism and so
[σ · τ−1] is trivial in π1(Y, x0) and hence [σ] = [τ ].

(2) the inclusion is full. Let x0, x1 ∈ X and consider [δ] ∈ HomΠJ1 (X(J))(x0, x1)

represented by a J -definable path δ : [0, qδ]→ X(J). Let {Uα}α∈I be an admissible
cover of X by open definably connected definable subsets, refining the definable
charts of X and such that π1(Uα) = 1 for each α ∈ I (Proposition 3.1). Then
{Uα(J)}α∈I is an admissible cover of X(J) by open J -definably connected J -
definable subsets, refining the J -definable charts of X and such that πJ1 (Uα(J)) = 1
for each α ∈ I (by Theorem 1.3 (2)).

Let L ⊆ I be a finite subset such that δ([0, qδ]) ⊆
⋃
l∈LUl(J). Then [0, qδ] ⊆⋃

l∈L δ
−1(Ul(J)), with the δ−1(Ul(J))’s open in [0, qδ]. Then, by [9, Chapter 6,

(3.6)], for each l ∈ L there is a Wl ⊂ [0, qδ], open in [0, qδ] such that Wl ⊂ Wl ⊂
δ−1(Ul(J)) and [0, qδ] ⊆

⋃
l∈LWl. Therefore, there are 0 = s0 < s1 < · · · < sr = qδ

such that for each i = 0, . . . , r − 1 we have δ([si, si+1]) ⊂ Ul(i) (and δ(si+1) ∈
Ul(i)(J)∩Ul(i+1)(J)). If we set δi = δ|[si,si+1], then δ = δ0 · · · · ·δr−1. Since Ul(i)(J)∩
Ul(i+1)(J) 6= ∅, we also have Ul(i)∩Ul(i+1) 6= ∅. Choose elements zi ∈ Ul(i)∩Ul(i+1)

and definable paths σi in Ul(i) connecting the elements x0, z0, . . . , zr−1, x1. If σ =
σ0 · · · · · σr−1, then [σ] ∈ HomΠ1(X)(x0, x1) and its image in HomΠJ1 (X(J))(x0, x1)

is [δ] since, for each i, δi is J -definably homotopic to σi due to πJ1 (Ul(i)(J)) = 1.
(3) the inclusion is essentially surjective. Let x ∈ X(J) and let Y be a de-

finably connected component of X such that Y (J) which is J -connected, con-
tains x. Let x0 ∈ Y . By Lemma 2.9, there is a J -definable path δ : [0, qδ] →
Y (J) ⊆ X(J) with δ(0) = x0 and δ(qδ) = x. Then [δ] ∈ HomΠJ1 (X(J))(x0, x),

[δ]−1 ∈ HomΠJ1 (X(J))(x, x0) and x is isomorphic to x0 in ΠJ1 (X(J)). �

Similarly we have:

Theorem 3.17. Suppose that R is an o-minimal expansion of the ordered group
of real numbers. Let X a locally definable manifold. Then the inclusion functor

Π1(X)→ Πtop
1 (X)

is an equivalence of categories.
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4. Other applications

Here we prove the other main results of the paper, namely: the monodromy
equivalence for locally constant o-minimal sheaves, classification results for locally
definable covering maps and o-minimal Hurewicz and Seifert - van Kampen theo-
rems.

4.1. Locally definable coverings and locally constant sheaves. Let X be a
locally definable manifold. Then X is equipped with the o-minimal site Xdef given
by: (i) the category Op(Xdef) of open definable subsets of X with morphisms being
inclusions; (ii) the Grothendieck topology such that for U ∈ Op(Xdef), a collection
{Uj}j∈J of objects of Op(Xdef) is an admissible cover of U if it admits a finite
subcover.

Below we let J be one of these categories: the category Set of sets, the cat-
egory G-Tors of G-torsors for a given discrete group G, the category Mod(k)
of k-modules over a ring k. Recall that for G a discrete group, the category
G-Tors of G-torsors is the category whose objects are sets M with a right ac-
tion M × G → M : (m, g) 7→ mg of G on M such that for each m ∈ M the map
G → M : g 7→ mg is a bijection and whose morphisms are maps h : M → N such
that h(mg) = h(m)g.

Below, given a category C, we denote by π0(C) the category of equivalence
classes of objects of C under isomorphisms of C. Later we also use the fact that,
for a discrete abelian group G, π0(G-Tors) has an abelian group operation given,
on representatives, by M ∗N = (M×N)/∆∗G where ∆∗G = {(g,−g) : G×G : g ∈ G}
acts on M ×N by (m,n)(g,−g) = (mg, n−g) and M ∗N is the set of orbits. Since
we can identify G×G

∆∗G
with G using addition (the sequence

0 // ∆∗G
� � // G×G + // // G // 0

is exact) and since G is abelian, we have a well defined action of G×G
∆∗G

on M ∗ N
given by [(x, y)][(s,t)] = [(xs, yt)] making M ∗N into a G-torsor.

We denote by PshJ(Xdef) the category of J-pre-sheaves on the o-minimal site
Xdef . By definitions, this is the category Fct(Op(Xdef)

op,J) of contravariant func-
tors

F : Op(Xdef)→ J

U 7→ F(U)

(V ⊂ U) 7→ (F(U)→ F(V ))

s 7→ s|V

from Op(Xdef) to J with morphisms being natural transformations of such functors.
We denote by ShJ(Xdef) the category of J-sheaves on the o-minimal site Xdef ,
i.e., the full subcategory of PshJ(Xdef) whose objects satisfy the following gluing
conditions: for every U ∈ Op(Xdef) and every admissible cover {Uj}j∈J of U we
have:

• if s, t ∈ F(U) and s|Uj = t|Uj for each j, then s = t;
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• if sj ∈ F(Uj) are such that sj = sk on Uj ∩Uk then they glue to s ∈ F(U)
(i.e. s|Uj = sj).

