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Abstract

We examine the notion of bisimulation and its ramifications, in the context
of the family of Heyting-valued modal languages introduced by M. Fitting. Each
modal language in this family is built on an underlying space of truth values, a
Heyting algebra H. All the truth values are directly represented in the language,
which is interpreted on relational frames with an H-valued accessibility relation.
We define two notions of bisimulation that allow us to obtain truth invariance
results. We provide game semantics and, for the more interesting and complicated
notion, we are able to provide characteristic formulae and prove a Hennessy-
Milner type theorem. If the underlying algebra H is finite, Heyting-valued modal
models can be equivalently reformulated to a form relevant to epistemic situations
with many interrelated experts. Our definitions and results draw inspiration from
this formulation, which is of independent interest to Knowledge Representation
applications.
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1 Introduction

The concept of bisimulation is a very rich one. It has played an important role in
many areas of Computer Science, Logic and Set Theory [San07] and has been a very
fruitful idea in the model theory of modal and temporal logics [KdR97] and the logics of
computation!. It is not an overstatement that, nowadays, some of the most interesting
and elegant results in the expressibility of modal languages are based on the notion
of bisimulation equivalence. Its origins can be found in the analysis of Modal Logic
and, independently, in the discoveries made by computer scientists in their efforts to
understand concurrency.

In the area of Modal Logic, bisimulation equivalence is the correct algebraic coun-
terpart to modal model equivalence, or, equivalently, the correct notion of similarity
between two modal models: modal formulas are unable to distinguish bisimilar points
of the two models. Following Segerberg’s p-morphisms, bisimulations were introduced
by van Benthem, under the name of p-relations or zig-zag relations, in the course of his
work on the correspondence theory of Modal Logic [vB83, vB84]. The celebrated van
Benthem characterization theorem, published in the mid-‘70s, states that invariance for
bisimulation captures the essential property of the ‘modal fragment’ of first-order logic:
a first-order formula is invariant for bisimulation iff it is (equivalent to) the syntactical
translation of a modal formula (the so-called standard translation) [BARV01]. This char-
acterization theorem has generated an important stream of research in the analysis of
logical languages. In particular, the bisimulation-based analysis of modal languages has
been extensively studied in the Amsterdam school of modal logic [dR93, Ger99, MV03],
and it has even been suggested that this notion is as important for modal logic as the
notion of partial isomorphism has been for the model theory of classical logic [dR93].
It is worth mentioning that bisimulations have been used beyond the realm of classical
modal logic: see for instance the variant used to analyze since-until temporal languages
[KdR97], M. Otto’s work related to Finite Model Theory [Ott99] and J. Gerbrandy’s dis-
sertation [Ger99]. The basic theory of bisimulation can be found in the recent excellent
handbook chapter [GOO07].

Many variants of this notion have been employed in the effort to characterize the
behavioural equivalence between transition systems which appear in many areas of Com-
puter Science. In this context, bisimulations represent a fundamental notion of identity
between process states and every language designed to capture the essential properties
of processes should be blind for bisimilar states. The origins of bisimulation, in this
stream, can be traced back to the research on the algebraic theory of automata. The
decisive progress towards bisimulations has been made by R. Milner in the '70s [Mil71],
with important contributions by D. Park [Par81] and M. Hennessy [HM85]; the reader
can consult [San07] for a nice exposition of this story and [Sti01] for an introductory
text on modal and temporal treatment of computational processes.

IThe reader can consult the textbook [Sti01, Section 5.4] for a short exposition (and further ref-
erences) of preservation of bisimulation equivalence in the modal p-calculus, and the classical text
of Yiannis N. Moschovakis [Mos74] for one of the earlier applications of bisimulation, in the field of
inductive definability.



Also, bisimulations have been used as a fundamental tool in the area of non-well
founded set theory ([Acz88, BM96], see [BARVO01, San07] for a few details and further
references).

In this paper, we address the question of what constitutes a suitable notion of bisim-
ulation for the family of many-valued modal languages introduced by M. Fitting in the
early '90s [Fit92, Fit91]. Each language of this family is built on an underlying space of
truth values, a Heyting algebra H. There exist three features that give these logics their
distinctive character. The first one is syntactic: the elements of H are directly encoded in
the language as special constants and this permits the formation of ‘weak’, uncertainty-
oriented versions of the classical modal epistemic actions [Kou03, KNP02, KP02]. The
second is semantic: the languages we discuss are interpreted on H-labelled directed
graphs which provide us a form of many-valued accessibility relation. Finally, the third
one concerns the potential applicability of these logics in epistemic situations with mul-
tiple intelligent agents. More specifically, assuming that H is a finite Heyting algebra,
these logics can be formulated in a way that expresses the epistemic consensus of many
experts, interrelated through a binary ‘dominance’ relation [Fit92]. It is worth men-
tioning that, model-theoretically, every complete Heyting algebra can serve as the space
of truth values. However, apart from the equivalent multiple-expert formulation of
the logics, the finiteness assumption for H is essential for the elegant canonical model
construction of [Fit92] which leads to a completeness theorem; note that this finite-
ness restriction seems to be also necessary for obtaining a many-valued analog of the
ultrafilter extension construction [EK05].

In Section 2, we provide a few basic definitions and facts on Heyting algebras, that
will be used in the sequel. Then, syntax and semantics for the family of Heyting-valued
modal languages are given. Section 3 contains the results of the paper. We provide two
notions of bisimulation: a rather strong and restrictive one in Section 3.1, and a more
fine-grained in Section 3.2; for both, we derive modal equivalence results and simple
appropriate Ehrenfeucht-Fraissé type combinatorial games. For the ‘weak’ bisimulation
notion of Section 3.2, we are able to obtain an interesting notion of a Hennessy-Milner
class of Heyting-valued modal models in Section 3.2.3 and, in Section 3.3 we define
characteristic formulae, which capture syntactically the bisimulation game in a precise
sense. Both notions of bisimulations draw inspiration from the equivalent multiple-
expert formulation of these logics, which is actually a mixture of Kripke modal and
Kripke intuitionistic semantics. In Section 4, we review this alternative formulation and
interpret our results in that context.

