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Abstract. We prove that in an arbitrary o-minimal structure, every
interpretable group is definably isomorphic to a definable one. We
also prove that every definable group lives in a cartesian product of
one-dimensional definable group-intervals (or one-dimensional definable
groups). We discuss the general open question of elimination of imagi-
naries in an o-minimal structure.

1. Introduction

Elimination of Imaginaries, namely the ability to associate a definable set
to every quotient of another definable set by a definable equivalence rela-
tion, plays a major role in modern model theory. In the study of o-minimal
structures this issue is often avoided by making the auxiliary assumption
that the structure expands an ordered group. Indeed, this assumption re-
solves the matter because o-minimal expansions of ordered groups eliminate
imaginaries in a very strong form (see [1, Proposition 6.1.2]), namely every
A-definable equivalence relation has an A-definable set of representatives,
after naming a non-zero element of the group. In particular, the struc-
ture has definable Skolem functions. Since most interesting examples of
o-minimal structures do expand ordered groups and even ordered fields, this
assumption seems reasonable for most purposes.

Recently, following the work on Pillay’s Conjecture, it was shown in
[7, Corollary 8.7] that even when starting with a definable group G in ex-
pansions of real closed fields, the group G/G00 is definable in an o-minimal
structure over R which is not known a priori to expand an ordered group.

In this paper we are concerned with the two issues raised above. First,
we are interested to know to what extent o-minimal structures in general
eliminate imaginaries. Second, we show that in many cases the assumption
that the underlying structure expands a one-dimensional group is indeed
harmless because this group is already definable in our structure (actually,
we might need several different such groups).
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Let us be more precise now. Definable equivalence relations can be treated
either within the many-sorted structure Meq, or explicitly, as definable ob-
jects in M. In order to apply o-minimality, we mostly work in the latter
context, so we clarify some definitions. We assume we work in an arbitrary
o-minimal structure.

Definition 1.1. Let X,Y be definable sets, E1, E2 two definable equivalence
relations on X and Y , respectively. A function f : X/E1 → Y/E2 is called
definable if the set {⟨x, y⟩ ∈ X × Y : f([x]) = [y]} is definable.

Definition 1.2. Let E be a definable equivalence relation on a definable set
X, where both X and E are defined over a parameter set A. We say that
the quotient X/E can be eliminated over A if there exists an A-definable
injective map f : X/E → Mk, for some k. We say in this case that f
eliminates X/E over A.

It was already observed in [17] that quotients cannot in general be elim-
inated in o-minimal structures, over arbitrary parameter sets. Indeed, con-
sider the expansion of the ordered real numbers by the equivalence relation
on R2 given by: ⟨x, y⟩ ∼ ⟨z, w⟩ if and only if x − y = z − w. This quotient
cannot be eliminated over ∅. However, once we name any element a, the
map f(⟨y, z⟩/ ∼) = a+ y − z is definable and eliminates this quotient (over
a).

It is therefore reasonable to ask:

Question. Given an o-minimal structure M and a definable equivalence
relation E on a definable set X, both defined over a parameter set A, is
there a definable map which eliminates X/E, possibly over some B ⊇ A?

We give a positive answer to this question when dim(X/E) = 1 (see
Corollary 7.8), but the general question remains open.

Definition 1.3. An interpretable group is a group whose universe is a
quotient X/E of a definable set X by a definable equivalence relation E,
and whose group operation is a definable map.

As we will see below, we prove in this paper that interpretable groups can
be eliminated.

1.1. Groups in o-minimal structures. The analysis of definable groups
in o-minimal structures depends to a large extent on a theorem of Pillay,
[18], about the existence of a definable basis for a group topology. The
theorem holds for definable groups, but until now it was not clear how to
treat interpretable groups. In [2, Proposition 7.2], Edmundo was able to
circumvent part of this problem by showing that if a group G is already de-
finable in an o-minimal structure M then M has elimination of imaginaries
for definable subsets of G. This makes it possible to handle interpretable
groups which are obtained as quotients of one definable group by another.
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But interpretable groups in general remained out of reach (see Appendix in
[7] for the technical difficulties which may arise).

The following theorem, which we prove here, reduces the study of inter-
pretable groups to definable ones.

Theorem 1. Every interpretable group is definably isomorphic to a definable
group.

In order to describe the main ideas of the proof we need to return to the
second problem mentioned at the beginning of this introduction.

1.2. Group-intervals. As we already remarked, it is often convenient to
assume that the o-minimal structure expands an ordered group. Beyond the
experimental fact that most examples have this property, there is another
justification for this assumption, related to the Trichotomy Theorem ([14]),
as we discuss next.

Recall that a point x ∈M is called nontrivial if there exist open nonempty
intervals I, J ⊆ M , with x ∈ I, and a definable continuous function F :
I×J →M such that F is continuous and strictly monotone in each variable
separately (the original definition required I = J but it is easy to see that
the two are equivalent).

The Trichotomy Theorem implies that if x ∈M is non-trivial then there
exists an open interval I ′ ∋ x that can be endowed with a definable partial
group operation +, making I ′ into a group-interval (a technical definition
will appear in Definition 3.1 below, but for now, we may think of a group-
interval as an open interval (−a, a) in an ordered divisible abelian group,
endowed with the partial group operation). The definition of the group
operation on I ′ may require additional parameters.

Consider for example the expansion of the ordered real numbers by the
ternary operation x+y−z, defined for all x, y, z with |x−y|, |y−z|, |x−z| 6 1.
In this structure and in elementarily equivalent ones every point a is non-
trivial and contained in an a-definable group-interval. Note however that
the group-intervals can be ‘far apart’, meaning that there are no definable
bijections between them.

In our current paper we propose a systematic treatment of the group-
intervals which arise from the Trichotomy Theorem and suggest a technique
of “stretching” these intervals as much as possible. We call an interval group-
short (Definition 4.1) if it can be be written as a finite union of points and
open intervals, each of which endowed with the structure of a group-interval.
After [4], we develop a pre-geometry based on the closure relation: a ∈ cl(A)
if there is a gp-short interval containing a whose endpoints are in dcl(A).
Our main theorem here (Theorem 6.7) is:

Theorem 2. Let I, J ⊆M be open intervals and assume that there exists a
definable F : I × J →M which is continuous and strictly monotone in each
variable. Then either I or J (but possibly not both) is group-short.
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1.3. Let us now sketch the proof of Theorem 1. We start with an inter-
pretable group G. Using elimination of one-dimensional quotients (Corol-
lary 7.8) and Theorem 2, we prove first that every one-dimensional subset
of G is group-short (Theorem 8.2). We also show, in Proposition 7.10, that
there are definable maps f i : G → M , i = 1, . . . , k and a definable set
X ⊆ Πk

i=1f
i(G) such that G is in definable bijection with X/E for some

definable equivalence relation E. Our final goal is to prove that each defin-
able set f i(G) is a finite union of group-short intervals (in which case we
can eliminate X/E).

To achieve that, we endow G with a group topology with a definable
basis. This is done by identifying a neighborhood of a generic point in G
with an open subset of Mdim(G). Just as with definable groups, we can use
the distinction between definably compact interpretable groups and those
which are not definably compact. In the first case, we prove in Theorem
8.19 definable choice for definable subsets of G using Edmundo’s ideas [2].
As a result, it follows that each f i(G) is group-short. In the general case, we
use induction on dimension, together with the standard analysis of groups
definable in o-minimal structures as quotients of semisimple groups, torsion-
free abelian groups, etc. This finishes our final goal and the proof of Theorem
1.

At the end of the argument we show not only that G is in definable
bijection with a definable group, but also prove:

Theorem 3. If G is a definable group then there is a definable injection
f : G→ Πk

i=1Ji, where each Ji ⊆M is a definable group-interval.
There are also definable one-dimensional groups H1, . . . , Hk and a defin-

able set-injective map h : G→ Πk
i=1Hi (with no assumed connection between

the group operations of G and of the Hi’s).

Note that the group-intervals (or the groups) in the above result are not
assumed to be orthogonal to each other, namely, there could be definable
maps between some of them. However, the theorem might help in reducing
problems about definable groups, such as Pillay’s Conjecture, to structures
which expand ordered groups, or at least group-intervals. As a first attempt,
it would be interesting to see if one can prove, using Theorem 3, an analogue
of the Edmundo-Otero theorem, [3], on the number of torsion points in
definably compact abelian groups in arbitrary o-minimal structures.

Theorem 3 answers positively a question which Hrushovski asked the sec-
ond author in past correspondence.

On the structure of the paper: In Section 2 we recall the Marker-
Steinhorn theorem and apply it for our purposes. In Sections 3 and 4 we
study various properties of group-intervals and then use these, in Section
5, to develop the pre-geometry of the short closure. In Section 6 we prove
Theorem 2 and in Section 7 we discuss quotients and their various properties.
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Finally, in Section 8 we analyze interpretable groups and prove Theorem 1
and Theorem 3.

2. Model theoretic preliminaries

Fix M = ⟨M,<, . . .⟩ an arbitrary (dense) o-minimal structure, with or
without endpoints. The following observation is is easy:

Fact 2.1. Assume that M1 ̸= ∅ is a subset of M with the following proper-
ties:

(i) dclM(M1) =M1.
(ii) The restriction of < to M1 is a dense linear ordering.
(iii) If M1 has a maximum (minimum) point then M has a maximum

(minimum) point.
Then M1 = ⟨M1, < . . .⟩ is an elementary substructure of M.

Proposition 2.2. Assume that for all a, b, c ∈ M , there is no definable
bijection between intervals of the form (a, b) and (c,+∞), and there is also
no definable bijection between intervals of the form (−∞, a) and (b,+∞).
Let M ≺ N and let M1 = {x ∈ N : ∃m ∈ M m > x } be the “downward
closure” of M in N . Then M1 is a substructure of N , and

(1) M1 ≺ N .
(2) If X ⊆ Nk is an N -definable set then X ∩Mk

1 is M1-definable.

Proof. (1) By the choice of M1 as the downward closure of an elementary
substructure, M1 satisfies (ii) and (iii) of 2.1. It is therefore sufficient to
prove that dclN (M1) =M1. The proof is similar to [12, Lemma 2.3]

As in [12], induction allows us to treat only the case of b ∈ dclN (a),
for a ∈ M1. We must show that b ∈ M1, so it is sufficient to find an
element m ∈ M , with b 6 m. If b ∈ dclN (∅) then it is already in M so we
are done. Otherwise, there is a ∅-definable, continuous, strictly monotone
function f : (a1, a2) → M , for a1, a2 ∈ M ∪ {±∞}, such that a ∈ (a1, a2)
and b = f(a).

Assume first that f is strictly increasing on (a1, a2) and consider two cases:
If a2 = +∞ then, by our construction ofM1, there existsm ∈ (a1,+∞) with
a 6 m. Hence b = f(a) 6 f(m) ∈ M . If a2 ∈ M then, by our assumptions,
the limit ℓ = limt→a−2

is in M so we have b 6 ℓ.

Assume now that f is strictly decreasing. Then, by our assumptions on
M, the limit ℓ = limt→a+1

f(t) is not +∞. It follows that ℓ ∈ M and by

monotonicity, b 6 ℓ. We therefore showed that dclN (M1) =M1.
(2) Since M1 is convex in N it is clearly Dedekind complete in N and

hence we can apply the Marker-Steinhorn theorem, [10], on definability of
types which says exactly what we need. �
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3. group-intervals

Definition 3.1. By a positive group-interval I = ⟨(0, a), 0,+, <⟩ we mean
an open interval with a binary partial continuous operation + : I2 → I, such
that

(i) x+ y = y+x (when defined), (x+ y)+ z = x+(y+ z) when defined,
and x < y → x+ z < y + z when defined.

(ii) For every x ∈ I the domain of y 7→ x+ y is an interval of the form
(0, r(x)).

(iii) For every x ∈ I, we have limx′→0 x
′ + x = x (this replaces the

statement 0 + x = x) and limx′→r(x) x + x′ = a (this replaces x +
r(x) = a).

We say that I is a bounded positive group-interval if the operation +
is only partial. Otherwise we say that it is unbounded (in which case the
interval is actually a semigroup).

We similarly define the notion of a negative group-interval ⟨(a, 0),+, <⟩
and also a group-interval ⟨(−a, a),+, <⟩ (in this case we also require that
for every x ∈ (−a, a) there exists a group inverse). We say that an open
interval I is a generalized group-interval if it is one of the above possibilities.

Our use of the symbols 0, a,−a is only suggestive. The endpoints of the
interval can be arbitrary elements in M ∪ {±∞}, so when we write that an
interval (b, c) is, say, a bounded group-interval, we think of the elements b
and c as a and −a, respectively, from the definition.

Note. If the interval (a, b) can be endowed with a definable + which makes it
into a generalized group-interval then there is an ab-definable family of such
operations (we just take the operation + and vary the parameters which
defined it, and further require the domain to be (a, b) and the operation to
satisfy (i), (ii) and (iii) from the definition).

The following is easy to verify:

Fact 3.2. (i) If (a, b) can be endowed with the structure of a bounded group-
interval then we can also endow it with a structure of a bounded positive
group-interval (making a into 0).

(ii) Conversely, if (a, b) can be endowed with a structure of a bounded
positive group-interval then it can also be endowed with the structure of a
bounded group-interval.

(iii) If I is a generalized group-interval then any nonempty open subin-
terval of I can be endowed with the structure of a generalized group-interval.

Theorem 3.3. Assume that M is an o-minimal structure and let It =
(a0, at), t ∈ T , be a definable family of intervals, all with the same left
endpoint. Let I = (a0, a) =

∪
t It. If each interval It can be endowed with

the structure of a generalized group-interval then there is a1, a0 6 a1 < a
such that (a1, a) admits the structure of a generalized group-interval.
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Proof. First note that if there exists some a1 ∈ [a0, a) and a definable con-
tinuous injection sending (a1, a) onto a subinterval (a2, a3) ⊆ (a0, a), with
a2 < a3 < a, then (a2, a3) is contained in one of the intervals It and hence, by
3.2(iii), it inherits a structure of a generalized group-interval itself. Clearly
then (a1, a) can also be endowed with such a structure. We assume then
that there is no such definable injection in M.

Consider now the structure I whichM induces on the interval I = (a0, a).
By that we mean that the ∅-definable sets in I are the intersection of ∅-
definable subsets of Mn with In. By [14, Lemma 2.3], every M-definable
subset of In is definable in I (the result is proved for closed intervals but
the result for open intervals immediately follows). The points a0 and a are
now identified with −∞ and +∞ in the sense of I, respectively. We may
assume from now on that M = I.