We refer the reader to [15] and [19] for further details on the theory of o-minimal
sheaves.

If V ∈ Op(Xdef), a J-sheaf F on Vdef is constant if it is isomorphic to the J-
sheaf CV on Vdef associated to the J-pre-sheaf sending every W ∈ Op(Vdef) to a
fixed C ∈ ObJ. We denote by CShJ(Xdef) the category of constant J-sheaves on
the o-minimal site Xdef on X. We denote by LCShJ(Xdef) the category of locally
constant J-sheaves on the o-minimal site Xdef on X. By definition this means that
if F ∈ ObLCShJ(Xdef), then there exists an admissible cover {Uj}j∈J of X by
open definable subsets such that the restriction F |Uj is a constant J-sheaf on Uj def

for each j ∈ J.

Remark 4.1. Here we only consider the specific examples of J which are useful
for the applications below. One could consider a category J admitting projective
and inductive limits and satisfying the IPC property (see Definition 3.1.10 of [24]
for more details). More generally, one could consider the constant stack associated
to a category J as in [26].

Given S a locally definable manifold and J a category as above, we say that a
locally definable covering map pX : X → S trivial over U = {Uα}α∈I is a locally
definable J-covering map trivial over U = {Uα}α∈I if in addition the following hold:

• for every U ∈ Op(Sdef), the set PX(U) = {f : U → p−1
X (U) : f a continuous

locally definable map with pX ◦ f = idU} of continuous locally definable
sections of pX|p−1

X (U) is an object of J.

• for every V,U ∈ Op(Sdef) with V ⊆ U , the restriction map PX(U) →
PX(V ) : f 7→ f|V is a morphism of J.

A locally definable J-covering map pX : X → S is a locally definable J-covering
map trivial over some admissible cover U = {Uα}α∈I of S by open definable subsets.

We say that two locally definable J-covering maps pX : X → S and pY : Y → S
(trivial over U) are locally definably homeomorphic if there is a locally definable
homeomorphism F : X → Y such that:

• pX = pY ◦ F.
• The functor F : PX → PY induced by composition by F is a morphism of

ShJ(Sdef).

Such F : X → Y is called a locally definable J-covering homeomorphism.
A locally definable J-covering map pX : X → S is trivial if it is locally definably

homeomorphic to a locally definable J-covering map S × C → S : (s, c) 7→ s for
some C ∈ ObJ.

We denote by J-Covldef(X) the category of locally definable J-covering maps
and by J-Cov0 ldef(X) its full subcategory consisting of trivial locally definable J-
covering maps.

Example 4.2. (1) If we take J to be the category Set of sets, then of course we
recover the previously defined notions.
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(2) If G is a discrete group, then a locally definable G-Tors-covering map pX :
X → S trivial over U is exactly a locally definable G-covering map trivial over U ,
i.e., a locally definable covering map pX : X → S trivial over U with a continuous
locally definable right action X×G→ X : (x, g) 7→ xg of G on X such that for each
s ∈ S there is an induced right action p−1

X (s)×G→ p−1
X (s) making the fiber p−1

X (s)
a G-torsor. Also a locally definable G-Tors-covering homeomorphism F : X → Y
between two locally definable G-Tors-covering maps pX : X → S and pY : Y → S
(trivial over U) is exactly a locally definable G-covering homeomorphisms, i.e., such
that:

• pX = pY ◦ F.
• For every x ∈ X and g ∈ G, we have F (xg) = F (x)g.

Proposition 4.3. Suppose that X is a locally definable manifold and J is a category
as before. Then there is an equivalence

LCShJ(Xdef)→ J-Covldef(X)

of categories which restricts to an equivalence

CShJ(Xdef)→ J-Cov0 ldef(X)

of subcategories.

Proof. Let F be an object of LCShJ(Xdef) and suppose that {Uj}j∈J is an
admissible of X by open definable subsets such that for each j ∈ J , the restriction
F |Uj is isomorphic to a constant J-sheaf. For each j ∈ J , if F |Uj → Cj is such
an isomorphism in LCShJ(Uj def), we have for each V ∈ Op(Uj def) an induced
isomorphism F |Uj (V )→ Cj in J commuting with the restrictions

F |Uj (V )

&&

// F |Uj (V ′)

��
Cj

in J where V ′ ⊆ V is in Op(Uj, def). Thus, if x ∈ X, since x ∈ Uj for some j ∈ J ,
the stalk of F at x

Fx = lim−→
x∈U
F(U)

with U ∈ Op(Xdef), exists in J and we have a canonical surjective homomorphism

F(U)→ Fx : s 7→ sx

for every U ∈ Op(Xdef) with x ∈ U.
Set WF =

⊔
x∈X Fx and consider the obvious map wF : WF → X sending

sx ∈ Fx to x. For each j ∈ J and c ∈ Cj let sc ∈ F |Uj (Uj) be the corresponding
section under the isomorphism F |Uj (Uj)→ Cj in J. Set U cj = {scx : x ∈ Uj}. Then
we have, for each j ∈ J ,

• w−1

F (Uj) =
⊔
c∈Cj U

c
j ;

• each wF |Uj : U cj → Uj is a bijection.

