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Abstract. We define notions of bisimulation for the family of Heyting-
valued modal logics introduced by M. Fitting. In this family of logics,
each modal language is built on an underlying space of truth values, a
Heyting algebra H. All the truth values are directly represented in the
language, which is interpreted on relational frames with an H-valued ac-
cessibility relation. We investigate the correct notion of bisimulation in
this context: we define two variants of bisimulation relations and derive
relative (to a truth value) modal equivalence results for bisimilar states.
We further investigate game semantics for our bisimulation, Hennessy-
Milner classes and other relevant properties. If the underlying algebra
H is finite, Heyting-valued modal models can be equivalently reformu-
lated to a form relevant to epistemic situations with many interrelated
experts. Our definitions and results draw from this formulation, which is
of independent interest to Knowledge Representation applications.
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1 Introduction

Bisimulation is a very rich concept which plays an important role in many ar-
eas of Computer Science, Logic and Set Theory. Its origins can be found in the
analysis of Modal Logic but it was independently rediscovered by computer sci-
entists in their efforts to understand concurrency. In Modal Logic, bisimulations
were introduced by Johan van Benthem, under the name of p-relations or zig-
zag relations, in the course of his work on the correspondence theory of Modal
Logic [vB83,vB84]. In Computer Science, bisimulations were introduced by Park
? Research supported by European Commission’s Research Training Network MRTN-

CT-2004-512234 (MODNET)
?? Corresponding author
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in [Par91] and Henessy and Milner in [HM85], in the course of investigating the
notion of equivalence among processes (see [San07] for a tutorial on the history
of bisimulations). In this context, bisimulations represent a fundamental notion
of identity between process states and every language designed to capture the
essential properties of processes should be blind for bisimilar states.

On the other hand, from the Modal Logic viewpoint, bisimulation is the cor-
rect notion of similarity between two modal models: modal formulas are unable
to distinguish bisimilar points of the two models. But its importance lies far
beyond; the celebrated van Benthem characterization theorem, published in the
mid-‘70s, states that invariance for bisimulation captures the essential property
of the ‘modal fragment’ of first-order logic: a first-order formula is invariant for
bisimulation iff it is (equivalent to the) the syntactical translation of a modal
formula (see [BdRV01] for a nice exposition of this result and its consequences).
The characterization theorem has generated an important stream of research in
the analysis of logical languages. In particular, the bisimulation-based analysis of
modal languages has been extensively studied in the Amsterdam school of modal
logic [dR93,Ger99,MV03], and it has even been suggested that this notion is as
important for modal logic as the notion of partial isomorphism has been for the
model theory of classical logic (see the PhD thesis of M. de Rijke [dR93]). It is
worth mentioning that bisimulations have been used beyond the realm of classi-
cal modal logic: see for instance the variant used to analyze since-until temporal
languages [KdR97], M. Otto’s work related to Finite Model Theory [Ott99] and
J. Gerbrandy’s dissertation [Ger99]. Bisimulations have been also used as a fun-
damental tool in the area of non-well founded set theory ([Acz88], see [BdRV01]
for a few details and further references).

In this note, we address the question of what constitutes a suitable notion of
bisimulation for the family of many-valued modal languages introduced by M.
Fitting in the early ’90s [Fit92,Fit91]. Each language of this family is built on an
underlying space of truth values, a Heyting algebra H. There exist three features
that give these logics their distinctive character. The first one is syntactic: the
elements of H are directly encoded in the language as special constants and this
permits the formation of ‘weak’, uncertainty-oriented versions of the classical
modal epistemic actions [Kou03,KNP02,KP02]. The second is semantic: the lan-
guages we discuss are interpreted on H-labelled directed graphs which provide
us a form of many-valued accessibility relation. Finally, the third one concerns
the potential applicability of these logics in epistemic situations with multiple
intelligent agents. More specifically, assuming that H is a finite Heyting algebra,
these logics can be formulated in a way that expresses the epistemic consensus
of many experts, interrelated through a binary ‘dominance’ relation [Fit92]. It is
worth mentioning that, model-theoretically, every complete Heyting algebra can
serve as the space of truth values. However, apart from the equivalent multiple-
expert formulation of the logics, the finiteness assumption for H is essential for
the elegant canonical model construction of [Fit92] which leads to a complete-
ness theorem; note that this finiteness restriction seems to be also necessary for
obtaining a many-valued analog of the ultrafilter extension construction [EK05].
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In Section 2, we briefly expose the mathematical background of Heyting
algebras, as well as the syntax and semantics of many-valued modal languages.

Section 3 contains the main definitions and results of the paper. We provide
two notions of bisimulation and derive modal equivalence results. In Section 3.1,
a rather strong notion of a t-bisimulation is defined for each t ∈ H. This allows
us to formulate simple, intuitive, Ehrenfeucht-Fraissé type bisimulation games
through which one can easily define bounded t-bisimulations, as in the classical
case. Also, an appropriate notion of t-unravelling is given, through which one
gets a form of the celebrated tree-model property, considered to be critical for
the ‘robust decidability’ of modal logics [Var97]. In Section 3.2, a rather involved
notion of a weak bisimulation is defined, assuming our Heyting algebraH satisfies
Property (1), given in the beginning of that section. This allows us to obtain an
interesting notion of a Hennessy-Milner class of Heyting-valued modal models.