Our above assumptions on I translate to the fact that M satisfies the
assumptions of Proposition 2.2. Namely, that there are no −∞ 6 a1, a2 <
+∞ and a3 ∈M for which (a1,+∞) is in definable bijection with an interval
of the form (a2, a3).

Using our Note above, we may assume that there is a ∅-definable family
of (partial) operations +t : It × It → It making each It into a generalized
group-interval. Indeed, to see that, we use the note to “blow up” each It
to a t-definable family of group-intervals {Is,t = ⟨It,+s,t⟩ : s ∈ St}, all of
them with domain It. By compactness, we can show that as we vary t ∈ T
the family of St’s and +s,t can be given uniformly. We now replace the
original family {It}, with the family {Is,t : t ∈ T & s ∈ St}, on which the
group operations are given uniformly. Furthermore, we may assume that
all intervals are either positive group-intervals, negative group-intervals, or
group-intervals uniformly (we partition the family into the various sets and
choose one whose union is still of the form (−∞,+∞)). For simplicity we
still denote the intervals by It and the parameter set by T .

We first consider the case where each It is a positive group-interval (bounded
or unbounded).

Each interval It = (−∞, a(t)) is a positive group-interval (recall that in
M the point −∞ plays the role of 0). Furthermore, we have

∪
t∈T It =

(−∞,∞). Consider now a sufficiently saturated elementary extension N
of M and take a′ < +∞ in N such that a′ > m for all m ∈ M . By our
assumptions, there is t0 ∈ T (N ) such that (−∞, a′) ⊆ It0 and therefore
there is a positive group-interval operation +t0 on the interval (−∞, a′),
which is definable in N .

We now let M1 be the downward closure of M in N as in Proposition
2.2. By the same proposition, the intersection of the graph of +t0 with M3

1 ,
call it G, is a definable set in the structure M1.

Let’s see first that in M1, the set G is the graph of a positive group-
interval operation on (−∞,∞) (with −∞ playing the role of 0).
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(1) G is the graph of a partial function from M2
1 into M1: this is clear

since for every (x, y) ∈ N2 there is at most one z ∈ N such that (x, y, z) ∈ G.
Call it +G.

(2) +G is continuous, since the order topology of M1 is the subspace
topology of N and M1 is convex in N .

(3) +G is associative and commutative when defined, as inherited from
N .

(4) +G respects order: again, inherited from N .
(5) For every x ∈ (−∞,∞), the domain of y 7→ x+G y is a convex set in

M1 of the form (−∞, rG(x)): Indeed, the domain of y 7→ x+t0 y in N is an
interval (−∞, rt0(x)). Hence, the domain of y 7→ x+Gy is the intersection of
(−∞, rt0(x)) withM1. SinceM1 is closed downwards in N , this intersection
is (−∞, rG(x)), where rG(x) = +∞ if rt0(x) is greater than all elements of
M1 and otherwise it is some element of M1.

(6) Consider limx′→0 x
′ +G x. Since this limit was −∞ in N (i.e. 0 in

the original structure), it remains so in M1, because M1 was downwards
closed in N . It is left to see that limx′→rG(x′) x +G x′ = ∞ (i.e. a in the
original structure). This follows from the fact that for every t we have
limx′→rt(x′) x+t x

′ = a(t), and supt a(t) = ∞.
We therefore showed that +G makes (−∞,+∞) a positive group-interval

in the structure M1.
Since M ≺ M1 we can now write down the (first-order) properties which

make +G into an operation of a positive group-interval in M1 and obtain an
operation + on M , which is definable in M. This completes the case where
each It is a positive group-interval.

Assume now that each It is a group-interval. If each It is bounded then, as
we noted earlier we can transform it into a positive bounded group-interval
and finish as above. If It is unbounded then a0 = −∞t and a(t) = +∞t.
We can now fix some a1 ∈ (a0, a) and restrict our attention to those t’s for
which a1 ∈ It. For each such t we can endow (a1, a(t)) with the structure of
an unbounded positive group-interval, and then finish as above.

Finally, if each It is a negative group-interval (so It = (a0, a(t)) = (−∞, a(t))),
then we can again assume that there is an a1 which belongs to all It, and
replace each It with the interval (a1, a(t)), endowed with the structure of a
bounded positive group-interval. This ends the proof of the theorem. �

Note: We don’t claim that the operation +G that we obtain in M1 belongs
to the family {+t : t ∈ T} that we started with. E.g., in the structure
⟨R, <,+⟩, take +t to be the restriction of the usual + in R to an inter-
val It = (0, t). Each It is a bounded positive group-interval but the union
(0,+∞) can only be endowed with the structure of an unbounded positive
group-interval.

We end this section with an observation about group-intervals and defin-
able groups.
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Lemma 3.4. Let ⟨I,+⟩ be a generalized group-interval. Then there exists
a definable one-dimensional group ⟨H,⊕⟩ and a definable σ : I → H, such
that σ(x + y) = σ(x) ⊕ σ(y), when x + y is defined. Said differently, every
generalized group-interval can be embedded into a definable one-dimensional
group.

If I is a bounded generalized group-interval the H is definably compact
and if I is unbounded then H is linearly ordered.

Proof. Assume that I = (0,∞) is an unbounded positive group-interval.
Then we let H = I × {−1} ∪ {0} ∪ I × {+1} (with −1, 0,+1 suggestive
symbols for elements in M). We define a ⊕ 0 = x for every a ∈ H and
define ⟨x, i⟩ ⊕ ⟨y, j⟩ to be ⟨x + y, i⟩ if i = j. If i ̸= j and x < y we let
⟨x, i⟩ ⊕ ⟨y, j⟩ = ⟨z, j⟩, with z ∈ I the unique element such that x + z = y.
if y < x then ⟨x, i⟩⊕⟩y, j⟩ = ⟨z, i⟩, with z the unique element in I such
that y+ z = x. The group H we obtain is linearly ordered and torsion-free.
Obviously I is embedded in H.

Assume now that I = (0, a) is a positive bounded group-interval and let
a/2 ∈ I denote the unique element in I such that limt→a/2 t/2 + t/2 = a.
We consider H the half-open interval [0, a/2) with addition “modulo a/2”.
Namely, for x, y ∈ [0, a/2),

x⊕ y =

{
x+ y if x+ y ∈ [0, a/2)
x+ y − a/2 if x+ y > a/2

The group H is a one-dimensional definably compact group. To see that
I is embedded in H, consider the map x 7→ x/4 sending I into (0, a/4) (by
x/4 we mean the unique element y ∈ I such that y + y + y + y = x. It is
easy to check that this is an embedding of I into H. �

4. Gp-short and gp-long intervals

4.1. Definitions and basic properties. We assume here that M is an
arbitrary sufficiently saturated o-minimal structure.

Definition 4.1. An interval I ⊆ M is called a group-short (gp-short) in-
terval if it can be written as a finite disjoint union of points and open in-
tervals, each of which can be endowed with the structure of a generalized
group-interval. An interval which is not group-short is called a gp-long in-
terval.

Although there is no global notion of distance in M , in abuse of notation
we say that the distance between a, b ∈M is gp-short if either a = b, or the
interval (a, b) (or (b, a)) is gp-short. Otherwise, we say that this distance is
gp-long.

Note that points, being trivial closed intervals, are gp-short.

Definition 4.2. A definable set S ⊆ Mn is called a gp-short set if there
are gp-short intervals I1, . . . , Ik such that S is in definable bijection with a
subset of ΠjIj.
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Note

(1) It is not hard to see that the above definition coincides with the
previous one in the case of intervals. Namely, if an interval I is also
a gp-short set then it can be written as a finite union of points and
open group-intervals.

(2) As before, if (a, b) is a gp-short interval then it can be endowed with
an ab-definable family of subintervals, with operations on them, wit-
nessing the fact that (a, b) is gp-short. Indeed, we start with partic-
ular parameterically definable such witnesses and let the parameters
(including the end points of the sub-intervals) vary.

(3) If S is a finite union of gp-short intervals then it is in definable bijec-
tion with a definable subset of their cartesian product, after possibly
naming finitely many points. For example, the disjoint union of I
and J is in definable bijection with the set

(I × {b} ⊔ {a} × J) ∪ {⟨a′, b⟩},
for any distinct a, a′ ∈ I and b ∈ J .

It follows that a finite union of gp-short sets is a gp-short set.
(4) It is of course possible that the only gp-short sets in M are finite,

namely there are no definable generalized group-intervals in M. The
Trichotomy Theorem, [14], tells us that in this case the definable
closure is trivial and every point in M is trivial. This is equivalent to
the fact ([11]) that M has quantifier elimination down to ∅-definable
binary relations.

(5) Clearly, if I is a gp-short interval and f : I → M is a definable
continuous injection then f(I) is also a gp-short interval.

Fact 4.3. If I1, . . . , Ik are gp-short intervals then, after fixing finitely many
parameters A, the product X = ΠjIj has strong definable choice. Namely,
if {St : t ∈ T} is a B-definable family of subsets of X then there is an AB-
definable function σ : T → X such that for every t ∈ T , we have σ(t) ∈ St
and if St1 = St2 then σ(t1) = σ(t2).

Proof. We write each Ij as a finite union of points and generalized group-
intervals (possibly over extra parameters), and then repeat standard proof
of definable choice in expansions of ordered groups (see [1]), using the group
operations on each interval. �
Fact 4.4. Assume that S ⊆ Mn is a gp-short set and f : S → Mk is a
definable map. Then f(S) is also a gp-short set.

Proof. By definition, we may assume that S ⊆ ΠjIj , for I1, . . . , Ik gp-short
intervals. By Fact 4.3, there is a definable set X0 ⊆ S such that f |X0 is a
bijection between X0 and f(X0) = f(S). By definition, f(S) is a gp-short
set. �

We now collect a list of important properties.

Fact 4.5. Let {It : t ∈ T} be a definable family of intervals. Then
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(i) The set of all t ∈ T such that It is gp-long is type-definable
(ii) The set of all t ∈ T such that It is gp-short is

∨
-definable.

(iii) If ā ∈ Mm is a tuple and the formula φ(x̄, ā) defines a gp-short set
in Mn, then there is a ∅-definable formula ψ(x̄) such that ψ(ā) holds
and if ψ(b̄) holds then the set defined by φ(x̄, b̄) is gp-short.

Proof. For every natural number K and for every definable family of K
functions F1(x, y, w̄1), . . . , FK(x, y, w̄K), we can write a formula which says:
For every possible writing of It as a union of K intervals I1, . . . , IK and
for every w̄1, . . . , w̄K , it is not the case that F1(−,−, w̄1), . . . , FK(−,−, w̄K)
are operations making I1, . . . , IK , respectively, into group-intervals (here
we need to go through the various possibilities of positive, negative group-
intervals etc). When varying over all possible K’s and all possible families,
we obtain a type-definable definition for the set of t’s for which It is gp-long.
The complement of this set is

∨
-definable.

For (iii), note that if (c, d) is a gp-short interval, then there is a formula
ρ(c, d) saying that (c, d) is the finite union of points and intervals, each
of which is a generalized group-interval. Let θ(x̄, x̄′, ē) be an ē-definable
bijection between φ(Mn, ā) and ΠjIj for some gp-short intervals Ij ’s. Let
ρj be the formula witnessing that Ij is gp-short for each j = 1, . . . ,m.
Then the desired formula ψ(ȳ) says that there exist parameters w̄ such that
θ(x̄, x̄′, w̄) defines a bijection between φ(Mn, ȳ) and Πj(cj , dj) for some gp-
short intervals (cj , dj), witnessed by formulas ρj for j = 1, . . . ,m. �
Theorem 4.6. Let {St : t ∈ T} be a definable family of gp-short, definably
connected subsets of Mn and assume that there is a0 ∈ Mn such that for
every t ∈ T , a0 ∈ Cl(St). Then S =

∪
t St is a gp-short set.

Before we prove the result we note that the requirement about a0 is nec-
essary: Consider the structure on R with the restriction of the graph of +
to all a, b ∈ R such that |a − b| 6 1. In this structure (and in elementary
extensions) there is a group-interval around every point so the whole struc-
ture is a union of gp-short intervals. However, the union (i.e. the universe)
is not gp-short.

Proof. Let πi : Mn → M be the projection onto the i-th coordinate. It
is sufficient to show that each πi(S) is gp-short. Because St is definably
connected, its projection πi(St) = It is an interval, which by Fact 4.4 is
gp-short. Furthermore, πi(a0) ∈ Cl(It). Hence, we may assume from now
on that St = It is a gp-short interval in M and a0 ∈ Cl(It) for every t. It
is sufficient to prove that I =

∪
tCl(It) is gp-short, so by replacing It with

Cl(It) (still gp-short) we may assume that a0 ∈ It for all t. Let I = (a, b).

Claim. There is b1 < b such that the interval (b1, b) is gp-short.

Since each It is a gp-short interval the type p(t), which says that It is
gp-long (see Fact 4.5), is inconsistent. It follows that there exists a fixed
number K such that every It can be written as the union of at most K
generalized group-intervals and K many points.
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We write It = It,1 ∪ · · · ∪ It,K ∪ Ft, such that each It,i = (at,i, at,i+1),
i = 1, . . . ,K, can be endowed with the structure of a generalized group-
interval, and Ft finite. The end points of the It’s are definable functions of
t and b = supt at,K+1.

Let a′ = supt at,K and assume first that a′ < b.
We can restrict ourselves to those t ∈ T such that at,K+1 > a′ and consider

each interval (a′, at,K+1) as a sub-interval of (at,K , at,K+1). We already noted
that (a′, at,K+1) admits the structure of a generalized group-interval. So, we
write at for at,K+1 and consider the family of all generalized group-intervals
(a′, at). By Theorem 3.3 there exists b1 < b such that (b1, b) admits an
operation of a generalized group-interval.

Assume now that a′ = sup at,K = b. In this case, we can replace each It
by I ′t = It,1 ∪ · · · ∪ It,K−1, and still have

∪
t I

′
t = I, and finish by induction

on K.
Just as we found b1 above, we can find a1 > a such that (a, a1) admits

a definable generalized group-interval. Choose t1 such that It1 ∩ (a, a1) ̸= ∅
and t2 such that It2 ∩ (b1, b) ̸= ∅. Since a0 ∈ It1 ∩ It2 , the union of the
two intervals is again an interval, containing (a1, b1), and therefore (a1, b1)
is gp-short. We can therefore conclude that (a, b) is gp-short. �

As a corollary we obtain:

Corollary 4.7. Let (a, b) be an interval which is gp-short.