By [16, Lemma 2.1 (1)] (see Remark 2.6), it follows that there exists a locally
definable manifold structure on WF of dimension n := dimX such that wF :
WF → X is a locally definable covering map trivial over {Uj}j∈J .
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It is easy to see that for every U ∈ Op(Xdef) we have {f : U → w−1

F (U) : f is

a continuous locally definable map such that wF ◦ f = idU} = F(U), an object of
J. Thus wF : WF → X is a locally definable J-covering map trivial over {Uj}j∈J .
It is also standard to see that a morphism F → G in LCShJ(Xdef) determines a
morphism

WF

wF $$

// WG
wG
��
X

of locally definable J-covering maps which is a locally definable homeomorphism if
F → G is an isomorphism. Thus we have a well defined functor LCShJ(Xdef) →
J-Covldef(X).

The inverse of the functor LCShJ(Xdef) → J-Covldef(X) just defined is the
functor J-Covldef(X) → LCShJ(Xdef) sending p : Y → X to the J-sheaf PY of
continuos locally definable sections of p : Y → X and a morphism

Y

p
""

r // Z

q

��
X

of locally definable J-covering maps to the morphism PY → QZ in LCShJ(Xdef)
induced by composition with r. It is standard to check that this is indeed a well
defined functor which is the required inverse.

By construction, the isomorphism LCShJ(Xdef)→ J-Covldef(X) restricts to an
isomorphism CShJ(Xdef)→ J-Cov0 ldef(X). �

It follows from Proposition 4.3 and the corresponding facts in J-Covldef(X) that:

• We have an equivalence

CShJ(Xdef)→ J.

• An object F of LCShJ(Xdef) is determined by its stalks Fx (x ∈ X) and
a morphism φ : F → G in LCShJ(Xdef) is determined by the induced
homomorphism φx : Fx → Gx (x ∈ X) on stalks.
• If F is an object of LCShJ(Xdef) with X definably connected and π1(S) =

1, then F is isomorphic to a constant J-sheaf.

4.2. Monodromy and representations of the fundamental groupoid. Let
X be a locally definable manifold and J a category as before. Consider the category

Fct(Π1(X),J)

of functors from the category Π1(X) to the category J. The objects of this category
are called representation of the o-minimal fundamental groupoid Π1(X) in J. If X
is definably connected with eX ∈ X, then the objects of the category Fct(Π1(X),J)
are called representation of the o-minimal fundamental group π1(X, eX) in J.

By Lemma 2.11 (1) we have:

Remark 4.4. If X is definably connected with eX ∈ X, then Fct(Π1(X),J) is
equivalent to the category whose objects are pairs (M, τM ) with M an object of
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J and τM ∈ Hom(π1(X, eX)op,AutJ(M)) and whose morphisms τf : (M, τM ) →
(N, τN ) are morphisms f : M → N in J such that τN ◦ f = f ◦ τM .

The full subcategory of Fct(Π1(X),J) consisting of trivial representations will
be denoted by

Fct0(Π1(X),J).

A representation θ ∈ Fct(Π1(X),J) is trivial if it is isomorphic to a constant functor
∆M which associates M to any object and idM to any morphism. We have a natural
equivalence

J→ Fct0(Π1(X),J)

given by the functor M 7→ ∆M .

By Proposition 4.3 and Lemma 2.13 we have:

Lemma 4.5. Suppose that X is a locally definable manifold and let F be an object
of LCShJ(Xdef). Then the following hold.

(1) If γ : [0, p] → X be a definable path in X, then the inverse image γ−1F is
an object of CShJ([0, p]def).

(2) If h : [0, p] × [0, r] → X is a definable homotopy between the definable
paths γ, σ : [0, p] → X in X, then the inverse image h−1F is an object of
CShJ(([0, p]× [0, r])def).

Proof. Consider the locally definable J-covering map wF : WF → X corre-
sponding to F via Proposition 4.3.

(1) Consider a definable lifting γ̃ : [0, p] → WF of γ : [0, p] → X given by

Lemma 2.13 (1). Since (γ−1F)t = Fγ(t) for each t ∈ [0, p], the continuous (locally)

definable map γ̃ : [0, p]→WF corresponds to a global section of γ−1F . Thus γ−1F
is constant.

(2) Consider a definable lifting h̃ : [0, p] × [0, r] → WF of h : [0, p] × [0, r] → X

given by Lemma 2.13 (2). Since (h−1F)(t,s) = Fh(t,s) for each (t, s) ∈ [0, p]× [0, r],

the continuous (locally) definable map h̃ : [0, p] × [0, r] → WF corresponds to a

global section of h−1F . Thus h−1F is constant. �

Lemma 4.6. Suppose that X is a locally definable manifold and let F be an object
of LCShJ(Xdef). Then there exists a well defined functor

µ(F) : Π1(X)→ J

sending x ∈ X to Fx and sending [σ] ∈ HomΠ1(X)(x0, x1) to a canonical isomor-
phism Fx0 → Fx1 in J.