Both notions of bisimulations draw inspiration from the equivalent multiple-
expert formulation of these logics, which is actually a mixture of Kripke modal
and Kripke intuitionistic semantics. In Section 4, we review this alternative for-
mulation and interpret our results in that context.

2 Many-Valued Modal Languages

In this section we provide the syntax and semantics of many-valued modal lan-
guages, as introduced in [Fit92], with only minor changes in the notation. To
construct a modal language of this family, we first fix a Heyting algebra H which
will serve as the space of truth values. Thus, we first briefly expose the basic
definitions and properties of Heyting algebras, fixing also notation and terminol-
ogy. We assume that the reader already has some familiarity with the elements
of lattice theory and universal algebra. For more details the reader is referred to
the classical texts [RS70,BD74].

Heyting Algebras A lattice L is a pair 〈L,≤〉 consisting of a non-empty set L
equipped with a partial-order relation ≤, such that every two-element subset
{a, b} of L has a least upper bound or join, denoted by a∨ b, and a greatest lower
bound or meet, denoted by a ∧ b. A lattice L is complete if a join and a meet
exist for every subset of L. A least (or bottom) element of a lattice is denoted
by ⊥ and a greatest (or top) one by >. An element x ∈ L is join-irreducible if
x 6= ⊥ (in case L has a bottom element) and x = a ∨ b implies x = a or x = b.
We frequently use indexed sets and denote (possibly infinite) meets and joins by∧
t∈T

at and
∨

t∈T

at. Some fairly obvious properties of infinite joins and meets, such

as
∧

t∈T

(
a ∧ at

)
= a ∧∧

t∈T
at will be used, generally without comment.

A lattice H = 〈H,≤〉 with the additional property that, for every pair of
elements 〈a, b〉, the set {x | a∧x ≤ b} has a greatest element, is called a relatively
pseudo-complemented lattice. This element is denoted by a ⇒ b and is called
the pseudo-complement of a relative to b. A relatively pseudo-complemented
lattice is always a topped ordered set [RS70]. It is not always the case that a
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relatively pseudo-complemented lattice has a least element. A relatively pseudo-
complemented lattice H with a least element is called a Heyting algebra (HA)
or a pseudo-Boolean algebra. It is known that the class of HAs includes the
class of Boolean algebras and is included in the class of distributive lattices;
both inclusions are proper. For finite lattices, the second inclusion becomes an
equality: the class of finite HAs coincides with the class of finite distributive
lattices [RS70]. The following lemma gathers some useful properties of relatively
pseudocomplemented lattices that will be used in Section 3; whenever a possibly
infinite join or meet is involved, it is assumed that it exists. The proof of its items
can be found in [RS70,BD74]. Note also that the first item of the lemma can be
equivalently considered as a definition of relative pseudo-complementation.

Lemma 1. 1. x ≤ (a ⇒ b) iff (x ∧ a) ≤ b
2. (a ⇒ b) = > iff a ≤ b
3. If a1 ≤ a2 then (a2 ⇒ b) ≤ (a1 ⇒ b)
4. c ∧ (a ⇒ b) = c ∧ (

(c ∧ a) ⇒ (c ∧ b)
)

5.
∨

t∈T

(a ∧ bt) = a ∧ ∨
t∈T

bt

6. (a ∨ b) ⇒ c = (a ⇒ c) ∧ (b ⇒ c)

Syntax of Many-Valued Modal Languages Having fixed a complete Heyting al-
gebra H we proceed to define the syntax of the modal language. The elements
of H are directly represented in the language by special constants, called propo-
sitional constants, and we reserve lowercase letters (along with ⊥,>) to denote
them. To facilitate notation, we use the same letter for the element of H and the
constant which represents it in the language; context will clarify what is meant.
Assuming also a set Φ of propositional variables (also called propositional let-
ters) we define the many-valued modal language LH

23
(Φ) with the following BNF

specification, where t ranges over elements of H, P ranges over elements of Φ
and A is a formula of LH

23
(Φ).

A ::= t | P | A1 ∨A2 | A1 ∧A2 | A1 ⊃ A2 | 2A | 3A

As we will see below, the modal logics defined are in general bimodal, thus
we need both modal operators. Note also that ∨ and ∧ serve both as logical
connectives, as well as lattice operation symbols but it should be clear by context
what is meant. In the rest of the paper, we shall often omit Φ when possible and
speak of the language LH

23
. A (non-classical) negation ¬X can be defined as

(X ⊃ ⊥).

Semantics of Many-Valued Modal Languages LH
23

is interpreted on an interesting
variant of a relational frame, which possesses a kind of Heyting-valued accessi-
bility relation. Note that there have been other approaches in the literature for
defining many-valued modal logics, but all of them have kept the essence of clas-
sical relational semantics intact (see [Fit92] for references). Given LH

23
(Φ), we

define H-modal frames and H-modal models as follows:
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Definition 1. An H-modal frame for LH
23

(Φ) is a pair F = 〈S, g〉, where S is a
non-empty set of states and g : S×S → H is a total function mapping pairs of
states to elements of H.
An H-modal model M = 〈S, g, v〉 is built on F by providing a valuation v, that
is a function v : S × (H ∪ Φ) → H which assigns a H-truth value to atomic
formulae in each state, such that v(s, t) = t, for every s ∈ S and t ∈ H. In other
words, the propositional constants are always mapped to ‘themselves’.