(1) Assume that c ∈ (a, b). Then there exists a c-definable interval I ⊃
(a, b) such that I is gp-short (possibly witnessed by extra parameters).

(2) There is an a-definable (b-definable) interval I ⊇ (a, b) which is gp-
short (possibly witnessed by extra parameters).

Proof. (1) By our earlier note, (a, b) belongs to a ∅-definable family of gp-
short intervals. Using the parameter c, we obtain a c-definable family of
gp-short intervals, all containing c. By Theorem 4.6, their union is gp-short
(and clearly definable over c).

(2) We do the same, but now obtain an a-definable (b-definable) family of
intervals all with the same left-endpoint a (right endpoint b). We now use
Theorem 4.6. �

Lemma 4.8. Let {St : t ∈ T} be a definable family of gp-short sets and
assume that T is a gp-short subset of Mk. Then the union S =

∪
t∈T St is

gp-short.

Proof. We may assume that T is definably connected. By partitioning each
St, uniformly in t, into its definably connected components we can also
assume that each St is definably connected. It is enough to see that the
projection of S onto each coordinate is gp-short. Let π1 : Mn → M be the
projection onto the first coordinate and let It = π1(St). By Fact 4.4, each
It is a gp-short interval, so it is enough to prove that

∪
t∈T It is gp-short.

Write It = (at, bt) with at and bt definable functions of t. Again, after a
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finite partition, we may assume that t 7→ at and t 7→ bt are continuous on
T .

Let (a, b) =
∪

t It, let a1 = supt at and b1 = inft bt. The image of T under
t 7→ at is an interval I1 and the image of T under t 7→ bt is another interval
I2 (since T is definably connected and the functions are continuous). The
interval (a, b) equals, up to finitely many points, I1 ∪ [a1, b1] ∪ I2.

If a1 < b1 then the interval (a1, b1) is gp-short since it is contained in
all It’s. By Fact 4.4, I1 and I2 are gp-short, hence (a, b) is gp-short. We
therefore showed that π1(S) is gp-short, and prove similarly that each πi(S)
is gp-short. �

5. Short closure and gp-long dimension

5.1. Defining short closure. We follow here ideas from [4].

Definition 5.1. For a ∈M and A ⊆M we say that a is in the short closure
of A, written as a ∈ shcl(A), if either a ∈ dcl(A) or there is b ∈ dcl(A)
such that the distance between a and b is gp-short. Equivalently, the closed
interval [a, b] (or [b, a]) is gp-short.

Note that dcl(A) ⊆ shcl(A).
Clearly, if M expands an ordered group then M = shcl(∅), so our defini-

tion really aims for those o-minimal structures which do not expand ordered
groups.

Fact 5.2. For every a ∈ M and A ⊆ M , a ∈ shcl(A) if and only if there
exists an A-definable, closed, gp-short interval containing a.

Proof. The “if” direction is clear, so we only need to prove the “only if”.
Assume that we have [a, b] gp-short with b ∈ dcl(A). By Corollary 4.7(2),
there is a b-definable gp-short interval [c, b] which contains [a, b], so a ∈
[c, b]. �
Lemma 5.3. The gp-short closure is a pre-geometry. Namely:

(i) A ⊆ shcl(A).
(ii) A ⊆ B ⇒ shcl(A) ⊆ shcl(B).
(iii) shcl(shcl(A)) = shcl(A).
(iv) shcl(A) = ∪{shcl(B) : B ⊆ A finite }.
(v) (Exchange) a ∈ shcl(bA) \ shcl(A) → b ∈ shcl(aA).

Proof. (i) (ii) are clear. (iii) Assume that ai ∈ shcl(A) for i = 1, . . . , n. By
Fact 5.2, for every i, there is a gp-short interval Ii containing ai. Assume
now that b ∈ shcl(a1, . . . , an). We want to show that b ∈ shcl(A). Let
S = I1 × · · · × In.

By 5.2, there is a gp-short interval Jā ∋ b, defined over a1, . . . , an, which
we may assume belongs to a ∅-definable family of gp-short intervals. Con-
sider the set of all intervals Js̄, for s̄ ∈ S. By Fact 4.8, the union J =

∪
s̄∈S Js̄

is gp-short (and contains b). Since S is A-definable so is J .
(iv) is clear from the definition.
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(v) Assume that a ∈ shcl(bA) \ shcl(A). Then there is an Ab-definable
gp-short interval [b1, b2] containing a. Since a /∈ shcl(A), it follows that
bi /∈ dcl(A) for i = 1, 2, so Exchange for dcl implies that b ∈ dcl(biA). By 4.7,
there is an a-definable gp-short interval containing [b1, b2] and hence b1, b2 ∈
shcl(aA). By transitivity of shcl, proved in (i), we have b ∈ shcl(aA). �

5.2. Long dimension of tuples.

Definition 5.4. A set B ⊆ M is called shcl-independent over A ⊆ M if
for every a ∈ B, we have a /∈ shcl(B ∪A \ {a}). For (a1, . . . , an) ∈Mn and
A ⊆M we let the gp-long dimension of ā over A, lgdim(ā/A), be the maximal
m 6 n such that ā contains a tuple of length m which is shcl-independent
over A.

Note.

(1) We have lgdim(a/A) 6 dim(a/A).
(2) Because the dimension is based on a pre-geometry we have the di-

mension formula

lgdim(a, b/A) = lgdim(a/bA) + lgdim(b/A).

(3) If ā, b̄ realize the same type over A then lgdim(ā/A) = lgdim(b̄/A).
(4) If M is an expansion of an ordered group then the whole universe is

gp-short and therefore lgdim(a/A) = 0 for every a ∈M , A ⊆M . On
the other end, it is possible that no group-intervals are definable in
M. In this case, shcl(A) = dcl(A) and by the Trichotomy Theorem,
[14], the resulting pre-geometry is trivial.

Definition 5.5. For I = (a, b) and c ∈ I, we say that c is long-central in I
if both (a, c) and (c, b) are gp-long.

Fact 5.6. Let A ⊂M be smaller than the saturation of M .

(1) If I is a definable gp-long interval, then there is a ∈ I such that
a /∈ shcl(A).

(2) Let a ∈ Mn, lgdim(a/A) = k, and p(x) = tp(a/A). Then for every
B ⊇ A there exists b |= p such that lgdim(b/B) = k.

(3) Let I = (d1, d2) be a gp-long interval and a ∈ I long-central. Given
any b̄ ∈ Mn, there exist c1, c2, d1 6 c1 < c2 6 d2, such that a is
long-central in (c1, c2) and lgdim(b̄/A) = lgdim(b̄/Ac1c2).

Proof. (1) Consider the type over A:

p(x) : {x ∈ I} ∪ {x /∈ (a1, a2) : a1, a2 ∈ dcl(A) &(a1, a2) gp-short }
(note that in the definition of the type we are just going over all a1, a2 ∈
dcl(A) such that (a1, a2) is gp-short. We don’t claim any uniformity here).

If p(x) is inconsistent then I is contained in a finite union of gp-short
intervals, which is impossible.

(2) We prove the result for a ∈M , with lgdim(a) = 1. The case of Mn is
done by induction. The set p(M) can be written as the intersection of open
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intervals, defined over A, which are necessarily gp-long. By (1), each such
interval contains a point b /∈ shcl(B). By compactness we can find b |= p
with b /∈ shcl(B).

(3) Write I = (d1, d2). Using (1), we first choose c1 ∈ (d1, a) such that
c1 /∈ shcl(Ab̄a). In particular, (c1, a) is gp-long. Next, choose c2 ∈ (a, d2)
such that c2 /∈ shcl(Ac1b̄a). It follows that lgdim(c1c2/Ab̄) = 2 and therefore,
by the dimension formula, lgdim(b̄/Ac1c2) = lgdim(b̄/A). �

5.3. Long dimension of definable sets.

Definition 5.7. For X ⊆Mn definable over a small A ⊆M , we let

lgdimA(X) = max{lgdim(a/A) : a ∈ X}.

By Fact 5.6(2), if X is definable over A and A ⊆ B then lgdimB(X) =
lgdimA(X), so we can let lgdim(X) := lgdimA(X) for any A over which X
is definable.

We say that a ∈ X is long-generic over A if lgdim(a/A) = lgdim(X).

An immediate corollary of the definition and the above observation is:

Corollary 5.8. If X =
∪n

i=1Xi is a finite union of definable sets then
lgdim(X) = maxi lgdimXi.

Fact 5.9. A definable X ⊆Mn is gp-short if and only if lgdim(X) = 0.

Proof. Without loss of generality X is definably connected, defined over ∅.
If X is gp-short then its projection on each coordinate is gp-short so every
tuple in X is contained in shcl(∅). Conversely, if some projection of X is
gp-long then, by Fact 5.6(1), this projection contains an element of long
dimension 1, so X contains a tuple of positive long dimension over ∅. �

Definition 5.10. A k-long box is a cartesian product of k gp-long open
intervals.

If B = Πn
i=1(ci, di) is an n-long box in Mn, we say that ā = (a1, . . . , an) ∈

B is long-central in B if for every i = 1, . . . , n, ai is long-central in (ci, di).

Clearly, if B is an n-long box defined over A, a ∈ B and lgdim(a/A) = n
then a is long-central in B.

The following is easy to verify:

Fact 5.11. Let B ⊆Mn be an n-long box and let a be long-central in B. If
C ⊆ B is some A-definable, definably connected, gp-short set containing a,
then the topological closure of C in Mn is contained in B.

Fact 5.12. Assume that X ⊆ Mn is an A-definable set, a ∈ X and
lgdim(a/A) = n. Then there exists A1 ⊇ A and an A1-definable n-long
box B, such that a ∈ B, Cl(B) ⊆ X and lgdim(a/A1) = n. In particular,
X ⊆Mn has long dimension n if and only if it contains an n-long box.
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Proof. We use induction on n.
For n = 1, if X ⊆M is A-definable then a belongs to one of its definably

connected components, which is an A-definable interval containing a. Since
lgdim(a/A) = 1, a must be long-central in it. We can then apply Fact 5.6(3).

For a ∈Mn+1, we may assume that X is an n+1-cell and let π :Mn+1 →
Mn be the projection onto the first n coordinates. We let f, g : π(X) →M
be the A-definable boundary functions of the cell X, with f < g on π(X).
Because lgdim(a) = n+1, the interval (f(π(a)), g(π(a))) is gp-long. Apply-
ing 5.6(3), we can find e1, e2, with f(π(a)) < e1 < an+1 < e2 < g(π(a)), such
that an+1 is long-central in (e1, e2) and such that lgdim(a/Ae1e2) = n + 1.
Consider the first order formula over Ae1e2, in the variables x = (x1, . . . , xn),
which says that f(x) < e1 < e2 < g(x). This is an Ae1e2-definable property
of π(a), so by induction there exists an n-long box B ⊆ π(X), defined over
A1 ⊇ A, and containing π(a), with lgdim(π(a)/A1e1e2) = n, such that for
all x ∈ B, we have f(x) < e1 < e2 < g(x). The box B × (e1, e2) is the
desired n+ 1-long box. �

We can now conclude:

Fact 5.13. Assume that lgdim(a/A) = n, for a ∈ Mn and let p(x) =
tp(a/A). Then there exists an n-long box B ⊆ Mn, defined over A1 ⊇ A,
such that a ∈ B ⊆ p(M), and lgdim(a/A1) = n.

Proof. Write the type p(x) as the collection of A-formulas {ϕi(x) : i ∈ I}
and let Xi = ϕi(M). We let B(x, y) = Πn

j=1(xj , yj) be a variable-dependent

n-box, and consider the type q(x, y) which is the union:

{Cl(B(x, y)) ⊆ Xi : i ∈ I}∪“B(x, y) is an n-long box”∪“ lgdim(a/xyA) = n′′.

By Fact 4.5, q(x, y) is indeed a type over A. By Fact 5.12, the type is
consistent, so we can find a box as needed. �

Lemma 5.14. Assume that {Xt : t ∈ T} is a definable family of subsets of
Mn, with X =

∪
t∈T Xt. Assume that lgdim(T ) 6 ℓ and for every t ∈ T , we

have lgdim(Xt) 6 k. Then lgdim(X) 6 k + ℓ.

Proof. Without loss of generality, X is ∅-definable. Take x ∈ X with
lgdim(x/∅) = lgdim(X), and choose t ∈ T so that x ∈ Xt. We then have

lgdim(xt/∅) = lgdim(x/t) + lgdim(t) = lgdim(t/x) + lgdim(x).

By our assumptions, lgdim(x/t) 6 k and lgdim(t) 6 ℓ, hence lgdim(t/x) +
lgdim(x) = lgdim(xt) 6 k+ℓ. It follows that lgdim(x) 6 k+ℓ so lgdim(X) 6
k + ℓ. �

6. Functions on gp-long and gp-short intervals, and the main
theorem

Lemma 6.1. 1. Let I be a gp-long interval, and assume that f : I →M is
A-definable, continuous and strictly monotone. Let t0 be long-central in I.
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For every t ∈M , let

Sh(t) = {x ∈M : the distance between x and t is gp-short}.
Then Sh(t0) ⊆ I and f(Sh(t0)) = Sh(f(t0)).

Proof. It is clear that Sh(t0) ⊆ I. Because f is continuous it sends ele-
ments whose distance is gp-short to elements of gp-short distance, namely
f(Sh(t0)) ⊆ Sh(f(t0)). Because f is strictly monotone, J = f(I) is also
gp-long and f(t0) is long-central in J . We now apply the same reasoning to
f−1|J and conclude that f(Sh(t0)) = Sh(f(t0)).

Lemma 6.2. Assume that f : X → M is an A-definable function with
lgdim(X) = k > 0. If f(X) is gp-short then there are finitely many
y1, . . . , ym ∈ M , all in dcl(A), such that lgdim(X \ f−1({y1, . . . , ym}) < k.
In particular, f is locally constant at every long-generic point in X.

Proof. The set of all points in X at which f is locally constant is definable
over A and has finite image. It is therefore sufficient to prove that f is
locally constant at every a ∈ X, with lgdim(a/A) = k.