Proof. Let [σ] ∈ HomΠ1(X)(x0, x1) where σ : [0, p]→ X is a definable path in X

from x0 to x1. By Lemma 4.5 (1), σ−1F is constant and so we have isomorphisms

Fx0 = (σ−1F)0
∼←− σ−1F([0, p])

∼−→ (σ−1F )p = Fx1

defining the canonical isomorphism Fx0
→ Fx1

in J.
We need to show that this is well defined i.e., it does not depend on the rep-

resentative of the definable homotopy class. Suppose that we have [σ] = [γ] in
HomΠ1(X)(x0, x1) where σ, γ : [0, p] → X are definable paths in X from x0 to
x1. Let h : [0, p] × [0, r] → X be a definable homotopy between σ and γ with
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h(t, 0) = σ(t) and h(t, r) = γ(t) for all t ∈ [0, p]. By Lemma 4.5 (2), h−1F is
constant and so we have isomorphisms

Fx0
= (γ−1F)0 γ−1F([0, p])∼

oo ∼ // (γ−1F)p = Fx1

(h−1F)(0,s)

=

OO

=

��

h−1F([0, p]× [0, r])∼
oo

=

OO

=

��

∼ // (h−1F)(p,s)

=

OO

=

��
Fx0

= (σ−1F)0 σ−1F([0, p])∼
oo ∼ // (σ−1F)p = Fx1

for all s ∈ [0, r], showing that the canonical isomorphism Fx0
→ Fx1

just defined
does not depend on the representative of the definable homotopy class. �

The functor of Lemma 4.6 induces the well defined monodromy functor

µ : LCShJ(Xdef)→ Fct(Π1(X),J)

sending an object F of LCShJ(Xdef) to the associated functor µ(F) and sending
a morphism φ : F → G in LCShJ(Xdef) to the induced natural transformation
µ(F)→ µ(G) given by the commutative diagram

Fx0

φx0
��

µ(F )([γ])// Fx1

φx1
��

Gx0

µ(G)([γ])// Gx1

in J for all x0, x1 ∈ X and [γ] ∈ HomΠ1(X)(x0, x1).

Theorem 4.7. Let X be a locally definable manifold and J a category as before.
Then the monodromy functor

µ : LCShJ(Xdef)→ Fct(Π1(X),J)

is an equivalence of categories.

Proof. (1) µ is faithful. Consider morphisms ϕ,ψ : F → G in LCShJ and
suppose that µ(ϕ) = µ(ψ). By definition, this means that ϕx = ψx : Fx → Gx for
each x ∈ X. Hence ϕ = ψ.

(2) µ is full. Consider objects F,G ∈ LCShJ(Xdef) and a morphism u : µ(F )→
µ(G). This means that we have morphisms ux : Fx → Gx in J for each x ∈ X.
Let {Uα}α∈I be an admissible cover of X by open definable subsets such that both
F and G are constant on {Uα}α∈I . Without loss of generality we may assume
that each Uα is definably connected. Let x ∈ Uα. Then ux extends uniquely to a
morphism uα. For y ∈ Uα we choose a path γ in Uα from x to y. Then (uα)y =
µ(G)(γ)·(uα)x◦µ(F )(γ−1). Moreover (uα)x = ux and uy = µ(G)(γ)◦ux◦µ(F )(γ−1)
because u is a morphism of functors. Hence (uα)y = uy. So we have a morphism
uα : F|Uα → G|Uα given by (uα)y = uy for each y ∈ Uα. Therefore, for α, β ∈ I such
that Uα∩Uβ 6= ∅ we have uα|Uα∩Uβ = uβ|Uα∩Uβ . This proves that the {uα}α∈I glue
together in a morphism v : F → G. Since, for each α ∈ I, we have v|Uα = uα and
(uα)x = ux : Fx → Gx for each x ∈ Uα, it follows that µ(v) = u.
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(3) µ is essentially surjective. Let {Uα}α∈I be an admissible cover of X by open
definably connected definable subsets, refining the definable charts of X and such
that π1(Uα) = 1 for each α ∈ I (Proposition 3.1). Let α, β ∈ I be such that
Uα ∩ Uβ 6= ∅. The commutative diagram of inclusions

Uα
jα // X

Uα ∩ Uβ

iα,β

OO

iβ,α // Uβ

jβ

OO

induces a commutative diagram of morphisms

Π1(Uα)
jα∗ // Π1(X)

Π1(Uα ∩ Uβ)

iα,β∗

OO

iβ,α∗ // Π1(Uβ)

jβ∗

OO

which in turn induces a commutative diagram of morphims

Fct(Π1(Uα),J)

λα,β

��

Fct(Π1(X),J)
λαoo

λβ

��
Fct(Π1(Uα ∩ Uβ),J) Fct(Π1(Uβ),J).

λβ,αoo

Let A be an object of Fct(Π1(X),J). Then for each α ∈ I, there exists a costant
sheaf Fα on Uα such that µ(Fα) = λα(A) since µ : CShJ(Uαdef)→ Fct(Π1(Uα),J)
is an equivalence.

Let α, β ∈ I be such that Uαβ := Uα ∩ Uβ 6= ∅. We have µ(Fα|Uαβ ) = λα,β ◦
λα(A) and µ(Fβ|Uαβ ) = λβ,α ◦ λβ(A). Since as seen above λα,β ◦ λα = λβ,α ◦
λβ , we have µ(Fα|Uαβ ) = µ(Fβ|Uαβ ). But Fα|Uαβ and Fβ|Uαβ are also objects of
CShJ(Uαβdef). Hence, µ0(Fα|Uαβ ) = µ0(Fβ|Uαβ ) and therefore, we have isomor-
phisms θα,β : Fβ|Uαβ → Fα|Uαβ such that θα,α = idYα and θα,β = θα,γ ◦ θγ,β on
Uα ∩ Uβ ∩ Uγ . Then there exists F ∈ LCShJ(Xdef) together with isomorphisms

ψα : Fα ' F|Uα such that θα,β = ψ−1
α ◦ ψβ on Uαβ .