In the sequel, we shall often omit the adjective ‘modal’ and talk simply of H-
frames and H-models.
The valuation v extends to all the formulae of LH

23
(Φ) in a standard recursive

fashion:

Definition 2. Let M = 〈S, g, v〉 be an H-model and s a state of S. The exten-
sion of the valuation v to the whole language LH

23
(Φ) is given by the following

clauses;

– v(s, A ∧B) = v(s, A) ∧ v(s, B)

– v(s, A ∨B) = v(s, A) ∨ v(s, B)

– v(s, A ⊃ B) = v(s, A) ⇒ v(s, B)

– v(s,2A) =
∧

t ∈S

(
g(s, t) ⇒ v(t, A)

)

– v(s,3A) =
∨

t ∈S

(
g(s, t) ∧ v(t, A)

)

The operators of necessity (2) and possibility (3) are not each other’s dual,
unless H is a Boolean algebra [Fit92]. Note also that all the definitions above
collapse to the familiar ones from the classical case, in the case of the classical
language L2

23
, where 2 is the lattice of two-valued classical logic.

3 Bisimulations for Many-Valued Modal Languages

In this section, we define two suitable general notions of bisimulation for a lan-
guage LH

23
of the family defined in the previous section. Before proceeding, we

have to define a refined notion of modal truth invariance which fits our aims and
which also has an interesting interpretation in the multiple-expert context. Note
that the following notion is trivial for t = ⊥.

Definition 3 (t-invariance). Let M = 〈S, g, v〉 and M′ = 〈S′, g′, v′〉 be H-
models for LH

23
(Φ), s ∈ S and s′ ∈ S′ two states and t ∈ H a truth value (t 6= ⊥).

We say that modal truth is t-invariant for the transition between s and s′ if for
every X ∈ LH

23
(Φ)

t ∧ v(s, X) = t ∧ v′(s′, X)
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3.1 Strong Bisimulation for Many-Valued Modal Languages

The following definition captures the idea of moving ‘back and forth’ between
two H-models by matching steps (‘modulo’ t) in both directions.

Definition 4 (t-bisimulations). Given two H-models M = 〈S, g, v〉 and
M′ = 〈S′, g′, v′〉 and a truth value t ∈ H (t 6= ⊥), a non-empty relation
Z ⊆ S×S′ is a t-bisimulation between M and M′ if for any pair 〈s, s′〉 ∈ Z

(base) t ∧ v(s, P ) = t ∧ v′(s′, P ) for every P ∈ Φ
(forth) for every r ∈ S such that t ∧ g(s, r) 6= ⊥,

there exists an r′ ∈ S′ such that t ∧ g(s, r) = t ∧ g′(s′, r′) and rZr′

(back) for every r′ ∈ S′ such that t ∧ g′(s′, r′) 6= ⊥,
there exists an r ∈ S such that t ∧ g′(s′, r′) = t ∧ g(s, r) and rZr′

Two states s and s′ are called t-bisimilar (notation s ↔t s′ or M, s ↔t M′, s′) if
there is a t-bisimulation Z between M and M′ such that sZs′.
We can now prove the basic theorem which states that t-bisimulation implies
t-invariance.

Theorem 1. If M, s ↔
t M′, s′, then t ∧ v(s, X) = t ∧ v′(s′, X) for every

X ∈ LH
23

.

Proof. The proof runs by induction on the formation of X. If X ∈ Φ, the
result follows by the base condition and if X ∈ H is a propositional constant it
is trivial. In case X is a conjunction X1∧X2 the result follows by Def. 2 and the
idempotency of the meet operation in lattices.
If X = X1 ∨X2, then

t ∧ v(s, X1 ∨X2) = t ∧
(
v(s, X1) ∨ v(s, X2)

)
(Def. 2)

=
(
t ∧ v(s, X1)

)
∨

(
t ∧ v(s, X2)

)
(Distributivity of H)

=
(
t ∧ v′(s′, X1)

)
∨

(
t ∧ v′(s′, X2)

)
(Inductive Hypothesis)

= t ∧
(
v′(s′, X1) ∨ v′(s′, X2)

)

= t ∧ v′(s′, X1 ∨X2)

If X = X1 ⊃ X2, then

t ∧ v(s, X1 ⊃ X2) = t ∧
(
v(s, X1) ⇒ v(s, X2)

)

= t ∧
((

t ∧ v(s, X1)
)
⇒

(
t ∧ v(s, X2)

))
(Lemma 1(4))

= t ∧
((

t ∧ v′(s′, X1)
)
⇒

(
t ∧ v′(s′, X2)

))
(Inductive Hypothesis)

= t ∧
(
v′(s′, X1) ⇒ v′(s′, X2)

)
(Lemma 1(4))

= t ∧ v′(s′, X1 ⊃ X2)
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For the case X = 2X1, the proof is split in two inequalities. Let St = {r ∈
S | t ∧ g(s, r) 6= ⊥} and S′

t be the set that contains all the states r′ specified in
the forth condition. The fourth step below, where r is restricted to range over
St instead of S, is justified by Lemma 1(2).

t ∧ v(s,2X1) = t ∧
∧

r ∈S

(
g(s, r) ⇒ v(r, X1)

)

=
∧

r ∈S

(
t ∧

(
g(s, r) ⇒ v(r, X1)

))

=
∧

r ∈S

t ∧
(
(t ∧ g(s, r)) ⇒ (t ∧ v(r, X1))

)
(Lemma 1(4))

=
∧

r ∈St

t ∧
(
(t ∧ g(s, r)) ⇒ (t ∧ v(r, X1))

)
(r /∈ St does not affect)