If b = f(a) then k = lgdim(ab/A) = lgdim(a/Ab) + lgdim(b/A). But
b ∈ f(X), a gp-short set defined over A and therefore lgdim(b/A) = 0. It
follows that lgdim(a/Ab) = k, so in particular, dim(a/Ab) = k. It follows
that there is a neighborhood of a, in the sense of X, on which f(x) = b. �

As a corollary we have:

Lemma 6.3. Assume that X ⊆ Mk+1 is definable, dim(X) = k + 1,
lgdim(X) = k and the projection π(X) onto the last coordinate is gp-short.
Then X contains a definable set of the form B× J , for B ⊆ X a k-long box
and J ⊆M an open gp-short interval.

Proof. Take ⟨a, b⟩ generic in X, with lgdim(a) = k. Since dimX = k+1 and
⟨a, b⟩ is generic in X, there exists an interval J = (σ1(a), σ2(a)), for some
∅-definable functions σ1, σ2, such that {a} × J ⊆ X. The functions σ1, σ2
take values in the closure of π(X), namely in a gp-short set. By Lemma 6.2,
the functions are locally constant on a 0- definable set Y ⊆ Mk containing
a, so we can finish by Lemma 5.12. �

Here is our main lemma:

Lemma 6.4. Assume that L ⊆ Mn is definable, lgdimL = k, J ⊆ M a
gp-short open interval and F : L× J →M definable over A. If F (L× J) is
gp-short then there exist an A-definable set S ⊆ L with lgdim(S) < k and
finitely many A-definable partial functions g1, . . . , gK : J →M such that for
all ℓ ∈ L \ S, and all x ∈ J , we have

K∨
i=1

f(ℓ, x) = gi(x).

Proof. For every x ∈ J , let fx : L → M be defined by fx(ℓ) = f(ℓ, x). By
Lemma 6.2, there exists an Ax-definable set Lx ⊆ X such that fx is locally
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constant on Lx (in particular, fx(Lx) is finite) and lgdim(X \ Lx) < k. By
o-minimality, there exists a uniform bound K on the size of fx(Lx), so we
can define (possibly partial) functions gi : J → M , i = 1, . . . ,K, such that
for every ℓ ∈ Lx, we have f(ℓ, x) = gi(x) for some i = 1, . . . ,K. If we let
S =

∪
x∈J(X \ Lx) then, by Lemma 5.14, we have lgdim(S) < k. �

As a corollary we have:

Lemma 6.5. Let L ⊆ M2 be a definable set, with lgdim(L) = 2, and
J = (a, b) a gp-short interval. Assume that f : L × J → M is a definable
function and that a0 is generic in J (in the usual sense).

Then there exist a 2-long box B ⊆ L, an open interval J ′ ⊆ J containing
a0, and a definable partial, two-variable function g :M2 →M , such that for
every ℓ ∈ B and x ∈ J ′, we have

f(ℓ, x) = g(f(ℓ, a0), x).

Proof. Assume that all data is definable over ∅. By Lemma 6.3, we may
assume that f is continuous (we apply the lemma to the set of all points in
L× J at which f is continuous). Fix a0 ∈ J , and for every y ∈M let

Ly = {ℓ ∈ L : f(ℓ, a0) = y}.
Notice that for every ℓ ∈ Ly, the image Jy = f({ℓ} × J) is a gp-short
interval containing y. It follows from Theorem 4.6 that the union

∪
ℓ∈Ly Jy =

f(Ly × J) is gp-short. We can therefore apply Lemma 6.4 to f |Ly × J .
Hence, there exists a number ky, definable functions g1,y(x), . . . , gky ,y(x)
and a definable set Sy ⊆ Ly with lgdimSy < lgdimLy, such that for all
ℓ ∈ Ly \ Sy and all x ∈ J we have

ky∨
i=1

f(ℓ, x) = gi,y(x) = gi,f(ℓ,a0)(x).

By o-minimality, the number ky is bounded uniformly in y, so we can find
K, and definable partial two-variable functions gi(x, y), i = 1, . . . ,K, such
that for every y ∈M , ℓ ∈ Ly \ Sy and x ∈ J ,

K∨
i=1

f(ℓ, x) = gi(y, x) = gi(f(ℓ, a0), x).

If we let S =
∪

y S
y then, by the dimension formula (similar to Lemma

5.14) lgdim(S) < lgdim(
∪

y L
y) = lgdimL and therefore L \ S contains a

2-long box B. Finally, for i = 1, . . . ,K, let Xi be all (ℓ, x) ∈ B × J such
that f(ℓ, x) = gi(f(ℓ, a0), x). Each Xi is ∅-definable, B × J =

∪
iXi, so

at least one of these Xi’s contains a point ⟨ℓ, a0⟩ with lgdim(ℓ/a0) = 2. It
follows that this Xi contains a box of the form B′ × J ′ with lgdim(B′) = 2
and J ′ ∋ a0 an open interval. We now have, for every ℓ ∈ B′ and x ∈ J ′,

f(ℓ, x) = gi(x, f(ℓ, a0)).

�
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Until now we did not use at all the Trichotomy Theorem for o-minimal
structures. The next result requires it.

Corollary 6.6. Assume that I1, I2, I3 are gp-long intervals. Let f : I1 ×
I2 × I3 → M be a definable function. Then there are gp-long intervals
I ′1 ⊆ I1, I

′
2 ⊆ I2 and I ′3 ⊆ I3 such that for all ⟨a1, b1⟩, ⟨a2, b2⟩ ∈ I ′1 × I ′2,

(1)
∃x ∈ I ′3 (f(a1, b1, x) = f(a2, b2, x))

⇔
∀x ∈ I ′3 (f(a1, b1, x) = f(a2, b2, x))

Namely, the family of functions f(a, b,−)|I ′3, for ⟨a, b⟩ ∈ I ′1 × I ′2, is at
most 1-dimensional.

Proof. Without loss of generality, f is continuous. We assume that all data
are definable over ∅. Fix ⟨a1, a2, a0⟩ ∈ I1×I2×I3 with lgdim(a1, a2, a0/∅) =
3.

Assume first that there is no gp-short open interval containing a0. In
this case, by the Trichotomy Theorem, a0 is a trivial point, so the function
f(a1, a2,−) is either constant around a0, namely equals some g(a1, a2), or
equals some ∅-definable 1-variable function h(−). In either case there are
gp-long I ′j ⊆ Ij , j = 1, 2, 3, for which we either have f(a′1, a

′
2, x) = g(a′1, a

′
2)

or f(a′1, a
′
2, x) = h(x), for all (a′1, a

′
2, x) ∈ I ′1 × I ′2 × I ′3. In either case (1)

holds.
We can therefore assume that there is some gp-short interval J around

a0. By Lemma 6.5, there are gp-long intervals I ′1 ⊆ I1 and I ′2 ⊆ I2 such that

(⋆) for every ℓ1, ℓ2 ∈ I ′1×I ′2, the functions f(ℓ1,−) = f(ℓ2,−) agree in some
neighborhood of a0 if and only if f(ℓ1, a0) = f(ℓ2, a0).

By Fact 5.6(3), we can choose the intervals I ′1 = (a′, b′) and I ′2 = (a′′, b′′)
so that a0 /∈ shcl(a′b′a′′b′′). Because a0 is shcl-generic in I3, and (*) is a
first order formula about a0 over a′b′a′′b′′, there is a gp-long interval I ′3 ⊆ I3
containing a0 such that for all x ∈ I ′3 we have

If ℓ1, ℓ2 ∈ I ′1 × I ′2, then f(ℓ1,−) and f(ℓ2,−) agree on a neighborhood of
x if and only if f(ℓ1, x) = f(ℓ2, x).

But now, by continuity and definable connectedness of I ′3 if f(ℓ1,−) and
f(ℓ2,−) agree anywhere in I ′3 then they must agree everywhere on I ′3. �

We now reach our main theorem of this section:

Theorem 6.7. Let f : I × J → M be a definable function which is strictly
monotone in each variable separately. Then either I or J is gp-short.

Proof. We start by assuming, for contradiction, that both I and J are gp-
long. Write I = (a, b) and J = (c, d). The general idea is that outside of
subsets of I×J of long dimension smaller than 2, we have a phenomenon sim-
ilar to local modularity (every definable family of curves is one-dimensional)
and therefore we can apply the standard machinery of local modularity to
produce a definable group.
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For x ∈ I, we write fx(y) := f(x, y). By partitioning I × J into finitely
many sets, and by applying Fact 5.12, we may assume that f is continuous
and for every x ∈ I, fx is strictly monotone, say increasing.

Claim 6.8. There exists a gp-long interval K and a gp-long interval I1 ⊆ I
such that for all x ∈ I1, we have K ⊆ fx(J).

Proof. Take x0 ∈ I to be shcl-generic. The interval f(x0, J) is gp-long so we
can find y0 in it which is shcl-generic over x0, and so lgdim(x0, y0/∅) = 2.
The set {(x, y) ∈ I ×M : y ∈ f(x, J)} is ∅-definable and contains ⟨x0, y0⟩,
hence there is a cartesian product I1 ×K of two gp-long intervals which is
contained in it. �

To simplify notation, we assume that for all x ∈ I, we have K ⊆ fx(J).
We can now consider the family of functions {fxf−1

y |K : x, y ∈ I} as a
collection of continuous functions from K into M . Let

F (x, y, t) = fxf
−1
y (t).

The function F is a map from I × I × K. We apply Corollary 6.6, and
find I1 ⊆ I, I2 ⊆ I, and I3 ⊆ K all gp-long such that for every x, x′ ∈ I1,
y, y′ ∈ I2 and t ∈ I3, if F (x, y, t) = F (x′, y′, t) then for all t′ ∈ K we have
F (x, y, t′) = F (x′, y′, t′). Namely, for all x1, x

′
1 ∈ I1 and x2, x

′
2 ∈ I2,

(2) ∃t ∈ I3 fx1f
−1
x2

(t) = fx′
1
f−1
x′
2
(t) ⇔ ∀t ∈ I3 fx1f

−1
x2

(t) = fx′
1
f−1
x′
2
(t)

We now fix ⟨x0, y0, t0⟩ long-generic in I1×I2×I3 and let w0 = fx0f
−1
y0 (t0).

We also let a0 = f−1
y0 (t0). By Lemma 6.1, if t ∈ Sh(t0) then we have

f−1
y0 (t) ∈ Sh(a0), hence by the same lemma, the map y 7→ f−1

y (t) sends
Sh(y0) bijectively onto Sh(a0). Similarly, for every y ∈ Sh(y0), the map
t 7→ f−1

y (t) sends Sh(t0) bijectively onto Sh(a0) and for every x ∈ Sh(x0),
the map a 7→ fx(a) sends Sh(a0) bijectively onto Sh(w0). Thus, if x1, x2 ∈
Sh(x0) then the function f−1

x1
fx2 is a permutation of Sh(a0).

Claim 6.9. (1) For every x1, x2 ∈ Sh(x0) there is a unique x3 ∈ Sh(x0)
such that f−1

x2
fx3 = f−1

x0
fx1, as functions from Sh(a0) to Sh(a0).

(2) For every x1, x3 ∈ Sh(x0) there exists a unique x2 ∈ Sh(x0) such that
f−1
x2
fx3 = f−1

x0
fx1.

Proof. We prove (1) – the proof of (2) is similar. Consider first fx1f
−1
y0 (t0) ∈

Sh(w0). By the above observations, there exists a unique y1 ∈ Sh(y0) such
that

fx1f
−1
y0 (t0) = fx0f

−1
y1 (t0).

By the same reasoning, there exists a unique x3 ∈ Sh(x0), such that

fx3f
−1
y0 (t0) = fx2f

−1
y1 (t0).

By (2), the above two equalities at the point t0 translate to equality of
functions on Sh(t0). Using composition and substitution we obtain

f−1
x2
fx3 = f−1

x0
fx1 .
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�
We are now ready to define a group-operation on Sh(x0) with identity x0:

For x1, x2, x3 ∈ Sh(x0),

x1 + x2 = x3 ⇔ f−1
x2
fx3 = f−1

x0
fx1 , as functions on Sh(a0).

Claim 6.9(1) implies that + is associative, Claim 6.9(2) guarantees an in-
verse (with x3 = x0), and commutativity follows from one-dimensionality of
Sh(x0) and o-minimality.

Although Sh(x0) is not a definable set (it is
∨
-definable) the same oper-

ation can be defined on I ′1 ⊇ Sh(x0) (but might only be partial there) by:
⟨x1, x2, x3⟩ ∈ R if and only if f−1

x2
fx3 = f−1

x0
fx1 agree on some neighborhood

of a0. This is a definable relation which when restricted to Sh(x0)
3 gives a

group operation. Using compactness, one can show that that the restriction
of the operation to some gp-long interval I ′′1 containing Sh(x0) yields a gen-
eralized group-interval. This contradicts the definition of a gp-long interval,
so returning to our original assumptions, either I or J must be gp-short. �

The following is a generalization we will require later:

Corollary 6.10. Let f : I1×· · ·×In+1 →Mn be a definable function which
is injective in each variable separately (namely for every a1, . . . , ai−1, ai+1, . . . , an
in I1, . . . , Ii−1, Ii+1, . . . , In, respectively, the map f(a1, . . . , ai−1, x, ai+1, . . . , an) :
Ii →Mn is injective).

Then at least one of the intervals Ij is gp-short.

Proof. Assume towards contradiction that all intervals are gp-long.

Lemma 6.11. If h : I1×· · ·×Im →M is a definable function on a product of
gp-long intervals, then there exist gp-long subintervals Ji ⊆ Ii, i = 1, . . . ,m,
there exists j ∈ {1, . . . ,m}, and a definable g : Jj →M , such that for every
a = (a1, . . . , am) ∈ J1 × · · · × Jm, we have h(a) = g(aj).