Now it remains to show that there exists an isomorphism ψ : µ(F ) → A in
Fct(Π1(X),J). If x ∈ Uα, then λαA(x) = A(x) by definition of the functor λα.
Since µ(Fα) = λαA we also have Fαx = λαA(x). On the other hand, by construction
of F we have an isomorphism ψαx : Fαx → Fx. Thus we have an isomorphism
ψ(x) : Fx → A(x) that is, an isomorphism ψ(x) : µ(F )(x) → A(x). To conclude
the proof we need to show that for x0, x1 ∈ X and [σ] ∈ HomΠ1(X)(x0, x1) (with
σ : [0, qσ] → X a path such that σ(0) = x0 and σ(qσ) = x1), then we have a
commutative diagram

Fx0

µ(F )([σ])

��

ψ(x0)// A(x0)

A([σ])

��
Fx1

ψ(x1) // A(x1)

in J. Let L ⊆ I be a finite subset such that σ([0, qσ]) ⊆
⋃
l∈LUl. Then [0, qσ] ⊆⋃

l∈L σ
−1(Ul), with the σ−1(Ul)’s open in [0, qσ]. Then, by [9, Chapter 6, (3.6)],
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for each l ∈ L there is a Wl ⊂ [0, qσ], open in [0, qσ] such that Wl ⊂ Wl ⊂ σ−1(Ul)
and [0, qσ] ⊆

⋃
l∈LWl. Therefore, there are 0 = s0 < s1 < · · · < sr = qσ such that

for each i = 0, . . . , r− 1 we have σ([si, si+1]) ⊂ Ul(i) (and σ(si+1) ∈ Ul(i) ∩Ul(i+1)).
If we set σi = σ|[si,si+1], then σ = σ0 · · · · · σr−1. By the above constructions, the
result holds for each σi and so it holds also for σ by composition. �

By the construction in Theorem 4.7 and Theorems 3.16 and 3.17 we have:

Corollary 4.8. (1) Let J be an elementary extension of R or an o-minimal ex-
pansion of R. Let X be a locally definable manifold. Then we have a commutative
diagram

LCShJ(Xdef)

��

µ // Fct(Π1(X),J)

LCShJ(X(J)def)
µ // Fct(ΠJ1 (X(J)),J)

OO

of equivalence of categories.
(2) Suppose that R is an o-minimal expansion of the ordered group of real num-

bers. Let X a locally definable manifold. Then we have a commutative diagram

LCShJ(Xdef)

��

µ // Fct(Π1(X),J)

LCShJ(X)
µ // Fct(Πtop

1 (X),J)

OO

of equivalences of categories where LCShJ(X) is the category of equivalence classes
of locally constant J-sheaves on the topological space X.

4.3. Examples. Here we deduce special cases of Theorem 4.7 which are more fa-
miliar.

Let X be a locally definable manifold. When J = Set we denote by Covldef(X)
the category of locally definable covering maps. If we denote by ωSet the category
of countable sets and by fSet the category of finite sets, we denote by Covldefω (X)
and Covdef the full subcategories of the category Covldef(X) obtained by taking
J = ωSet and J = fSet respectively (i.e. the fibers are countable and finite
respectively).

Let X be a definably connected locally definable manifold with eX ∈ X. Below
we use the following notation: π1(X, eX)-Set is the category of π1(X, eX)-sets;
π1(X, eX)-ωSet is the full subcategory of countable π1(X, eX)-sets; π1(X, eX)-fSet
is the full subcategory of finite π1(X, eX)-sets.

Corollary 4.9. Let X be a definably connected locally definable manifold with
eX ∈ X. There is a canonical equivalence

Covldef(X)→ π1(X, eX)-Set

of categories. Moreover, if X is Lindelöf (resp. definable), then there is a canonical
equivalence

Covldefω (X)→ π1(X, eX)-ωSet
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(resp.

Covdef(X, e)→ π1(X, eX)-fSet)

of categories.

Proof. By Theorem 4.7 and Proposition 4.3 we have that

µ : Covldef(X)→ Fct(Π1(X),Set)

is an equivalence of categories. Hence by Remark 4.4 we have a canonical equiva-
lence

Covldef(X)→ π1(X, eX)-Set

of categories.
The other cases are similar. �

Let X be a locally definable manifold. When G be a discrete group and J =
G-Tors (see Example 4.2), we denote by G-Covldef(X) the category whose objects
are locally definable G-covering maps (i.e. locally definable covering maps with a
G-action on the fibers). If G is a countable discrete group (resp. finite group) we
denote by G-Covldefω (X) (resp. G-Covdef) the corresponding full subcategory of
the category G-Covldef(X).

Recall that, given a category C, we denote by π0(C) the category of equivalence
classes of object of C under isomorphisms of C.

If we consider the categories of equivalence classes of locally definableG-coverings
maps under locally definable G-covering homeomorphisms we obtain:

Corollary 4.10. Let G be a discrete group and X a definably connected locally
definable manifold with eX ∈ X. Then there is a canonical bijection

π0(G-Covldef(X))→ Hom(π1(X, eX)op, G)/conjugacy.

If X is Lindelöf (resp. is definable) and G countable (resp. is finite), then there is
a canonical bijection

π0(G-Covldefω (X))→ Hom(π1(X, eX)op, G)/conjugacy

(resp.

π0(G-Covdef(X))→ Hom(π1(X, eX)op, G)/conjugacy).