=
∧

r′ ∈S′t

t ∧
(

t ∧ g′(s′, r′)︸ ︷︷ ︸
forth

⇒ t ∧ v′(r′, X1)︸ ︷︷ ︸
Induct. Hypothesis

)
(Lemma 1(3), Def. 4)

= t ∧
∧

r′ ∈S′t

(
g′(s′, r′) ⇒ v′(r′, X1)

)
(Lemma 1(4))

≥ t ∧
∧

r′ ∈S′

(
g′(s′, r′) ⇒ v′(r′, X1)

)
(S′

t ⊆ S′)

= t ∧ v′(s′,2X1)
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The proof of the other inequality (≤) runs in a completely symmetric way by
the back condition. For the case of the other modal operator, we provide below
the argument for the first direction (≤):

t ∧ v(s,3X1) = t ∧
∨

r ∈S

(
g(s, r) ∧ v(r, X1)

)

=
∨

r ∈S

(
t ∧ g(s, r) ∧ v(r, X1)

)
(Lemma 1(5))

=
∨

r ∈S

((
t ∧ g(s, r)

)
∧

(
t ∧ v(r, X1)

))

=
∨

r ∈St

((
t ∧ g(s, r)

)
∧

(
t ∧ v(r, X1)

))

=
∨

r′ ∈S′t

((
t ∧ g′(s′, r′)︸ ︷︷ ︸

forth

)
∧

(
t ∧ v′(r′, X1)︸ ︷︷ ︸

Induct. Hypothesis

))

≤
∨

r′ ∈S′

((
t ∧ g′(s′, r′))

)
∧

(
t ∧ v′(r′, X1)

))
(S′

t ⊆ S′)

= t ∧
∨

r′ ∈S′

(
g′(s′, r′)) ∧ v′(r′, X1)

)
(Lemma 1(5))

= t ∧ v′
(
s′, 3X1

)

The other direction is symmetric and the proof of the theorem is complete.

EF-type games for t-bisimulation The t-bisimulation game is a simple variant
of the Ehrenfeucht-Fraissé game played in First-Order Logic. For the purposes
of the rest of this section call a state r a t-compatible successor state of s if
t ∧ g(s, r) 6= ⊥. Two elements a, a′ of H are called t∧-equivalent if t ∧ a =
t∧a′. We call labels the H-truth values attached to the graph’s edges and to the
propositional letters of the language in each possible world. The t-bisimulation
game is played on two pointed H-models (models with a single distinguished
state) M, s0 and M′, s′0. There exists one marked element in each H-model;
initially, the marked elements are the distinguished nodes s0 and s′0. In each
round of the game

– Player I selects one of the H-models, chooses a t-compatible successor of
the marked element and moves the marker along the edge (labelled by aI)
to its target

– Player II responds with a move of the marker in the other H-model in a
corresponding t-compatible transition (labelled by aII) such that aI and aII

are t∧-equivalent and the labels of the propositional letters in the marked
elements (states) of the models are also t∧-equivalent

The length of the game is the (finite or infinite) number of rounds and Player II
loses the match if at a certain round cannot respond with an appropriate move.
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It is obvious that Player I is trying to spoil a t-bisimulation while Player II is
trying to reveal one. Player II has a winning strategy in a game of n rounds
if she can win every n-round game played on M, s0 and M′, s′0. In a classical
fashion, we can proceed to a finer analysis of t-bisimulations using the inductively
defined notion of the modal depth of a formula (the maximum number of modal
operators encountered in a subformula, [BdRV01,MV03]). The notion of a t-
bisimulation bounded by a positive integer n, or any ordinal actually, can easily
be defined (see [Ger99, Chapter 2.1] for the classical case), but we will not give
further details here, since the whole construction is identical to the classical one.
We only provide the following proposition which generalizes the known classical
results from two-valued modal logic:

Proposition 1. 1. Player II has a winning strategy in the n-round game played
on M, s0 and M′, s′0 iff modal truth is t-invariant in s0 and s′0 for every
formula up to modal depth n.

2. Player II has a winning strategy for the infinite game played on M, s0 and
M′, s′0 iff s0

↔
t s′0.

Proof. The proof of the first item runs by induction on n and is actually a
restatement of the proof of Theorem 1. The second item follows by the definitions
above.

The t-bisimulation games can be formulated in a simple way for the class of
languages built on finite linear orders. Assuming further that truth values are
colours, linearly ordered, and given that the meet operation is simple in finite
chains (a∧b = min(a, b)) the game can be described in an easy way that provides
also an element of fun.

t-unravellings and the tree-model property The idea of unravelling a model into a
modally-equivalent tree model is known both from modal logic and the theory of
processes. In the latter field, the states of the unravelled model represent traces
(histories) of processes, starting from a state s. The following definition provides
the many-valued analog of this notion.

Definition 5. Given a pointed model M = 〈S, g, v〉, s1, its t-unravelling is the
model Mu

s1
= 〈Su

s1
, gu

s1
, vu

s1
〉, where

1. Su
s1

consists of all tuples 〈s1, · · · , sk〉 where si+1 is a t-compatible successor
of si

2. gu
s1

(〈s1, · · · , sk〉, 〈s1, · · · , sk+1〉) = t ∧ g(sk, sk+1), and ⊥ for any other pair of
tuples

3. vu
s1

(〈s1, · · · , sk〉, P ) = t ∧ v(sk, P ), (P ∈ Φ)

Obviously Mu
s1

is a tree model and the following proposition can be proved by
a careful inspection on the definition of a t-bisimulation.