Proof. We take a = (a1, . . . , am) ∈ I1 × · · · × Im which has long dimension
m (over the parameters defining everything). Then there is a long interval
Jm ⊆ Im containing am and defined over parameters A so that the long di-
mension of a over A is still m, and such that h(a1, . . . , am−1, x) is either con-
stant (namely of the form g(a1, . . . , am−1)) or strictly monotone. In the first
case we can use induction on m to finish the argument. In the second case
we prove that h(a1, . . . , am−1) is a function of the last coordinate only: We
consider the m−1-st coordinate and, using the same reasoning as before, we
find a gp-long interval Jm−1 ⊆ Im−1 on which the map f(a1, a2, . . . , x, am)
is either constant or strictly monotone. But now, this second possibility
is impossible, or else the map f(a1, . . . , am−2, x, y) is strictly monotone in
both variables on Jm−1×Jm, implying, using Theorem 6.7, that one of these
intervals is gp-short, contradiction. We are then left with the case where
f(a1, . . . , , x, am) = g(a1, a2, . . . , am−2, am) for x ∈ Jm−1 and proceed in the
same manner. �

We now return to our proof of the corollary and to the assumption that all
intervals are gp-long. We write f(a) = (f1(a), . . . , fn(a)). If we apply the last
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lemma to f1 then we can find gp-long intervals Ji ⊆ Ii, i = 1, . . . , n+1, and
a definable one-variable function h(x) such that for every (x1 . . . , xn+1) ∈
J1×· · ·×Jn+1, we have, without loss of generality, f1(x1, . . . , xn+1) = h(x1).
But now, fix any a1 ∈ J1 and consider the function

F (x2, . . . , xn+1) = (f2(a1, x2 . . . , xn+1), . . . , fn(a1, x2, . . . , xn+1))

from J2 × · · · × Jn+1 into Mn−1. It is easy to see that the function F is still
injective in each coordinate so by induction, one of the Ji, i = 2, . . . , n+ 1,
is gp-short, contradiction. We then conclude that one of the Ij ’s must be
gp-short. �

�
Here is a first observation about definable groups.

Corollary 6.12. Let G ⊆ Mn be a definable group in an o-minimal struc-
ture. Then every definable 1-dimensional subset of G is group-short.

Proof. Let J ⊆ G be a definable 1-dimensional set, identified with a finite
union of intervals in M , and apply Corollary 6.10 to the map f : Jn+1 → G
given by the group product

f(g1, . . . , gn+1) = g1g2 . . . gn+1.

It follows that J must be gp-short. �

7. M-quotients

7.1. Dimension of elements in Meq.

Definition 7.1. Let X1, . . . , Xn be pairwise disjoint definable subsets of
Mk1 , . . . ,Mkn, respectively, and let X = X1 ⊔ · · · ⊔Xn. A subset W ⊆ X is
called definable if W ∩Xi is definable for every i = 1, . . . , n. For dimW we
take the maximum of all dimW ∩Xi.

Note that Xk can be similarly written as a finite pairwise disjoint union
of cartesian products of the Xi’s, and a subset of Xk is called definable
accordingly. If E is a definable equivalence relation then we say that X/E
is an M-quotient.

A subset of X/E is called definable (we should say “interpretable” but
it sounds awkward) if it is the image of a definable subset of X under the
quotient map.

Note that X above is in definable bijection with an actual definable sub-
set of some Mk, after naming parameters, but it is often more natural to
consider it as as the union of definable sets in various Mk’s.

For A ⊆ Meq a small set of parameters and a ⊆M , the closure operation
dcl(aA) still defines a pre-geometry on M so dim(a/A) makes sense.

Definition 7.2. Let A ⊆ Meq be a small set, X ⊆ Mk an A-definable set
and E an A-definable equivalence relation on X.



INTERPRETABLE GROUPS ARE DEFINABLE 23

For g ∈ X/E, we define dim(g/A) to be the maximum among dim(x/A)−
dim[x], as x varies in the class g. For Y ⊆ X/E definable over A, we let

dimY = max{dim(g/A) : g ∈ Y }.

If for g ∈ Y we have dim(Y ) = dim(g/A) then g is called a generic
element of Y over A.

One can show that the above definition does not depend on A, namely if
we calculate the dimension of Y with respect to a larger set of parameters
B ⊇ A then we obtain the same result. Here are some more basic properties.

Fact 7.3. (1) For g, h ∈ X/E and A ⊆ Meq, we have

dim(g, h/A) = dim(g/hA) + dim(h/A).

(2) Assume that g = [a] for a ∈ X, and dim(a/A) = k. Then dim(g/A) 6
k.

Proof. (1) is in [5, Proposition 3.4].
(2). Since dim(g/aA) = 0, the dimension formula implies that dim(a/gA)+

dim(g/A) = dim(a/A) = k and hence dim(g/A) 6 k. �
The following is a direct corollary of the dimension formula.

Claim 7.4. Let T ⊂ M eq be a definable set, and let {Xt : t ∈ T} be a
definable family of pairwise disjoint definable sets in Meq. If the dimension
of each Xt is r and dimT = e then dim

∪
t∈T Xt = r + e.

Recall:

Definition 7.5. For X,Y definable sets and E1, E2 definable equivalence
relations on X and Y , respectively, a function f : X/E1 → Y/E2 is called
definable if the set {⟨x, y⟩ ∈ X × Y : f([x]) = ([y])} is definable.

We will need the following general fact about definable equivalence rela-
tions:

Claim 7.6. Let X ⊆Mk be an A-definable set and E an A-definable equiva-
lence relation on X. Then there exists an M-quotient Y/E′, defined over A,
and an A-definable bijection f : X/E → Y/E′ such that Y can be partitioned
into finitely many definable sets U1, . . . , Um with the following properties:

(1) Each Ui is an open subset of Mki.
(2) Each E′-class is contained in a single Ui.
(3) For each i = 1, . . . ,m, there exists di ∈ N such that every E′-class

in Ui is a set of dimension di, and the projection πdi : M
ki → Mdi

onto the first di coordinates is a homeomorphism.

Proof. We prove the result by induction on n = dimX.
First, partition X into a finite union of sets, in each of which every E-class

has the same dimension, and such that every E-class is contained in exactly
one of these sets. Clearly, we can prove the result separately for each of
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these sets. Thus, it is enough to prove the claim under the assumption that
all classes have the same dimension d.

Let C be a cell decomposition of X. Each cell Ci ∈ C homeomorphically
projects onto an open subset of Mni for some ni ≤ n. Let Z1, . . . , Zr be
these projections. We now consider the restriction of E to Z1 and prove the
claim for Z1 (note that after doing that we plan to discard all elements in
X \ Z1 whose classes intersect Z1).

If dim(Z1) < n, then the claim holds for it by induction. Otherwise,
dimZ1 = n, and thus necessarily, dim(Z1/E) = n− d. Let

Z ′
1 = {x ∈ Z1 : dim([x] ∩ Z1) < d}.

Since dim(Z ′
1/E) 6 n− d and every [x] ∩ Z ′

1 has dimension smaller than d,
it follows from Claim 7.4 that dimZ ′

1 < n. Moreover, for every x, either

[x] ∩ Z1 ⊂ Z ′
1 or [x] ∩ Z ′

1 = ∅, so proving the claim for Z ′
1 and Z̃1 = Z1 \ Z ′

1

is sufficient. By induction, the claim holds for Z ′
1.

By Lemma 9.1, we can uniformly partition all the equivalence classes in
Z̃1 into cells, then choose a d-dimensional cell from each equivalence class
in Z̃1, and replace Z̃1 by the union of these cells (still calling it Z̃1). Note
that omitting the remaining part of each class does not change the quotient.
Next, we partition Z̃1 into finitely many sets, so that in a single set, the cell
of each class is of the same type (by that we mean that the projection onto
the same d coordinates is a homeomorphism). Since the partition respects
the classes, we may deal with each part separately.

Any set in this partition with dimension less than n is handled by induc-
tion, so we may only consider the sets of dimension n. We assume then that
Z̃1 is an n-dimensional union of d-dimensional cells, all of the same type.
By permutation of variables, we can suppose that projection on the first
d-coordinates is a homeomorphism of each class onto an open subset of Md.

Now let D be a cell decomposition of Z̃1, and let B be the union∪
D∈D,dimD<n

D.

Because Z̃1 ⊆ Mn and dim Z̃1 = n, the union of all n-dimensional cells in
D is an open subset of Mn, so Z̃1 \ B is still open in Mn. Thus, for each

x ∈ Z̃1, if the set [x] ∩ (Z̃1 \ B) has dimension smaller than d then it must

be empty (here we use the fact that [x] ⊆ Z̃1 is a d-cell). Hence, a class [x]

which intersects Z̃1 \B might not be a cell anymore, but it is still true that
its projection onto the first d coordinates is a homeomorphism onto an open
subset of Md. Hence Z̃1 \B satisfies the claim. We now remove from B all

classes which are already represented in Z̃1 \B (we still call the new set B)
and handle B/E by induction on dimension. We therefore showed that the

claim holds for Z̃1 and hence also for Z1.
Note that the above argument only used the fact that Z1 was an n-

dimensional subset of Mn (and that every class in X has dimension d).
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Next, remove all classes from Z2, . . . , Zr with representatives in Z1. We
still use Z2, . . . , Zr for the remaining sets. Clearly, each class which is con-
tained in the new Z2 ∪ · · · ∪ Zn still has dimension d. If dimZ2 = n then
we handle it exactly as we handled Z1, and if dimZ2 < n then we apply
induction. We proceed in the same manner until handle all Zi’s and thus
prove the claim for X. �
7.2. Elimination of one dimensional quotients. Let {Xt : t ∈ T} be a
definable family of sets. We say that f : T → Mn is an F-map if for every
t, s ∈ T , if Xt = Xs then f(t) = f(s). We say that f is F-injective if in
addition, whenever f(t) = f(s) we have Xt = Xs.

We will use the following fact [6, Claim 1.1]:

DEQ: If E is a ∅-definable equivalence relation on X with finitely many
classes then every class is ∅-definable.

Theorem 7.7. Let F = {Xt : t ∈ T} be a definable family of definable
sets in Mk, with T ⊆ Meq and dimT = 1. Then there exists a definable
F-injective map f : T →Mm, for some m, possibly over parameters.

Proof. Note that if T1 ⊔ T2 = T is a partition of T and we let F1 = {Xt :
t ∈ T1} and F2 = {Xt : t ∈ T2} be the corresponding families then it is
enough to obtain Fi-injective functions for each i = 1, 2. As well, note that
if F1 = {Yt : t ∈ T} and F2 = {Zt : t ∈ T} are definable families such that
⟨Yt, Zt⟩ = ⟨Ys, Zs⟩ ⇐⇒ Xt = Xs, then it is enough to obtain Fi-injective
functions for each i = 1, 2.

Let X =
∪

tXt. We go by induction on k.
If dim(X) < k, then take a cell decomposition C1, . . . , Cm of X. Inter-

secting Xt with each C1, . . . , Cm yields a finite set of families indexed by T ,
Fi = {Xt ∩ Ci : t ∈ T}, for i = 1, . . . ,m. After a finite partition of T based
on whether Xt∩Ci = ∅ for i = 1, . . . ,m, it is then enough to find Fi-injective
functions, which we have by induction, since each Ci is in definable bijection
with a subset of Mk−1. Thus, we may suppose that dim(X) = k.

By replacing T with T/ ∼, with t ∼ s if and only if Xt = Xs, we may
assume that Xt = Xs if and only if t = s, and still dimT = 1 (if dimT = 0
then we are done by DEQ).

By Lemma 9.1, we can uniformly partition each set Xt into a disjoint
union of cells X1

t , . . . , X
m
t (in particular, the partition depends only on the

set Xt and not on t), and let Fi = {X i
t : t ∈ T}, i = 1, . . . ,m. Then it is

sufficient to define Fi-injective maps. Indeed, if we have such fi : T → Mn

(without loss of generality we can assume that they all go into the same n)
then we may now define h : T → (Mn)m by h(t) = (f1(t), . . . , fm(t)).

By a further partition of T , we may assume that all Xt’s are cells in Mk

of the same dimension r. We may suppose that we still have dim(X) = k,
since otherwise our above argument works to finish X by induction. We
prove the result by induction on both r and k.
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Case 1. r = k.
In this case, each Xt is bounded above and below by two k−1 cells Y 1

t , Y
2
t ,

of dimension k− 1, which determine the set Xt. By considering the families
{Y 1

t : t ∈ T} and {Y 2
t : t ∈ T} and applying induction we will be done.

Case 2. r < k.

Let X0 be the collection of all x ∈ X which belong to only finitely many
Xs, s ∈ T . By o-minimality, there is a bound ℓ ∈ N such that for every
x ∈ X0, there are at most ℓ-many Xs such that x ∈ Xs. For every x ∈ X0,
the set F0(x) = {Xs : x ∈ Xs} is clearly x-definable and finite. By DEQ
each Xs ∈ F0(x) is x-definable, and the finitely many Xs ∈ F0(x) can be
linearly ordered as Xs1 , . . . , Xsℓ with the ordering depending on x. This is
a well defined finite ordering of the sets Xt ∈ F0(x).

For each t ∈ T , we let X0
t = X0

t ∩Xt and for i = 1 . . . , ℓ we let the set X i
t

be the collection of all x ∈ X0
t such thatXt is the i-th element in the ordering

of F0(x). Note that for each t ∈ T , the sets X1
t , . . . , X

ℓ
t form a partition of

X0
t and that for all Xt ̸= Xs and i = 1, . . . , ℓ, we have X i

t ∩X i
s = ∅. Let X ′

t

be the complement Xt \X0
t . Note that the definitions of Xi

t and X
′
t depend

only on the set Xt and not on t. Consider the families F ′ = {X ′
t : t ∈ T}

and Fi = {Xi
t : t ∈ T}, with i = 1 . . . , ℓ. By our earlier observations, it is

enough to find Fi-injective maps and F ′-injective maps.
Let us handle the Fi-case first.
Because dimXt < k, the dimension of each Xi

t is also smaller than k.
We can assume by further partitioning each Xi

t into cells that each Xi
t is

a cell of dimension r < k. But then each Xt is the graph of a continuous
function from some open cell Ci

t in some r-cartesian power of M into Mk−r.
By dividing into cases we may assume that all Ci

t are subsets of M r, the
first r-coordinates. So, X i

t is of the form

{⟨x̄, f it (x̄)⟩ : x̄ ∈ Ci
t}

where f it is a definable function from Ci
t into M

k−r.

Let Fproj
i = {Ci

t : t ∈ T}. By induction, there is an injective Fproj
i -

function g : T → M s for some s. We divide Fproj
i into two sub-families: (i)

Those Ci
t ’s for which only finitely many distinct X i

t ’s project onto Ci
t . In

this case, the function g, together with a choice of one of the finitely many
X i

t which project on Ci
t induce an injective map on the collection of these

X i
t .
The rest of the Ci

t ’s are those for which there are infinitely many Xi
t ’s

which project onto it. Because T is one-dimensional, there are at most
finitely many such distinct Ci

t ’s (this step fails in higher dimension). By
handling each one separately, we can assume that all Xi

t project onto the
same Ci

t . We now fix an arbitrary point ā ∈ Ci
t and define g(t) = f it (ā).