Proof. By Theorem 4.7 and Proposition 4.3, the monodromy functor

µG : G-Covldef(X)→ Fct(Π1(X), G-Tors)

is an equivalence of categories. Hence, by Remark 4.4 we have

π0(G-Covldef(X)) ' π0(Fct(Π1(X), G-Tors)))

' Hom(π1(X, eX)op,AutG-Tors(G))/conjugacy

and AutG-Tors(G) ' G.
The other cases are similar. �

If we consider the categories of equivalence classes of pointed locally definable
G-covering maps, then we obtain:



32 MÁRIO J. EDMUNDO, PANTELIS E. ELEFTHERIOU, AND LUCA PRELLI

Corollary 4.11. Let G be a discrete group and X a definably connected locally
definable manifold with eX ∈ X. Then there is a one-to-one correspondence

π0(G-Covldef(X, eX))→ Hom(π1(X, eX)op, G).

If X is Lindelöf (resp. is definable) and G countable (resp. is finite), then there is
a one-to-one correspondence

π0(G-Covldefω (X, eX))→ Hom(π1(X, eX)op, G)

(resp.
π0(G-Covdef(X, eX))→ Hom(π1(X, eX)op, G)).

4.4. O-minimal Hurewicz and Seifert-van Kampen theorems. We start
with the Seifert-van Kampen theorem:

Theorem 4.12 (Seifert - van Kampen). Let X be a definably connected locally
definable manifold with eX ∈ X and let W = {Wα}α∈I be an admissible cover of
X by open locally definable subsets. Suppose that for α, β ∈ I:

• eX ∈Wα and Wα is definably connected;
• Wα ∩Wβ ∈ W.

Then
lim−→
α∈I

π1(Wα, eX) ' π1(X, eX).

Proof. By Corollary 4.11, we have

Hom(π1(X, eX)op, G) ' π0(G-Covldef(X)) ' π0(LCShG-Tors(Xdef))

for any discrete group G. The same result holds with X replaced by Wα. The
gluing properties of sheaves give the isomorphisms

Hom(π1(X, eX)op, G) ' lim←−
α

Hom(π1(Wα, eX)op, G)

' Hom(lim−→
α

π1(Wα, eX)op, G)

for any discrete group G. Then the Yoneda’s Lemma implies the result. �

We now proceed towards the proof of the o-minimal Hurewicz theorem. Let X
be a locally definable manifold, U = {Ui}i∈I an admissible cover of X by open
definable subsets and G an object of ShGp(Xdef). Below we write Uij = Ui∩Uj and

Uijk = Ui∩Uj ∩Uk. A Čech co-cycle for U with values in G is a family (gij)(i,j)∈I×I
with gij ∈ G(Uij) such that

(gij|Uijk) · (gjk|Uijk) = gik|Uijk , all, i, j, k.

Two Čech co-cycles g and g′ are cohomologous, denoted g ∼ g′, if there is a family
(hi)i∈I with hi ∈ G(Ui) such that

g′ij = (hi|Uij ) · gij · (hj|Uij )
−1, all, i, j.

This is an equivalence relation and the set of equivalence classes of Čech co-cycles
is called the o-minimal Čech cohomology set with respect to the admissible cover
U and is denoted by

Ȟ1(X,U ;G).

This is not in general a group, but it does have a distinguished element represented
by the Čech co-cycle (gij) with gij = 1 for all i, j. It is a group if G is an object
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of the subcategory ShAb(Xdef) and, it is called in this case the o-minimal Čech
cohomology group with respect to the admissible cover U .

Remark 4.13. If G is a discrete abelian group, then Ȟ1(X,U ;G) is exactly the
o-minimal Čech cohomology (abelian) group with respect to the admissible cover
U in degree one of the o-minimal Čech cohomology theory defined in [18].

If V is another admissible cover of X by open definable subsets refining U , then
we have a canonical inclusion

νVU : Ȟ1(X,U ;G)→ Ȟ1(X,V;G)

induced by restrictions which is an injective homomorphism when G is an object of
the subcategory ShAb(Xdef).

We define the o-minimal Čech cohomology set (resp. group if G is an object of
the subcategory ShAb(Xdef))

Ȟ1(X;G)

to be the disjoint union⊔
{Ȟ1(X,U ;G) : U an admissible cover of S by open definable subsets}

modulo the equivalence relation give by: an element from Ȟ1(X,U ;G) is equivalent
to an element from Ȟ1(X,V;G) if they have the same image under all the inclusion
maps

Ȟ1(X,U ;G)

νWU ''

Ȟ1(X,V;G)

νWVww
Ȟ1(X,W;G)

whereW is an admissible cover of X by open definable subsets refining both U and
V. Clearly we then have canonical inclusions

νU : Ȟ1(X,U ;G)→ Ȟ1(X;G)

such that
νU = νV ◦ νVU

whenever we have a refinement V of U by an admissible cover of X by open definable
subsets.

When G is an object of the subcategory ShAb(Xdef), then

Ȟ1(X;G) = lim−→
U
Ȟ1(X,U ;G)

where the direct limit is taken over admissible covers U of X by open definable sub-
sets directed by refinement by admissible covers U of X by open definable subsets.

As above let X be a locally definable manifold and G an object of ShGp(Xdef).
We say that an object S of Sh(Xdef) is a G-torsor on X if G acts on S on the right
and:

• there exists a admissible cover U = {Ui}i∈I of X by open definable subsets
that splits S i.e., for all i, S(Ui) 6= ∅;
• for every open definable subset U of X and s ∈ S(U), the map G|U → S |U :
g 7→ sg is an isomorphism of sheaves.
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A G-torsor S on X is trivial if S(X) 6= ∅, equivalently, if it is isomorphic to the
G-torsor G (with the action given by right multiplication).