Proposition 2. The graph of the function from Su
s1

to S, which maps every
tuple to its last component (and 〈s1〉 to s1) is a t-bisimulation.

Thus, modal truth is t-invariant for the transition from s1 to the root 〈s1〉 of the
tree and this is a generalized version of the tree model property [Var97].
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Satisfiability in Many-Valued Modal Languages The general satisfiability prob-
lem in this context can be phrased as follows: given X ∈ LH

23
and t ∈ H,

is there a state s of an H-model M in which v(s, X) ≥ t? This is equiva-
lent (by Lemma 1(2)) to t ⇒ v(s, X) = > which is equivalent (by Def. 2) to
v(s, t ⊃ X) = >. Thus, the general satisfiability problem is subsumed by the
question of finding a state in which a formula is mapped to the top element of
the lattice. By the previous paragraph, if such a state/model exists, then this
formula can be also satisfied at the root of a (>-unravelled) tree. Imitating the
classical arguments ( [MV03]), it is easy to prove that, if H is finite, every for-
mula can be satisfied in a finite tree whose size is bounded: its depth is bounded
by the modal depth of X and its branching degree is bounded by the number of
box and diamond subformulas of x. This leads to a simple way of proving the
fact that the many-valued analog of the system K (which is determined by the
class of all H-models [Fit92]) has a decidable general satisfiability problem.

3.2 Weak Bisimulations for Many-Valued Modal Languages

We proceed now to define, a weaker, more fine-grained notion of bisimulation
that is directly inspired from (and can be better explained in the context of) the
multiple-expert semantics of these languages. We first fix some notation.
Let IH denote the set of join-irreducible elements of H. For the rest of this sec-
tion, we fix a complete Heyting algebra H that possesses the following property:

Every t ∈ H − IH is equal to the join of a finite number of elements in IH.
(1)

Define the function DH fromH−{⊥} to 2IH , such that DH(t) = {c ∈ IH | c ≤ t}.
Using Property (1), we see that t =

∨
c∈DH(t) c. Intuitively, DH provides a

decomposition of a value t ∈ H into join-irreducible values. In the next definition,
a bisimulation relation is defined for every truth value, but in a way that it is
“upwards (with respect to the lattice of truth values) consistent”.

Definition 6 (Weak bisimulation). Given two H-models M = 〈S, g, v〉 and
M′ = 〈S′, g′, v′〉, a function Z from H − {⊥} to 2S×S′ is a weak bisimulation
between M and M′ if it satisfies the following properties:

– for every t1, t2 ∈ H
(consistency) Z(t1 ∨ t2) = Z(t1) ∩ Z(t2)

– for every join-irreducible value t ∈ IH and any pair 〈s, s′〉 ∈ Z(t)
(base) t ∧ v(s, P ) = t ∧ v′(s′, P ) for every P ∈ Φ
(forth) for every r ∈ S such that t ∧ g(s, r) 6= ⊥

and for every c ∈ DH(t ∧ g(s, r)),
there exists an r′ ∈ S′ such that c ≤ g′(s′, r′) and 〈r, r′〉 ∈ Z(c)

(back) for every r′ ∈ S′ such that t ∧ g′(s′, r′) 6= ⊥
and for every c ∈ DH(t ∧ g′(s′, r′)),
there exists an r ∈ S such that c ≤ g(s, r) and 〈r, r′〉 ∈ Z(c)
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Two states s and s′ are called weakly t-bisimilar (notation s !
t s′ or M, s !

t

M′, s′) if there is a weak bisimulation Z between M and M′ such that 〈s, s′〉
belongs to Z(t).

The reader can check that we have indeed defined a weaker notion than that
of a t-bisimulation:

Remark 1. M, s ↔t M′, s′ implies M, s !
t M′, s′.

The basic theorem of the previous section is still valid under this new notion,
but the proof requires some more elaboration.

Theorem 2. If M, s !
t M′, s′, then t ∧ v(s, X) = t ∧ v′(s′, X) for every

X ∈ LH
23

.

Proof. We first prove that the theorem holds in the case that t is join-irreducible.
The proof runs by induction on the formation of X. If X ∈ Φ, the result follows
by the base condition and if X ∈ H is a propositional constant it is trivial. For
the cases in which X is a formula of the form X1 ∧X2, X1 ∨X2 or X1 ⊃ X2, the
result can be obtaind as in the proof Theorem 1.

For the case X = 2X1, the proof is split in two inequalities. Let St = {r ∈
S | t∧g(s, r) 6= ⊥}. The fourth step below, where r is restricted to range over St
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instead of S, is justified by Lemma 1(2). We denote by R′ the set that contains
all the states r′ specified in the definition of the forth condition.

t ∧ v(s,2X1) = t ∧
∧

r ∈S

(
g(s, r) ⇒ v(r, X1)

)

=
∧

r ∈S

(
t ∧

(
g(s, r) ⇒ v(r, X1)

))

=
∧

r ∈S

(
t ∧

(
(t ∧ g(s, r)) ⇒ (t ∧ v(r, X1))

))
(Lemma 1(4))

=
∧

r ∈St

(
t ∧

(
(t ∧ g(s, r)) ⇒ (t ∧ v(r, X1))

))
(r /∈ St does not affect)

=
∧

r ∈St

(
t ∧

(
(

∨

c∈DH(t∧g(s,r))

c) ⇒ (t ∧ v(r, X1))
))