Because we defined the Xi
t ’s to be pairwise disjoint, this is an Fi-injective

map, defined over ā.
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We now handle F ′ = {X ′
t : t ∈ T} (recall that x ∈ X ′

t if and only if
x belongs to infinitely many Xt’s, so also to infinitely many X ′

t). We let
X ′ =

∪
tX

′
t and claim that dim(X ′) < k.

Assume towards contradiction that dimX ′ = k and consider the subset
Y of T ×Mk consisting of all (t, x) such that x ∈ X ′

t. By Claim 7.4, because
each Xt has dimension k − 1, and dim(T ) = 1, the set Y has dimension at
most k.

Clearly, X ′ equals the projection of Y onto the second coordinate, so the
dimension of X ′, which we assume to be k, equals the dimension of Y . But
then, the projection map from Y onto X ′ is generically finite to one, so if
we pick any generic x ∈ X ′, there are at most finitely many t’s such that
x ∈ X ′

t, contradicting our definition of X ′.
Thus dimX ′ < k, and we can handle F ′ by induction, as pointed out

earlier. �
Corollary 7.8. If dim(X/E) = 1 then X/E is in definable bijection, over
parameters, with a definable set.

Here is a simple corollary that we are not going to use.

Corollary 7.9. Every M-quotient on a definable set of dimension two can
be eliminated. Namely, if dimY = 2 and E is a definable equivalence relation
on Y then Y/E is in definable bijection (possibly, over parameters) with a
definable set.

Proof. We may assume that all classes have the same dimension. If the
classes are finite then we can definably choose representatives. If the classes
have dimension 1 then dim(x/E) = 1 and we are done by the previous
lemma. If the classes have dimension 2 then there are only finitely many
classes. �
7.3. A general observation about M-quotients.

Proposition 7.10. Let X/E be an M-quotient. Then there exists an M-
quotient Y/E′ which is in definable bijection with X/E, possibly over pa-
rameters, such that Y ⊆ I1 × · · · × Ik, for some intervals I1, . . . , Ik ⊆ M ,
and each Ij is the image of Y/E′ (equivalently X/E) under a definable map.

Proof. By partitioning each equivalence class into its definably connected
components (see Lemma 9.1) and choosing one component from each class
uniformly (by DEQ), we may assume that all classes are definably connected.

For every i = 1, . . . , n we let πi : M
n → M be the projection onto the

i-th coordinate. We define σ+1 : X/E → M ∪ {+∞} as follows: σ+1 ([x])
is the supremum of π1([x]). We let J+

1 , . . . , J
+
k be the definably connected

components of the image of σ+1 . Similarly, we let σ−1 ([x]) ∈ M ∪ {−∞}
be the infimum of π1([x]) (note that π1([x]) is contained in the interval
[σ−([x]), σ+([x])]). Let J−

1 , . . . , J
−
r be the definably connected components

of the image of X/E under σ−1 . For 1 6 i 6 k and 1 6 j 6 r, we let
Xi,j = {x ∈ X : σ+1 ([x]) ∈ J+

i and σ−1 ([x]) ∈ J−
j .}
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This is partition of X, which is compatible with E, namely if x ∈ Xij and
x′Ex then also x′ ∈ Xij . It is clearly enough to prove the result for each
Xij separately. We consider two cases:
(a) J−

i ∪ J+
j is not definably connected.

IfXij is nonempty, then every element in J−
i is smaller than every element

in J+
j , and we can fix an arbitrary element aij with J−

i < aij < J+
j . By the

definition of σ+1 and σ−1 , and since [x] is definably connected, the element
aij is contained in π1([x]), for every x ∈ Xij . For each x ∈ Xij we can now

replace [x] with [x] ∩ π−1
1 (aij). The union of all these new classes, call it

X ′
ij , is contained in π−1

1 (aij). If we let E
′ be the restriction of E to X ′

ij then

Xij/E and X ′
ij/E

′ are in definable bijection. However, X ′
ij can be identified

with a subset of Mn−1, so we can finish by induction.
(b) J−

i ∪ J+
i is definably connected.

In this case, we let Jij = J−
i ∪ J+

j . This is an interval which is the union

of two intervals, each of which is the image of X/E under a definable map
(a priori, each interval is the image of a subset of X/E, but the map can be
extended trivially to the whole X/E). Because π1([x]) ⊆ [σ−([x]), σ+([x])]
the set Xij is a subset of Jij ×Mn−1 and Jij itself can be identified with
a subset of Ji × Jj , possibly after naming parameters. We can proceed by
considering the projection π2 and so on. �
7.4. gp-long dimension and definable quotients. Before our next,
technical lemma we recall the following.

Fact 7.11. If X ⊆ Mn is a definable closed and bounded set, then X con-
tains a point x0 which is invariant under any automorphism of M which
preserves X set-wise. Namely, x0 ∈ dcl(X), where X is now considered as
an element of Meq.

Proof. This is the same as showing that every definable family of closed and
bounded sets has strong definable choice. For X ⊆ M , we just take x0 to
be minX, and for X ⊆Mn we use induction. �
Lemma 7.12. Let X ⊆Mn be an A-definable set such that lgdim(X) = n.
Assume that E is an A-definable equivalence relation in X, such that every
equivalence class is gp-short. Then dim(X/E) = n.

Equivalently, if a ∈ X is long-generic over A then [a] must be finite.

Proof. First note why the result holds when X/E can be eliminated. Indeed,
if we have a definable bijection between X/E and a definable set Y ⊆ M r

then we obtain a definable surjection g : X → Y such that the preimage
of every y is an E-class. Because every class is gp-short it follows from the
dimension formula that lgdim(X) = lgdim(Y ) and in particular dimY = n.

We now return to our setting. Let a ∈ X be long-generic over A. If we
show that dim([a]/A) = n (here we view [a] as an element of Meq) then
clearly, dim(X/E) > n, so we must have dim(X/E) = n. Without loss of
generality A = ∅.
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Using uniform cell decomposition, we partition X into finitely many ∅-
definable sets X1, . . . , Xm, such that the intersection of every class with each
Xi is definably connected (possibly empty). The element a belongs to one
of these Xi, in which case lgdimXi = n. We therefore may assume that
each E-class in X is definably connected.

Let p(x) = tp(a/∅). By Fact 5.13, there exists an n-long-box B with
Cl(B) ⊆ p(M), such that a is long-central in B. Since [a] is gp-short, we
have Cl([a]) ⊆ Cl(B) ⊆ p(M), so in particular the set Cl([a]) is closed
and bounded in Mn. By Fact 7.11, there exists y ∈ Cl([a]) such that
y ∈ dcl({Cl([a])}). But clearly, Cl([a]) is invariant under any automorphism
preserving [a], hence y ∈ dcl({[a]}).

But then, by the dimension formula dim(y/∅) 6 dim([a]/∅) and since
y |= p, we have dim(y/∅) = n (here we use the fact that a was a generic
element of Mn). Hence, dim([a]/∅) = n, so we are done.

To see that [a] must be finite consider all the set Y ⊆ X of all x ∈ X such
that [x] is infinite. By definition of dimension we must have dim(Y/E) <
dimY 6 n. Hence, by what we have just showed, lgdim(Y ) < n. It follows
that Y cannot contain any long-generic element of X. �

8. Interpretable groups

We assume now that G is an interpretable group (as in Definition 1.3).

8.1. One dimensional sets in interpretable groups.

Definition 8.1. Let Y ⊆ X be a definable set such that dim(Y/E) = 1.
Then Y/E is called gp-short if it is in definable bijection with a definable
gp-short subset of Mn. Otherwise, we call it gp-long.

Theorem 8.2. Let G = X/E be an interpretable group. Then every one-
dimensional subset of G is gp-short.

Proof. Without loss of generality, G is defined over ∅. We let I ⊆ G be
a ∅-definable one-dimensional set. By Corollary 7.8, I is in bijection with
a definable subset of M , and so we identify I with this definable subset
and assume that the intersection of every E-class with I is a singleton. We
suppose towards contradiction that I is gp-long.

For every k we let fk : Ik → G be the function defined by f(x1, . . . , xk) =
x1 · · ·xk (multiplying in G).

We take k > 1 maximal such that on some k-long box B ⊆ Ik the function
fk is finite-to-one. By taking a sub-box of B we may assume that fk is
injective on B. We assume that B is definable over ∅ and let ā ∈ B be
long-generic in B.

Claim. Let ak+1 be long-generic in I over ā. Then there is a k + 1-long
box B′ ⊆ B × I containing a′ = ⟨ā, ak+1⟩, such that fk+1(B

′) is contained
in fk+1(B

′ × {ak+1}) ⊆ fk(B) · ak+1.
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Proof of Claim. Define on B× I the equivalence relation xE′y iff fk+1(x) =
fk+1(y). By the maximality assumptions on k, the union of all finite E-
classes must have long dimension smaller than k + 1. Therefore, since
lgdim⟨a, ak+1⟩ = k + 1, the E′-class of a′ = ⟨a, ak+1⟩ is infinite.

We claim that lgdim[a′] > 0. Indeed, assume towards contradiction that
[a′] is gp-short. By Fact 4.5(iii), there is a formula ψ(y) over ∅ such that
ψ(a′) holds and if ψ(b) holds then [b] is gp-short. Thus, there exists, by
Lemma 5.12, a k+ 1-long box B0 ⊆ B × I containing a′ such that for every
x ∈ B0, the E

′-class [x] is infinite and gp-short. However, this implies that
dim(B0/E

′) < k + 1, contradicting Lemma 7.12.
We therefore showed that the E′-class of a′ is not gp-short. A similar ar-

gument can show a stronger statement, namely that the definably connected
component of [a′] which contains a′, call it [a′]0, is also not gp-short.

Because fk|B was finite-to-one the projection of each E′-class on the k+1-
coordinate is a finite-to-one map. It follows that the image of [a′] under this
projection is gp-long, call it J .

By Fact 5.6(3), we may replace J by a possibly smaller gp-long interval
and so assume that the long dimension of a′ over the parameter set A′

defining J is still k+ 1. Let p(x) = tp(a′/A′). By 5.13, there exists a k+ 1-
long box B′ ⊆ p(M), in which a′ is long-central. Because B′ ⊆ p(M), for
every x ∈ B′ the projection of [x]0 onto the last coordinate contains J . In
particular, this projection contains the point ak+1. This means that every
x′ ∈ B′ has an E′-equivalent element of the form ⟨x, ak+1⟩, with x ∈ B, and
hence fk+1(x

′) = fk(x)ak+1.
This ends the proof of the claim. �

Let’s recall what we have so far: (i) The restriction of fk to B is an
injective map and (ii) fk+1(B

′) ⊆ fk(B) · ak+1.
Since fk+1(x, ak+1) = fk(x)ak+1, (i) implies that the restriction of fk+1

to B × {ak+1} is also injective. Therefore, we have a definable bijection

σ : fk(B)ak+1 → B

(given by σ(y) = f−1
k (ya−1

k+1)) (where a
−1
k+1 is the group inverse in G of ak+1).

By (ii), we have a map from the k + 1-long box B′ into B, defined by
h(x1, . . . , xk+1) = σ(fk+1(x1, . . . , xk+1)). Notice that because fk+1 is group
multiplication and σ is injective, the map h is injective in each coordinate
separately. By Corollary 6.10, at least one of the intervals which make up
B′ must be gp-short, contradicting the fact that B′ was a k + 1-long box.
This shows that I is gp-short, thus ending the proof of Theorem 8.2. �

8.2. Endowing interpretable groups with a topology. A fundamental
tool in the theory of definable groups in o-minimal structures is Pillay’s
theorem, [18], on the existence of a definable basis for a group topology on a
definable group G, a topology which agrees with the subspace Mn-topology
at every generic point of G (with G ⊆ Mn). Moreover, this topology can
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be realized using finitely many charts, each definably homeomorphic to an
open subset of Mk (with k = dimG).

Here we prove an analogous result for interpretable groups but the topol-
ogy we obtain will initially not have finitely many charts.

We start with some preliminary definitions and results.

Definition 8.3. A definable set Y ⊆ G is called large in G if dim(G \Y ) <
dimG.

Fact 8.4. Let G be an interpretable group, Y ⊆ G a definable set over A. If
Y is large in G and dimG = n then G can be covered by 6 n+ 1 translates
of Y .

Proof. This is standard. We have m = dim(G \ Y ) 6 n − 1. We take g
generic in G and h generic in G \ Y over g (i.e. dim(h/gA) = m). Then,
by the dimension formula, dim(hg−1/hA) = dim(g/A) and hence hg−1 is
generic in G over A. It follows that hg−1 ∈ Y and therefore h ∈ Y g.

We showed that every element in G of dimension m over A belongs to
Y ∪ Y g. In particular, dim(G \ (Y ∪ Y g)) 6 m− 1 6 n− 2. We proceed by
induction. �

Defining the topology.

We first obtain U1, . . . , Uk as in Claim 7.6. Namely, each Ui is an open
subset ofMki and each class in Ui has dimension di and projects homeomor-
phically onto the first di coordinates. Write x = ⟨x′, x′′⟩ ∈ Mdi ×Mki−di ,
with x′ = πdi(x). Since every E-class projects bijectively into Mdi , the set
π−1(x′) ∩ Ui has a single representative for each E-class (if di = 0 then
x = x′′ ∈ Mki). It is contained in the set {x′} ×Mki−di and because Ui is
open can be identified with an open subset of Mki−di . Call this x′-definable
set Ui(x). We say that V ⊆ Ui(x) is an M

ki−di-open set, if under this iden-
tification V is open. We have an obvious definable injection of each Ui(x)
into G. For ⟨x′, x′′⟩ ∈ Ui, let [x

′, x′′] denote [⟨x′, x′′⟩].

Fact 8.5. In the above setting,

(1) For g ∈ Ui and x = ⟨x′, x′′⟩ generic in the class g (over the el-
ement g ∈ Meq and A ⊆ M eq), we have dim(x′/gA) = di and
x′′ ∈ dcl(x′g).

(2) Assume that x is generic in Ui and write x = ⟨x′, x′′⟩ ∈ Mdi ×
Mki−di. Then x′′ is generic in Ui(x) over x

′.
(3) If x = ⟨x′, x′′⟩ is generic in Ui, h ∈ G, and y = ⟨y′, y′′⟩ is generic in

the class h over the elements x, h then dim(x′′/x′y′) = dim(x′′/∅) =
ki − di.