Let U = {Ui}i∈I be an admissible cover of X by open definable subsets. We
denote by G-Tors(X,U) the set of isomorphisms classes of G-torsors on X split by
U = {Ui}i∈I . If G is an object of the subcategory ShAb(Xdef), then G-Tors(X,U)
has an abelian group operation induced (on sections) by the abelian group opera-
tion on each π0(G-Tors) for G a discrete abelian group.

If V is another admissible cover of X by open definable subsets refining U , then
we have a canonical inclusion

iVU : G-Tors(X,U)→ G-Tors(X,V)

induced by restrictions which is an injective homomorphism when G is an object of
the subcategory ShAb(Xdef).

We define the set (resp. group if G is an object of the subcategory ShAb(Xdef))

G-Tors(X)

to be the disjoint union⊔
{G-Tors(X,U) : U an admissible cover of X by open definable subsets}

modulo the equivalence relation give by: an element from G-Tors(X,U) is equivalent
to an element from G-Tors(X,V) if they have the same image under all the inclusion
maps

G-Tors(X,U)

iWU ((

G-Tors(X,V)

iWVvv
G-Tors(X,W)

whereW is an admissible cover of X by open definable subsets refining both U and
V. Clearly we then have canonical inclusions

iU : G-Tors(X,U)→ G-Tors(X)

such that

iU = iV ◦ iVU
whenever we have a refinement V of U by an admissible cover of X by open defin-
able subsets.

Proposition 4.14. Let X be a locally definable manifold, G an object of ShGp(Xdef)
and let U = {Ui}i∈I be an admissible cover of X by open definable subsets.Then
there exists a well defined bijection

G-Tors(X,U)→ Ȟ1(X,U ;G)

which is an isomorphism when G is an object of the subcategory ShAb(Xdef).

Proof. Let S be a G-torsor on X split by U = {Ui}i∈I and choose si ∈ S(Ui)
for each i. Because of the second condition in the definition of G-torsor, there are
unique gij ∈ G(Uij), such that

(si|Uij )
gij = sj|Uij .



THE UNIVERSAL COVERING MAP IN O-MINIMAL EXPANSIONS OF GROUPS 35

Then (gij) is a Čech co-cycle, because (omitting the restrictions signs)

s
gij ·gjk
i = sk = sgiki .

Moreover, replacing si with s′i = shii , hi ∈ G(Ui) leads to a cohomologous co-cycle.

Thus, S defines a class c(S) in Ȟ1(X,U ;G).
Let α : S → S ′ be an isomorphism of G-torsors on X split by U = {Ui}i∈I , and

choose si ∈ S(Ui). Then α(si) ∈ S ′(Ui), and (omitting the restriction signs)

s
gij
i = sj ⇒ α(si)

gij = α(sj).

Thus the Čech co-cycle defined by the family (α(si)) equals that defined by (si).
Showing that c(S) depends only on the isomorphism class of S and so the map
G-Tors(X,U)→ Ȟ1(X,U ;G) is well defined.

Suppose that c(S) = c(S ′). Then we may choose sections si ∈ S(Ui) and s′i ∈
S ′(Ui) that define the same Čech co-cycle (gij). Let V be an open definable subset
of X and set Vi = Ui∩V, Vij = Uij ∩V and Vijk = Uijk∩V. Suppose that t ∈ S(V ).
Then

t|Vi = (si|Vi)
gi

for a unique gi ∈ G(Vi). From the equality (t|Vi)|Vij = (t|Vj )|Vji , we find that

(gi|Vij ) = gij · (gj|Vij ) (*)

Since S is a sheaf, t 7→ (gi)i∈I is a bijection from S(V ) onto the set of families
(gi)i∈I , gi ∈ G(Vi), satisfying (*). A similar statement holds for S ′, and so there is a
canonical bijection S(V )→ S ′(V ). The family of these bijections is an isomorphism
S → S ′ of G-torsors and so the map G-Tors(X,U)→ Ȟ1(X,U ;G) is injective.

Let (gij)(i,j)∈I×I be a Čech co-cycle for U = {Ui}i∈I . For any V open definable
subset of X set Vi = Ui ∩ V, Vij = Uij ∩ V and Vijk = Uijk ∩ V. Define S(V ) to be
the set of families (gi)i∈I , gi ∈ G(Vi), such that

(gi|Vij ) = gij · (gj|Vij ).
Showing that this defines a G-torsor S, and that c(S) is represented by (gij) involves

only routine checking and so the map G-Tors(X,U)→ Ȟ1(X,U ;G) is surjective.
When G is an object of the subcategory ShAb(Xdef) it is routine to show that

the map G-Tors(X,U)→ Ȟ1(X,U ;G) is a homomorphism. �

If V is another admissible cover of X by open definable subsets refining U , then
the bijections (resp. isomorphisms) of Proposition 4.14 commute with the canonical
inclusions (resp. injective homomorphisms):

G-Tors(X,U)

��

// Ȟ1(X,U ;G)

��
G-Tors(X,V) // Ȟ1(X,V;G).