(Def. of DH)

=
∧

r ∈St

(
t ∧

∧

c∈DH(t∧g(s,r))

(
c ⇒ (t ∧ v(r, X1))

))
(Lemma 1(6))

=
∧

r ∈St

∧

c∈DH(t∧g(s,r))

(
t ∧

(
(t ∧ c) ⇒ (t ∧ v(r, X1))

))

≥
∧

r′ ∈R′

(
t ∧

(
(t ∧ g′(s′, r′)︸ ︷︷ ︸

forth

) ⇒ ( t ∧ v′(r′, X1)︸ ︷︷ ︸
Induct. Hypothesis

)
))

(Lemma 1(3), Def. 4)

=
∧

r′ ∈R′

(
t ∧

(
g′(s′, r′) ⇒ v′(r′, X1)

))
(Lemma 1(4))

= t ∧
∧

r′ ∈R′

(
g′(s′, r′) ⇒ v′(r′, X1)

)

≥ t ∧
∧

r′ ∈S′

(
g′(s′, r′) ⇒ v′(r′, X1)

)
(R′ ⊆ S′)

= t ∧ v′(s′,2X1)
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The proof of the other inequality (≤) runs in a completely symmetric way by
the back condition. For the case of the other modal operator, we provide below
the argument for the first direction (≤):

t ∧ v(s,3X1) = t ∧
∨

r ∈S

(
g(s, r) ∧ v(r, X1)

)

=
∨

r ∈S

(
t ∧

(
g(s, r) ∧ v(r, X1)

))
(Distributivity)

=
∨

r ∈S

(
(t ∧ g(s, r)) ∧ (t ∧ v(r, X1))

)

=
∨

r ∈St

(
(t ∧ g(s, r)) ∧ (t ∧ v(r, X1))

)
(r /∈ St does not affect)

=
∨

r ∈St

(
(

∨

c∈DH(t∧g(s,r))

c) ∧ (t ∧ v(r, X1))
)

(Def. of DH)

=
∨

r ∈St

∨

c∈DH(t∧g(s,r))

(
c ∧ (t ∧ v(r, X1))

)
(Distributivity)

=
∨

r ∈St

∨

c∈DH(t∧g(s,r))

(
(t ∧ c) ∧ (t ∧ v(r, X1))

)

≤
∨

r′ ∈R′

(
(t ∧ g′(s′, r′)︸ ︷︷ ︸

forth

) ∧ ( t ∧ v′(r′, X1)︸ ︷︷ ︸
Induct. Hypothesis

)
)

(Monotonicity of ∧, Def. 4)

=
∨

r′ ∈R′

(
t ∧

(
g′(s′, r′) ∧ v′(r′, X1)

))

= t ∧
∨

r′ ∈R′

(
g′(s′, r′) ∧ v′(r′, X1)

)
(Distributivity)

≤ t ∧
∨

r′ ∈S′

(
g′(s′, r′) ∧ v′(r′, X1)

)
(R′ ⊆ S′)

= t ∧ v′(s′, 3X1)

The other direction is symmetric and the proof for that case in which t is join-
irreducible is complete.

Suppose now that t is not join-irreducible. Then:
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t ∧ v(s, X) =
( ∨

c∈DH(t)

c
)
∧ v(s, X) (Def. of DH)

=
∨

c∈DH(t)

(
c ∧ v(s, X)

)
(Distributivity)

=
∨

c∈DH(t)

(
c ∧ v′(s′, X)

)
(c is join-irreducible)

=
( ∨

c∈DH(t)

c
)
∧ v′(s′, X) (Distributivity)

= t ∧ v′(s′, X) (Def. of DH)

Image-finite H-models and weak t-bisimulations One of the fundamental ques-
tions in the bisimulation-based analysis of modal languages, concerns the iden-
tification of cases in which the converse of Theorem 2 is true. Much obviously, it
is not always true: the classical counterexample of two tree models, both with a
finite branch for each natural number, one of which possesses an infinite branch,
suffices (cf. [BdRV01, Chapter 2.2]). The simplest example of Hennessy-Milner
classes of modal models (classes in which modal equivalence is itself a bisimu-
lation relation) is the class of image-finite models, in which each state has only
a finite number of successors. It is natural to consider a straightforward many-
valued analog of this notion by considering H-models in which for each state
s, the set of successors of s is always finite and check whether in this case t-
invariance implies t-bisimilarity. Formally, the notion of image-finite H-models
is defined as follows.

Definition 7 (Image-finite H-models). An H-model M = 〈S, g, v〉 is called
image-finite if for every s ∈ S, the set Ss = {r ∈ S | g(s, r) 6= ⊥} is finite.

The following theorem states that for image-finiteH-models, t-invariance implies
t-bisimilarity.

Theorem 3. Let M = 〈S, g, v〉 and M′ = 〈S′, g′, v′〉 be image-finite H-models
for LH

23
(Φ). Define the function Z from H − {⊥} to 2S×S′ so that for every

s ∈ S, every s′ ∈ S′ and every t ∈ H − {⊥}, 〈s, s′〉 ∈ Z(t) iff modal truth is
t-invariant for the transition between s and s′. Then Z is a weak bisimulation
between M and M′.

Proof. The consistency condition is easy to verify, and the base condition
staightforward. We next show that the Z satisfies the forth condition; the proof
for the back condition is completely symmetric.