Proof. (1), (2) are immediate from the fact that each class in Ui projects
bijectively onto the first di coordinates. For (3), let y ∈ Uj and note that by
genericity, dim(y/x, h) = dim([y]) = dj and therefore by (1), dim(y′/x, h) =
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dj . But then, since y
′ ∈Mdj we clearly must have

dim(y′/x′) = dim(y′/x) = dj .

By the dimension formula

dim(y′/x′x′′)+dim(x′′/x′)+dim(x′/∅) = dim(x′′/x′y′)+dim(y′/x′)+dim(x′/∅).

Since dim(y′/x′x′′) = dim(y′/x′), we have dim(x′′/x′y′) = dim(x′′/x′) =
ki − di, hence x

′′ is generic in Ui(x) over x
′y′. �

We assume from now on that for i = 1, . . . , r, we have dim(Ui/E) =
ki − di = dimG = n and for i = r + 1, . . . , k we have dim(Ui/E) < dimG.
Let U = U1.

Fact 8.6. Let f : G→ G be a partial A-definable function. Let x = ⟨x′, x′′⟩
be a generic element of U over A and let g = [x]. Let h = f(g) and choose
y = ⟨y′, y′′⟩ a generic element of the class h = f(g) over x.

If y ∈ Uj, for some j = 1, . . . , k, then there is an Ax′y′-definable open
Mn-neighborhood V ⊆ U(x) such that for every z ∈ V there is a unique
element w ∈ Uj(y), with f([x′, z]) = [y′, w]. We denote this local map,
defined over x′y′, by f∗. The map f∗ is continuous at x′′, as a function
from an open subset of Mn into Mkj−dj .

Proof. By Fact 8.5(3), x′′ is generic in U(x) over x′y′. We now consider the
formula ϕ(z), over the parameters Ax′y′, which says that there is a unique
element w ∈ Uj(y) such that [y′, w] = f([x′, z]). The formula ϕ(z) holds
for x′′, which is generic in U(x) over x′y′. It follows that there exists an
Mn-neighborhood V ⊆ U(x) of x′′ such that every z ∈ V satisfies ϕ. We
therefore obtain a function, definable over Ax′y′, from V into Uj(y), and by
genericity of x′′, this function is continuous near x′′. �

Theorem 8.7. Let x0 = ⟨x′, x′′⟩ be a generic element in U and let {Vt : t ∈
T} be a definable basis of (sufficiently small) Mn-neighborhoods of x′′, all
contained in U(x0).

Then the family

B = {gVt : g ∈ G, t ∈ T}
is a basis for a topology on G, making G into a topological group.

Proof. Consider g0 = [x0] and the family {g−1
0 Vt : t ∈ T}. Just like the

proof of Lemma 2.12 in [9], we will prove that this family forms a basis of
neighborhoods of 1 ∈ G, for a group-topology on G whose basis is B. Indeed,
it is not hard to see that B is a basis for some topology, call it the t-topology
on G. To see that this topology makes G into a topological group, we first
prove:

Claim 8.8. Let g be generic in G over g0 and let y = ⟨y′, y′′⟩ be generic in
the class g over g, g0. Then there is an open Mn-neighborhood W ⊆ U(y)
of y′′ and a t-neighborhood V ⊆ G of g such that the canonical embedding
of U(x) into G induces a homeomorphism of W and V .
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Roughly speaking, we say that the t-topology coincides with theMn-topology
in some neighborhood of g.

Proof. Consider the map σ(h) = gg−1
0 h. It is definable over the element gg0

and takes g0 to g. Consider the first-order formula ϕ(z) over x′, y′ which
says that z ∈ U(x) and there is a unique w ∈ U(y) such that σ(z) = w (here
we identify U(x) and U(y) with subsets of G). The formula ϕ holds for x′′.
By Fact 8.5 (3), x′′ is generic in U(x) over x′, y′ hence there exists an Mn-
neighborhood V ⊆ U(x) of x′′ such that for every z ∈ V , σ(z) ∈ U(y). Hence
σ defines a function from V into U(y) sending x′′ to y′′. By the genericity
of x′′, we can choose such V so that σ is continuous, as a map from Mn

into Mn. Because σ is invertible, we can use the same argument to find
W ⊆ U(y) for which σ−1 is also continuous, as a map into U(y). Shrinking
V and W if needed we may assume that σ : V → W is a homeomorphism
with respect to theMn-topology. Since left multiplication leaves B invariant,
σ is also a homeomorphism with respect to the t-topology. It follows that
the t-topology agrees with the Mn-topology on W . �

Claim 8.9. Assume that f : G → Md is an Ag0-definable partial function
and g is generic in G over Ag0. Then f is continuous at g (with respect to
the t-topology on G and the standard topology on Md).

Proof. Choose y = ⟨y′, y′′⟩ generic in the class g over g, g0. Consider now
the map f , as a function from Uj(y) into Md. Since y′′ is generic in Uj(y)
over Ay′g0, this map is continuous near y′′, with respect to theMn-topology
of Uj(y), and hence, by Claim 8.8, also with respect to the t-topology. �

We also have:

Claim 8.10. We fix g0 as above. If f : Mk → G is a g0-definable function
then f is continuous at every point z generic in its domain (with respect to
the Mk-topology and the t-topology),

Proof. Let h = f(z) and take g1 generic in G over g0, h, z. Instead of con-
sidering the map f we consider σ(w) = g1h

−1f(w), which sends z to g1.
Since left multiplication is a homeomorphism (as it preserves the family B)
it is sufficient to show that σ is continuous at z. Using Claim 8.8, we can
reduce the problem to a map from Mk into Uj(y), with [y] = [y′, y′′] =
g1 and y generic in the class g1 over all parameters. After noting that
dim(z/g0, g1, y

′) = dim(z/g0, g1), so z is still generic in the domain of f over
g0g1y

′, the result now follows from the theory of definable maps from Mk

into Mn. �
The above results allow us to replace in many cases the t-topology by the

Mn-topology, so we can follow the arguments from [9] and conclude in the
same way that B defines a group-topology on G. �

Since the t-topology has basis for neighborhoods given by open subsets
of Mn, it means that, at least locally, many properties of the o-minimal
topology still hold for the t-topology. A straightforward claim helps here:
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Claim 8.11. Let Y ⊆ G be A-definable and let g be generic in Y over Ag0.
Then for every definable t-open set V ∋ g, we have dim(Y ∩ V ) = dim(Y ).

Proof. Replace V with a neighborhood W ⊆ V of g which is definable over
parameters B, with dim(g/B) = dim(g/Ag0). Indeed, this is possible to do:
We may assume that V = gg−1

0 Vt for t ∈ T , and we have dim(g/g0, A) =

dim(g/gg−1
0 , A). We now replace Vt by Vs ⊆ Vt, with s generic in T over all

parameters. We therefore have dim(g/gg−1
0 , s, A) = dim(g/g0, A).

The neighborhood W = gg−1
0 Vs is the desired neighborhood of g. Since

the dimension of g over the parameters defining Y ∩W equals dim(g/A) =
dim(Y ), we have dim(Y ∩W ) = dim(Y ). �

Fact 8.12.

(1) If Y ⊆ G is a definable set then dim(Cl(Y )\Y ) < dimY (the closure
here is taken with respect to the t-topology.

(2) If H is a definable subgroup of G then H is closed in G.

Proof. We prove (1) – the proof of (2) is as in [18, Corollary 2.8]. As-
sume towards contradiction that dim(Cl(Y ) \ Y ) > dimY . In particular,
dimCl(Y ) = dim(ClY \Y ). Let g be generic in both Cl(Y ) and Cl(Y )\Y , let
h ∈ U be generic in G over g, and let V be a neighborhood of g small enough
that every element of hg−1V is represented in an Mn neighborhood of h in-
side U(h). Using Claim 8.11, dim((Cl(Y ) \ Y ) ∩ V ) = dim(Cl(Y ) \ Y ) and
dim(Cl(Y ) ∩ V ) = dim(Cl(Y )). Translating by the t-homeomorphism x 7→
hg−1x, we get Y ′ = hg−1(Y ∩V ), and Cl(Y ′) \Y ′ = hg−1((Cl(Y ) \Y )∩V ).
These sets are in definable bijection with definable sets in an Mn neighbor-
hood of h inside U(h), for which the closure operation is the standard one, so
dim(Y ′) > dim(Cl(Y ′) \ Y ′). However, translation is dimension-preserving
so we reach a contradiction. �

Although we cannot obtain at this point an atlas on G with finitely many
charts, we have an approximation to it: Let U be the disjoint union U1 ⊔
· · ·⊔Ur. We say that W ⊆ U is open if W ∩Ui is open for every i = 1, . . . , r.
We say that X ⊆ U is large in U if X∩Ui is large in Ui for every i = 1, . . . , r.
Note that if W ⊆ U is large in U then its image in G is large in G.

As we showed above, if y = ⟨y′, y′′⟩ is generic in Ui, for i = 1 . . . , r, then
the t-topology agrees with theMn-topology on U(y), near y′′. This property
of y is first order, so the set U0 of all y ∈ Ui, i = 1, . . . , r, for which the
t-topology agrees with the Mn-topology on Ui(y) near y, is definable and
contains y. Moreover, this set is large in U .

Let π : U0 → G be the quotient modulo E. By definition of U0, the map
π : U0 → G is open, when U0 is endowed with the o-minimal topology and G
has the t -topology. Next, we can apply Claim 8.10 and replace U0 by a large
open subset, call it U0 again, on which π is continuous, and still open. Let
W = π(U0), and note as above that W is large in G. By Fact 8.4, finitely
many G-translates of W , h1W, . . . , hmW , cover G. We can now conclude:
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Proposition 8.13. There are finitely many t-open definable setsW1, . . . ,Wk

whose union covers G. There exist a definable set U0 which is a finite disjoint
union of definable open subsets of M ri’s and for each i = 1, . . . , k a definable
surjective map πi : U0 →Wi, such that each πi is continuous and open (with
respect to the o-minimal topology in the domain and the t-topology in the
image).

As a corollary we have:

Corollary 8.14. Every definable subset of G has finitely many definably
connected components with respect to the t-topology.

Proof. Fix W1, . . . ,Wk as above. Take Y ⊆ G definable, It is enough to see
that each Y ∩Wi has finitely many definably connected components. As
we saw, there is a definable and continuous map from U0 onto Wi. The
pre-image of Y ∩Wi is a definable subset of U0 so has finitely many defin-
ably connected components (with respect to the o-minimal topology). By
continuity, Y ∩Wi also has finitely many components. �

We can now also prove, just as in the definable case (see [17]):

Lemma 8.15. For G interpretable, and H a definable subgroup of G, the
following are equivalent:

(1) H has finite index in G.
(2) dimH = dimG.
(3) H contains an open neighborhood of the identity.
(4) H is open in G.

Exactly as in the case of definable groups, we can deduce the descending
chain condition:

Corollary 8.16. Every descending chain of definable subgroups of G is
finite.

8.3. Definable compactness. Below, all limits in G are taken with re-
spect to the t-topology

Our goal now is to review briefly several fundamental notions and results
in the theory of definable groups and to verify that these results hold for
interpretable G as well. The intention is to collect just those results which
will allow us to prove that G is definably isomorphic to a definable group.

Recall that every definable one-dimensional subset of G is in definable
bijection with finitely many points and open intervals (Corollary 7.8).

Definition 8.17. We say that G is definably compact if for every definable
f from an open interval (a, b) into G, the limits of f(x) as x tends to a and
to b exist in G.

As in the case of definable groups ([16]) we have:

Lemma 8.18. If G is not definably compact then it contains a definable,
torsion-free one-dimensional subgroup H ⊆ G.



36 PANTELIS ELEFTHERIOU, YA’ACOV PETERZIL, AND JANAK RAMAKRISHNAN

Proof. We review briefly the proof as suggested in [15]. Assume that the
limit limx→b f(x) does not exist in G. By Lemma 8.10, we may assume that
f is continuous on (a, b). The group H is defined to be the set of all possible
limits of f(t)f(s)−1, as t and s tend to b in the interval (a, b). More precisely,
H is the collection of all h ∈ G such that for every t-neighborhood V ∋ h
and every a0 ∈ (a, b) there exist x, x′ ∈ (a0, b) for which f(x)f(x′)−1 ∈ V .

Since G has a definable basis for the t-topology, H is definable. Note that
by o-minimality, if h ∈ H, V ∋ h and a0 ∈ (a, b), then for every x′ ∈ (a0, b)
sufficiently close to b there exist x ∈ (a0, b) with f(x)f(x

′)−1 ∈ V .
To see that H is a subgroup, take g, h ∈ H and show that gh−1 ∈ H: Fix

V ∋ gh−1 and find t-neighborhoods V1 ∋ g and V2 ∋ h such that V1V
−1
2 ⊆ V .

By the above, there exists x′ ∈ (a0, b) sufficiently close to b and there are
x1, x2 ∈ (a0, b) such that both f(x1)f(x

′)−1 ∈ V1 and f(x2)f(x
′)−1 ∈ V2. It

follows that f(x1)f(x2)
−1 ∈ V1V

−1
2 ⊆ V as required, so gh−1 ∈ H.

The proof that H has dimension at least one is similar to the proof in
[16, Lemma 3.8] because the identity element of G has a neighborhood R
homeomorphic to a rectangular open subset of Mn: For every a0 ∈ (a, b)
we have f(a0)f(a0)

−1 ∈ R and since f(x) has no limit in G as x tends to
b, for all x′ ∈ (a0, b) close enough to b, we have f(a0)f(x

′)−1 /∈ R, if R
is chosen sufficiently small. It follows that there exists x′′ ∈ (a0, b) with
f(a0)f(x

′′)−1 ∈ bd(R). Because bd(R) is definably compact, as a0 tends to
b, the set of all of these points in bd(R) has a limit point which belongs to
H. We therefore showed that every sufficiently small rectangular box R ∋ 1
has a point from H on its boundary, so dim(H) > 1.

Let’s see that dim(H) 6 1: The set D = {⟨x, x′, f(x)f(x′)−1⟩ ∈ (a, b)2 ×
G} has dimension two and therefore its frontier fr(D) ⊆ [a, b]2 × G has
dimension at most 1. The group H is contained in the projection of fr(D)
onto the G-coordinate.