Therefore, we have:

Corollary 4.15. Let X be a locally definable manifold and let G an object of
ShGp(Xdef). Then there exists a well defined bijection

G-Tors(X)→ Ȟ1(X;G)

which is an isomorphism when G is an object of the subcategory ShAb(Xdef).
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We are ready to prove the o-minimal Hurewicz theorem:

Theorem 4.16 (Hurewicz theorem). Let G be a discrete group and X a defin-
ably connected locally definable manifold. Then there is a canonical bijection

Hom(π1(X)op, G)/conjugacy→ Ȟ1(X;G).

Moreover, if G is abelian, then we have a canonical isomorphism

Hom(π1(X)op, G) ' Ȟ1(X;G).

Proof. If G is a discrete group, then we have canonical bijections

G-Tors(X) ' π0(LCShG-Tors(Xdef)) ' π0(G-Covldef(X))

by definitions and Proposition 4.3. Thus by the canonical bijections

π0(G-Covldef(X)) ' Hom(π1(X)op, G)/conjugacy

and

G-Tors(X) ' Ȟ1(X;G)

(Corollaries 4.10 and 4.15), we have a canonical bijection

Hom(π1(X)op, G)/conjugacy→ Ȟ1(X;G).

If G is abelian, then both Hom(π1(X)op, G)/conjugacy = Hom(π1(X)op, G) and
G-Tors(X) are abelian groups. Hence, π0(G-Covldef(X)) ' π0(LCShG-Tors(Xdef))
' G-Tors(X) also have canonical abelian group structures. It is routine to check
that the canonical bijection

π0(G-Covldef(X)) ' Hom(π1(X)op, G)

(Corollary 4.10) induced by the monodromy functor (Theorem 4.7) is in fact a
homomorphism. Therefore, by the canonical isomorphism

G-Tors(X) ' Ȟ1(X;G)

(Corollary 4.15), we have a canonical isomorphism

Hom(π1(X)op, G) ' Ȟ1(X;G)

as required. �

5. Concluding remarks

Here we observe that all our results can be generalized to other categories of
locally definable spaces in arbitrary o-minimal structures. To see this we point out
exactly what is required in the proofs. So let N be an arbitrary o-minimal structure
and let A be a full subcategory of the category of locally definable spaces in N .

In N one can define and prove in exactly the same way all the basic concepts
and properties about locally definable covering maps as in Subsection 2.1. So no
special requirements are needed here, but in relation to the concepts and results of
Subsection 2.2 we need to assume that the following holds in N :

(A1) It is possible to define good notions of definable paths and definable homo-
topies such that:
(a) every object of A which is definably connected is uniformly definably

path connected;
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(b) given a locally definable covering map pX : X → S in A then: (i)
every definable path γ in S has a unique lifting γ̃ which is a definable
path in X with a given base point; (ii) every definable homotopy F

between definable paths γ and σ in S has a unique lifting F̃ which is
a definable homotopy between the definable paths γ̃ and σ̃ in X.

As the reader can easily verify these are indeed the only requirements needed to
define and prove in exactly the same way all the basic concepts and properties of
Subsection 2.2.

For the other results of the paper, we need on top of (A1) also the following
requirement:

(A2) Every object of A has an admissible covers by definably simply connected,
open definable subsets refining any admissible cover by open definable sub-
sets.

With (A1) and (A2) one proves in exactly the same way the main result estab-
lished in Subsection 3.1 (Theorem 1.1). For the proofs of the reminding results of
Section 3, what we need, besides (A1), (A2) and the results previously obtained
from these requirements, is: [16, Lemma 2.1 (1)] (in the proof of Theorem 3.4), [16,
Corollary 2.2] (in Remark 3.12), [16, Corollary 2.3] (in Remark 3.13) and [9, Chap-
ter 6, (3.6)] (in Theorem 3.16). Now the quoted results from [16] hold in arbitrary
o-minimal structures (and for locally definable spaces as well). On the other hand,
we used [9, Chapter 6, (3.6)] to notice that the domains of the definable paths are
definably normal. But by [15, Remark 2.8, Proposition 2.12 and Theorem 2.13], in
arbitrary o-minimal structures, every one dimensional definable space is definably
normal. So if we assume as we should that the domains of the definable paths given
by (A1) are one dimensional definable spaces, then the use of [9, Chapter 6, (3.6)]
can be replaced by this last more general observation. In conclusion we saw that
with (A1) and (A2) one proves in exactly the same way the main result of Section
3. Moreover, for the same reasons one sees that the same is true regarding all the
results of Section 4.

The fact that (A1) and (A2) are the only requirements needed to develop this
kind of theory is somewhat not surprising. Indeed in topology, where we have good
notions of paths and homotopies with the lifting of paths and homotopies property,
all one needs is existence of such nice open covers as in (A2). As we saw here, in
o-minimal expansions of ordered groups, (A1) holds even in the category of locally
definable spaces (but it not known to hold in arbitrary o-minimal structures) and
(A2) holds in the category of locally definable manifolds. In the semi-algebraic
case ([7]) and in the case of o-minimal expansions of fields ([3]) (A2) holds in the
category of locally definable spaces by the semi-algebraic (resp. o-minimal) trian-
gulation theorem. To obtain (A2) in o-minimal expansions of ordered groups for
the category of locally definable spaces all that is needed is the following:

Conjecture. Every definable set is a finite union of relatively open definable
subsets which are definably simply connected.

Finally observe that in our context, the role that (A1) (b) and (A2) play is similar
to the role the analogue properties play in topology. However, (A2) is often used
in combination with the results from [16] mentioned above to get local definability.
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Also (A1) (a) is required essentially only once and to get local definability (see
Proposition 2.18), the other places where it is used, it is used to replace definably
connected by definably path connected.
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