Suppose for the sake of contradiction that Z does not satisfy the forth con-
dition. This means that there exist a truth value t ∈ IH, a pair 〈s, s′〉 ∈ Z(t),
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a state r ∈ S such that t ∧ g(s, r) 6= ⊥ and a truth value c ∈ DH(t ∧ g(s, r)),
such that for every r′ ∈ S′, if c ≤ g′(s′, r′) then 〈r, r′〉 /∈ Z(c).

Since M′ is image finite, the set R′ = {r′ ∈ S′ | c ≤ g′(s′, r′)} is finite. We
first show that R′ is non-empty. We have:

c ≤ t ∧ g(s, r) ≤ t ∧
∨

r ∈S

(
g(s, r) ∧ >)

= t ∧ v(s,>) = t ∧ v′(s′,>)

= t
∨

r′ ∈S′

(
g′(s′, r′) ∧ >)

=
∨

r′ ∈S′

(
t ∧ g′(s′, r′)

)

Since c ∈ IH and H is distributive, one can show that for some r′ ∈ S′, c ≤
t ∧ g′(s′, r′), and thus c ≤ g′(s′, r′).

Suppose that R′ = {r′1, r′2, . . . , r′k}. Then for every i, 1 ≤ i ≤ k, 〈r, ri
′〉 /∈ Z(c),

which implies that there exists a formula Xi such that c∧v(r, Xi) 6= c∧v′(ri
′, Xi).

We will define a new formula Yi such that c ∧ v(r, Yi) = c and c ∧ v′(ri
′, Yi) < c.

Let ai = c ∧ v(r, Xi) and bi = c ∧ v′(ri
′, Xi). We consider two cases:

Case 1: ai ≤ bi. Since ai 6= bi it is bi 6≤ ai. Define Yi = Xi ⊃ ai. Then,
c∧v(r, Yi) = c∧v(r, Xi ⊃ ai) = c∧(v(r, Xi) ⇒ ai) = c∧(ai ⇒ ai) = c. Moreover,
c ∧ v′(ri

′, Yi) = c ∧ v′(ri
′, Xi ⊃ ai) = c ∧ (v′(ri

′, Xi) ⇒ ai) = c ∧ (bi ⇒ ai).
If c ∧ (bi ⇒ ai) = c, then c ≤ (bi ⇒ ai), which implies bi = c ∧ bi ≤ ai

(contradiction). Therefore, c ∧ v′(ri
′, Yi) 6= c.

Case 2: ai 6≤ bi. Define Yi = ai ⊃ Xi. Then, c ∧ v(r, Yi) = c ∧ v(r, ai ⊃
Xi) = c ∧ (ai ⇒ v(r, Xi)) = c ∧ (ai ⇒ ai) = c. Moreover, c ∧ v′(ri

′, Yi) =
c ∧ v′(ri

′, ai ⊃ Xi) = c ∧ (ai ⇒ v′(ri
′, Xi)) = c ∧ (ai ⇒ bi). If c ∧ (ai ⇒ bi) = c,

then c ≤ (ai ⇒ bi), which implies ai = c ∧ ai ≤ bi (contradiction). Therefore,
c ∧ v′(ri

′, Yi) 6= c.

Let Y = Y1 ∧Y2 ∧ · · · ∧Yk. It is easy to see that we again have c∧ v(r, Y ) = c
and c ∧ v′(ri

′, Y ) < c.

Let φ = 3Y . Since 〈s, s′〉 ∈ Z(t), it must be t ∧ v(s, φ) = t ∧ v′(s′, φ), which
implies c ∧ t ∧ v(s, φ) = c ∧ t ∧ v′(s′, φ). We compute the two values in the last
inequality. For c ∧ t ∧ v(s, φ), we have:

c ∧ t ∧ v(s, φ) = c ∧ v(s, φ)

= c ∧
∨

u ∈S

(
g(s, u) ∧ v(u, Y

)

≥ c ∧ (g(s, r) ∧ v(r, Y ))
= (c ∧ g(s, r)) ∧ (c ∧ v(r, Y ))
= c ∧ c

= c
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This implies (since it is also c ∧ t ∧ v(s, φ) ≤ c) that c ∧ t ∧ v(s, φ) = c. For
c ∧ t ∧ v′(s′, φ), we have:

c ∧ t ∧ v′(s′, φ) = c ∧ v′(s′, φ)

= c ∧
∨

u′ ∈S′

(
g′(s′, u′) ∧ v′(u′, Y )

)

=
∨

u′ ∈S′

(
c ∧ g′(s′, u′) ∧ v′(u′, Y )

)

=
∨

r′ ∈ R′

(
c ∧ g′(s′, r′) ∧ v′(r′, Y )

)
∨

∨

u′ ∈S′−R′

(
c ∧ g′(s′, u′) ∧ v′(u′, Y )

)

≤
∨

r′ ∈ R′

(
c ∧ v′(r′, Y )

)
∨

∨

u′ ∈S′−R′

(
c ∧ g′(s′, u′)

)

=
∨

r′ ∈ R′

(
c ∧ v′(r′, Y )

)
∨

∨

u′ ∈S′−R′

(
c ∧ g′(s′, u′)

)

≤ c

From t ∧ c ∧ v(s, φ) = t ∧ c ∧ v′(s′φ), we obtain that

c =
∨

r′ ∈ R′

(
c ∧ v′(r′, Y )

)
∨

∨

u′ ∈S′−R′

(
c ∧ g′(s′, u′)

)

However, if r′ ∈ R′, then c ∧ v′(r′, Y ) < c. Furthermore, if u′ ∈ S′ − R′, then
c 6≤ g′(s′, u′), which implies that c∧ g′(s′, u′) < c. By the above equality, c is not
join-irreducible, which is a contradiction.
Thus, Z satisfies the forth condition, and the proof is completed.