The fact that H is torsion-free is proved similarly to [16]. �
On the definably compact side we need:

Theorem 8.19. If G is definably compact then it has strong definable choice
(possibly over a fixed set of parameters) for subsets of G definable in Meq.
Namely, there is a fixed set B ⊆M such that if {Yt : t ∈ T} is a ∅-definable
family of subsets of G, with T definable in M eq, then there is a B-definable
map σ : T → G such that for each t ∈ T , we have σ(t) ∈ Yt, and if Yt = Ys
then σ(t) = σ(s).

Equivalently, if Y ⊆ G is definable over A ⊆ Meq then dcl(AB)∩ Y ̸= ∅.

Proof. Let us note why the two statements are indeed equivalent. Assume
that we proved strong definable choice over B for families parameterized by
a definable subset of M eq and assume that Y is definable over a ⊆ Meq.
In this case there is a B-definable family of sets {Yt : t ∈ T}, for some
B-definable set T ⊆ Meq, with a ∈ T and Ya = Y . Strong definable choice
implies that Y ∩dcl(aB) ̸= ∅. As for the converse, assume that we are given
the family {Yt : t ∈ T} and consider the equivalence relation on T given by
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s ∼ t if and only if Ys = Yt. We now obtain a new family {Y[t] : [t] ∈ T/ ∼},
with Y[t] = Yt. By our assumption, for every [t], we have Y[t] ∩dcl(B[t]) ̸= ∅.
But for each t ∈ T , [t] ∈ dcl(Bt), and therefore Y[t] ∩ dcl(Bt) ̸= ∅. Strong
definable choice over B follows by compactness.

We now prove the theorem. The strategy of our proof is taken from
Edmundo’s [2].

Lemma 8.20. For G = X/E definably compact, let Y ⊆ G be a definable
set over A ⊆M eq. Then dcl(A) ∩ Cl(Y ) ̸= ∅.

Proof. First, note that Cl(Y ) is also definably compact.
We are going to prove a slightly different statement: For every A-definable

set Y ∗ ⊆ Mk (for some k) and for every A-definable function g : Y ∗ → G,
we have dcl(A) ∩ Cl(g(Y ∗)) ̸= ∅ (to apply this statement to our case take
Y ∗ ⊆ X the pre-image of Y under the quotient map).

We prove the result by induction on ℓ = dimY ∗. If ℓ = 0 then Y ∗ is
finite so every element of Y ∗ is in dcl(A) (see the earlier property DEQ) and
therefore Y ⊆ dcl(A).

Assume now that dimY ∗ = ℓ > 0. If ℓ = 1 then Y ∗ is a finite union of
A-definable open intervals and the restriction of g to one of these gives an
A-definable function g : (a, b) → G. Its image is either finite, so again in
dcl(A) (see [17]), or infinite in which case, by definable compactness, the
limit point of g(y) as y tends to b, exists in Cl(g(Y ∗)) and is A-definable.

Assume then that ℓ > 1. We find a projection, π∗ : Y ∗ → M ℓ−1 whose
image has dimension ℓ − 1. For every t ∈ π∗(Y ∗), let Y ∗

t ⊆ Y ∗ be the pre-
image of t under π∗. By dimension considerations, we can find anA-definable
set T ⊆ π∗(Y ∗) such that for every t ∈ T , dim(Y ∗

t ) = 1. Because dimY ∗
t =

1 < ℓ, we have, by induction, dcl(At) ∩ Cl(g(Y ∗
t )) ̸= ∅. Using compactness,

we get an A-definable function σ : T → G with σ(t) ∈ Cl(g(Y ∗
t )) for every

t ∈ T . Because dimT < ℓ, we can apply induction and obtain

dcl(A) ∩ Cl(σ(T )) ̸= ∅.
But σ(T ) ⊆ Cl(g(Y ∗), so we are done. �

Lemma 8.21. There exists a finite set B and a B-definable neighborhood
U0 ∋ 1 in G such that G has strong definable choice over B, for definable
subsets of U0.

Proof. Start with a fixed neighborhood U0 of 1 ∈ G, which we may assume is
a subset ofMn. The group G induces on U0 the structure of a local group, so
just like in [13, Lemma 1.28], we may assume, by further shrinking U0, that
U0 is a product of intervals, each endowed with the structure of a bounded
group-interval (this might require the parameter set B). By Lemma 4.3, U0

has definable choice. �
We can now complete the proof of the theorem. Take an A-definable

Y ⊆ G. By Lemma 8.20, there exists h ∈ dcl(A)∩Cl(Y ). We can now replace
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Y by Y1 = h−1Y ∩ U0. The set Y1 is AB-definable and because h ∈ Cl(Y ),
the set Y1 also non-empty. By Lemma 8.21, we have dcl(ABh) ∩ Y1 ̸= ∅.
But h is in dcl(A) so we have dcl(AB) ∩ Y ̸= ∅. �

8.4. Interpretable groups are definable.

Theorem 8.22. (1) If G is an interpretable group then it is definably
isomorphic, over parameters, to a definable group.

(2) If G is a definable group then there are generalized group-intervals
I1, . . . , Ik and a definable injection σ : G→ I1×· · ·× Ik. Namely, G
is definably isomorphic, over parameters, to a a definable group in a
cartesian product of generalized group-intervals. We can also replace
each group-intervals Ij with a one-dimensional definable group Hj.

Proof. We are going to prove the following statement, which incorporates
both (1) and (2): Every interpretable group G is definably isomorphic to a
definable group which is gp-short.

We prove the results through several lemmas.

Lemma 8.23. The result holds for G definably compact.

Proof. By Theorem 8.19, G has strong definable choice. By Proposition
7.10, there are intervals Ji ⊆ M , i = 1 . . . , k, each the image of G under a
definable map fi : G → Ji and a definable set Y ⊆ ΠiJi with a definable
equivalence relation E′ on Y , such that G is definably bijective to Y/E′.

Since G has strong definable choice, there are definable 1-dimensional
subsets of G, call them I1, . . . , Ik ⊆ G, such that fi|Ii : Ii → Ji is a bijection.
By Theorem 8.2, every Ii is gp-short and therefore each Ji is group-short. It
follows that ΠiJi has strong definable choice, so Y/E

′ is in definable bijection
with a definable subset of ΠiJi. �

Lemma 8.24. Assume that H1 ⊆ G is a definable normal subgroup, and
assume that H1 and G/H1 are each definably isomorphic to a definable,
gp-short group. Then so is G.

Proof. As in the proof of Lemma 8.23, it is sufficient to prove, for every
definable map f : G → M , that f(G) is gp-short. Let π : G → G/H1 be
the quotient map. For each y ∈ G/H1, Gy = π−1(y) is in definable bijection
with H1 and therefore it is in definable bijection with a gp-short definable
set. We now write f(G) as a definable union

∪
y∈G/H1

f(Gy). Each set

f(Gy) is gp-short and the parameter set G/H1 is gp-short, so by Lemma
4.8, the union f(G) is gp-short.

Lemma 8.25. If G is abelian then G is definably isomorphic to a definable
group, which is gp-short.

Proof. By Lemma 8.18, we can find a chain of definable groups A1 6 · · · 6
Ak 6 G, such that dim(Ai/Ai−1) = 1 and G/Ak is definably compact.
By Corollary 7.8, each one-dimensional group is definably isomorphic to a
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definable group, and by Theorem 8.2, each such group is gp-short. So, using
Lemma 8.24, we see that Ak is definably isomorphic to a definable, gp-short
group. By Lemma 8.23, G/Ak is definably isomorphic to a definable (gp-
short) group, so again by 8.24, the group G is definably isomorphic to a
definable gp-short group. �
Lemma 8.26. If G is definably simple (namely, G is non-abelian and has
no definable non-trivial normal subgroup) and definably connected then G is
definably isomorphic to a definable group which is gp-short.

Proof. We fix U0 ∋ 1 a definable neighborhood which we may assume to be
an open subset of Mn. The rest of the argument is identical to the proof
in [13], because all that was used there was the basic facts about definable
groups (whose analogues we proved here for interpretable groups) together
with the existence of anMn-neighborhood of the identity inG. To recall, the
fact that G is centerless implies that we can write U0 as a cartesian product
of open rectangular boxes, pairwise orthogonal, R1 × · · · × Rs, where each
Rj is itself a cartesian product of intervals which are non-orthogonal to each
other (see Theorem 3.1 in [13]). Since G is definably simple we can show
that there is only one such box, so we may write U0 as a single cartesian
product of pairwise non-orthogonal group-intervals. Moreover, each interval
supports the structure of a definable real closed field and all these real closed
fields must be definably isomorphic to each other (see [13, Theorem 3.2]).
We now have a neighborhood U0 of 1 ∈ G which we may assume to be a
neighborhood of 0 ∈ Rn for a definable real closed field R. We repeat the
construction of the Lie algebra L(G) in R (which only requires working in
a neighborhood of 1), and finally embed G into GL(n,R) using the adjoint
embedding. Clearly, the group GL(n,R) is gp-short. �

We can now prove Theorem 8.22: We use induction on dimG. By Lemma
8.24, we may assume that G is definably connected. If G has a definable
infinite normal subgroup H1 then, by induction, both H1 and G/H1 satisfy
the result so again by 8.24 we are done. So, we may assume that no such
infinite definable normal subgroup exists.

Assume then that G has some finite normal subgroup. In this case, by
DCC and the connectedness of G, this subgroup must be contained in Z(G),
which by assumption must be finite. Again, using Lemma 8.24, we can re-
place G by G/Z(G), which now has no definable non-trivial normal sub-
group. We are left with two possibilities: either G is abelian or definably
simple, so we are done by 8.25 and 8.26.

To replace each Ij with a definable one-dimensional group, use Lemma
3.4. �

9. Appendix: A uniform cell decomposition

Lemma 9.1. let {Xt : t ∈ T} be a ∅-definable family of subsets ofMk. Then
there are finitely many ∅-definable collections {Xi

t : t ∈ T}, i = 1, . . . ,m,
such that: (i) For each i = 1, . . . ,m and each t ∈ T , X i

t ⊆ Mk is a cell.
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(ii) For each t ∈ T , Xt is the disjoint union of X1
t , . . . X

m
t . (iii) For each

t, s ∈ T , and i = 1, . . . ,m, if Xt = Xs then X i
t = X i

s.

Proof. It is sufficient to prove: Assume that X ⊆ Mn is definable over a
parameter set A ⊆ Meq. Then there is a cell decomposition of X that is
definable over A. Indeed, if we do that then we can define on the above T
the equivalence relation t ∼ s iff Xt = Xs. We replace the original family
with {X[t] : t ∈ T/ ∼}, with X[t] = Xt. If each X[t] has a [t]-definable cell
decomposition then, by compactness, there is a uniform cell decomposition
of the Xt’s parameterized by T/ ∼. This easily gives us the required result.

We now fix X ⊆Mn and consider the o-minimal structure MX = ⟨M,<
,X⟩ with a new predicate for X. Since the standard cell decomposition
theorem holds in this structure there are 0-definable, pairwise disjoint cells
C1, . . . , Cm whose union is X. Each Ci is clearly invariant under every
automorphism of MX . Each Ci is given by a formula ξi(x) in the structure
MX . If we now return to M, each ξi(x) can be transformed into an M-
formula, possibly with parameters, which we call ξi(x, ai).

Each set ξi(M
k, ai) is invariant under any automorphism of M which

fixes X set-wise, so in particular under any automorphism which fixes A
point-wise. �

References

[1] Lou van den Dries, Tame topology and o-minimal structures, London
Mathematical Society Lecture Note Series, vol. 248, Cambridge Univer-
sity Press, Cambridge, 1998.

[2] Mário J. Edmundo, Solvable groups definable in o-minimal structures,
J. Pure Appl. Algebra 185 (2003), no. 1-3, 103–145.

[3] M. Edmundo and M. Otero, Definably compact abelian groups, Journal
of Math. Logic 4 (2004), 163–180.

[4] Pantelis E. Eleftheriou, Local analysis for semi-bounded groups, preprint
(2010).

[5] Jerry Gagelman, Stability in geometric structures, Ann. Pure Appl.
Logic 132 (2005), no. 2-3, 103–145.

[6] Ehud Hrushovski, Ya’acov Peterzil, and Anand Pillay, Central exten-
sions and definably compact groups in o-minimal structures, J. of Alge-
bra 327 (2011), 71–106.

[7] Ehud Hrushovski and Anand Pillay, On NIP and invariant measures,
preprint.

[8] James Loveys and Ya’acov Peterzil, Linear o-minimal structures, Israel
J. of Math. 81 (1993), 1-30.

[9] Jana Marikova, Type-definable and invariant groups in o-minimal struc-
tures, JSL 72 (2007), no. 1, 67–80.

[10] D. Marker and C. Steinhorn, Definable types in ordered structures, J.
of Symbolic Logic 51, 185-198.



INTERPRETABLE GROUPS ARE DEFINABLE 41

[11] A. Mekler, M. Rubin, and C. Steinhorn, Dedekind completeness and
the algebraic complexity of o-minimal structures, Canadian J. Math 44
(1992), 843–855.

[12] Ya’acov Peterzil, Returning to semi-bounded sets, J. Symbolic Logic 74
(2009), no. 2, 597–617.

[13] Ya’acov Peterzil, Anand Pillay, and Sergei Starchenko, Definably simple
groups in o-minimal structures, Trans. Amer. Math. Soc. 352 (2000),
no. 10, 4397-4419.

[14] Ya’acov Peterzil and Sergei Starchenko, A trichotomy theorem for o-
minimal structures, Proceedings of London Math. Soc. 77 (1998), no. 3,
481–523.

[15] , On torsion-free groups in o-minimal structures, Illinois Journal
of Mathematics 49 (2005), no. 4, 1299–1321.

[16] Ya’acov Peterzil and Charles Steinhorn, Definable compactness and de-
finable subgroups of o-minimal groups, Journal of London Math. Soc.
69 (1999), no. 2, 769–786.

[17] Anand Pillay, Some remarks on definable equivalence relations in o-
minimal structure, J. of Sym. Logic 51 (1986), no. 3, 709–714.

[18] , On groups and fields definable in o-minimal structures, J. Pure
Appl. Algebra 53 (1988), no. 3, 239–255.

University of Waterloo
E-mail address: pelefthe@uwaterloo.ca

University of Haifa
E-mail address: kobi@math.haifa.ac.il

Universidade de Lisboa
E-mail address: janak@janak.org