4 Multiple-Expert Semantics

In this section, we confine ourselves in the class of many-valued modal languages
built on finite HAs. Each language of this class can be reformulated in a way
that is of interest to KR situations involving many interrelated experts. We
briefly review below this facet of Fitting’s many-valued modal languages. The
interested reader should refer to [Fit92, Sect. 1, 3 & 5] for technical details. We
then interpret our definitions and results in this alternative context. We note,
however, that our results carried out in the previous sections hold in more general
Heyting algebras.

A multiple-expert modal model is a structure 〈E ,S, {Re}e∈E , {ve}e∈E , D〉,
such that:

– E is a finite set of experts.
– D is a partial-order dominance relation on E .
– S is a common set of worlds.
– For each e ∈ E , 〈S, Re, ve〉 is a (two-valued) modal model, such that

(D1) if Re(s1, s2) and D(e, f), then Rf (s1, s2), and
(D2) for any propositional variable X, if ve(s, X) and D(e, f), then vf (s, X).
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The valuations ve are then properly extended to all modal formulae, so that
(D2) above is preserved.

We are interested now in finding the experts’ ‘consensus’, that is, in elegantly
calculating the modal formulae on which our experts agree. This problem can be
reformulated as one involving a many-valued language, where sets of experts who
agree on the truth of an epistemic statement can be seen as generalized truth
values. Note however an important point: by (D1) and (D2), not every set of
experts is an ‘admissible’ generalized truth value. The ‘admissible’ sets
of experts are those which are dominance-closed, that is, upwards-closed in the
order D. The set of all admissible sets of experts form a finite Heyting algebra
H when ordered under set inclusion. We can thus produce an H-model 〈S, g, v〉
as follows:

– For s, r ∈ S, g(s, r) := {e ∈ E : sRer}.
– For a propositional variable X, v(s, X) := {e ∈ E : ve(s, X) = 1}.

It can then be proved that for any modal formulae φ,

v(s, φ) = {e ∈ E : ve(s, φ) = 1}.

We have thus provided a translation of the multiple-expert situation into a many-
valued modal model of the language LH

23
. The other translation is also feasible.

Both translations are presented in [Fit92, Sect. 5].
We are now in the position to express the meaning of our results in this

alternative setting. It suffices to observe that in the finite Heyting algebra H of
the ‘admissible’ subsets of experts, meet is set intersection and join is set union.
Assume 〈S, g, v〉 and 〈S′, g′, v′〉 are two H-models, and ∈S, s′ ∈ S′. In the case
of weak bisimulation we have a sharp description:

– The states s and s′ are weakly t-bisimilar iff for every expert e in t the
states s and s′ in the corresponding models 〈S, Re, ve〉 and 〈S′, Re, ve〉 are
bisimilar.

An analogous statement does not hold for the notion of t-bisimulation, as the
example below shows. Note that, together with Remark 1, this implies that the
notion of a weak bisimulation is strictly weaker than that of a t-bisimulation.

Example 1. Let E = {e, f} be the set of experts, D empty, S = {s1, s2, s3} and
S′ = {s4, s5} two sets of states, X the unique propositional variable, and:

Re(s1, s2) and Re(s4, s5) hold, and Re fails for any other pair of states,
Rf (s1, s3) and Re(s4, s5) hold, and Rf fails for any other pair of states,
ve(s2, X) = ve(s5, X) = 1, and 0 for any other entries,
vf (s3, X) = vf (s5, X) = 1, and 0 for any other entries.
Then, for the expert e the modal models 〈S, Re, ve〉 and 〈S′, Re, ve〉 are

bisimilar, for the expert f the modal models 〈S, Rf , vf 〉 and 〈S′, Rf , vf 〉 are
bisimilar, but the correspondingH-models 〈S, g, v〉 and 〈S′, g′, v′〉 are not {e, f}-
bisimilar.
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We can, however, interpret the conditions of the weak t-bisimulation in the
multiple-expert scenario as follows:

– The base condition of Def. 4 says that moving back and forth between t-
bisimilar states does not affect the belief of any expert from the set t, for
any propositional letter P .

– The forth condition of Def. 4 says that any transition in the second model
that involves experts from the fixed set t can be matched with a transition
in the first model where all the relevant experts from t are also involved;
more experts can also be involved; what we require concerns only those in t.

– Similarly for the back condition.

Finally, the meaning of Theorems 1 and 2 is that the bisimulation relation be-
tween states of models guarantees the invariance of the epistemic consensus of
some experts from a predefined fixed set t. It is also easy to give an equiva-
lent definition of the EF-type games of bisimulation, in terms of the epistemic
agreement of the experts.

5 Conclusions - Related Work

In this paper, we have contributed to the extensive literature on the importance
and the fundamental nature of bisimulation. Our main aim has been to define
a fine-grained notion of bisimulation for Heyting-valued modal languages and
establish its basic facts. Our results have an interesting meaning for Knowledge
Representation situations, when interpreted in the multiple-expert context. It
remains to investigate appropriate extension of smallest and largest bisimulations
in this context and address possible applications for Knowledge Engineering in
complex epistemic situations.
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