The interest in our results stems from the fact that model theory places special em-
phasis on the characterization of logical equivalence, in terms of other forms of structural
equivalences between models. In particular, obtaining truth preservation - or invariance
- results, provides useful insight in the semantics of a logic and furnishes tools for
studying its model theory. We show in this paper that, also in the Heyting-valued con-
text, bistmulation equivalence is a valuable tool for examining the relationship between
Heyting-valued possible-worlds semantics and structural/combinatorial equivalences be-
tween Heyting-valued modal models.



2 Many-Valued Modal Languages

In this section we provide the syntax and semantics of many-valued modal languages,
as introduced in [Fit92], with only minor changes in the notation. To construct a modal
language of this family, we first fix a Heyting algebra H, which will serve as the space of
truth values. Thus, we first briefly expose the basic definitions and properties of Heyting
algebras, fixing also notation and terminology. We assume that the reader already has
some familiarity with the elements of lattice theory; for more details the classical texts
[RS70, DP90, BD74] can be consulted.

Heyting Algebras A lattice £ is a pair (L, <) consisting of a non-empty set L
equipped with a partial-order relation <, such that every two-element subset {a,b}
of L has a least upper bound or join, denoted by a V b, and a greatest lower bound or
meet, denoted by a Ab. A lattice L is complete if a join and a meet exist for every subset
of L. A least (or bottom) element of a lattice is denoted by L and a greatest (or top) one
by T. An element x € L is join-irreducible if x # L (in case L has a bottom element)
and x = a Vb implies © = a or xz = b. If every nonempty subset of a partially ordered set
L contains a minimal element, then £ satisfies the descending chain condition (DCC).
For the class of intended applications of the logics we examine, it is natural to consider
truth spaces which do not have infinite descending chains, and thus satisfy DCC. The
following theorem states a fact that will be useful in Section 3.2; see [BD74, Theorem
I11.2.2] for the proof.

Theorem 2.1 If a lattice L satisfies DCC, then each element of L is a sum of a finite
non-empty set of mutually incomparable join-irreducible elements. If, in addition, L is
distributive, this representation is unique.

It can be verified that every element of a lattice L satisfying DCC can be obtained as
the sum of the join-irreducible elements below it in the lattice ordering [DP90].

We frequently use indexed sets and denote (possibly infinite) meets and joins by

N\ a; and \/ a;. Some fairly obvious properties of infinite joins and meets, such as
teT teT

alNN,cpa =an),, (a A at) will be used, generally without comment.

A lattice H = (H,<) with the additional property that, for every pair of ele-
ments (a,b), the set {x | a Az < b} has a greatest element, is called a relatively
pseudo-complemented lattice. This element is denoted by a = b and is called the
pseudo-complement of a relative to b. A relatively pseudo-complemented lattice is al-
ways a topped ordered set [RS70]. It is not always the case that a relatively pseudo-
complemented lattice has a least element. A relatively pseudo-complemented lattice H
with a least element is called a Heyting algebra (HA) or a pseudo-Boolean algebra.
It is known that the class of HAs includes the class of Boolean algebras and is included
in the class of distributive lattices; both inclusions are proper. For finite lattices, the
second inclusion becomes an equality: the class of finite HAs coincides with the class
of finite distributive lattices [RS70]. The next lemma gathers some useful properties of
relatively pseudocomplemented lattices that will be used in the rest of the paper.
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Lemma 2.2 Let a,b,c be elements of a Heyting algebra H. Then the following state-
ments hold:

1. c<a=0b iff cha<b
a=b=T 4ff a<b
If a<b then b=c<a=c

a=b=a= (aNb)

cA(a=b)=cA((cAha)= (cAb))

2

3

4

5. (avb)=c=(a=c)A(b=c¢)
)

7. ¢A(a=b)=cA ((cAha)=1D)
8

. If ¢ is join-irreducible and ¢ < aV b thenc<a orc<b

PROOF. The proof of items (1)-(3), (5), (6) can be found in [RS70, pp. 58-60]. Item (4)
follows immediately from the following simple property of Heyting algebras recorded in
[BD74, Thm. 3.(x), p. 174]: (a = [bA¢]) = (a = ¢) A (b= ¢). Item (8) is known to
hold in any distributive lattice [BD74, p. 65]. Item (7) can be proved as follows:

cA(a=b)=cA((cha)= (cAb) =cA((chcAha)= (cAb)) =cA((cAha)=D)

where the first and third equalities are by item (6). |

Syntax of Many-Valued Modal Languages Having fixed a complete Heyting al-
gebra H we proceed to define the syntax of the modal language. The elements of ‘H are
directly represented in the language by special constants, called propositional constants,
and we reserve lowercase letters (along with L, T) to denote them. To facilitate nota-
tion, we use the same letter for the element of H and the constant which represents it in
the language; context will clarify what is meant. Assuming also a set ® of propositional
variables (also called propositional letters) we define the many-valued modal language
LY (®) with the following BNF specification, where ¢ ranges over elements of H, P
ranges over elements of ® and A is a formula of L7 ().

A:t|P|A1\/A2|A1/\A2|AlDA2|DA|<>A

As we will see below, the modal logics defined are in general bimodal, thus we need
both modal operators. Note also that V and A serve both as logical connectives, as
well as lattice operation symbols but it should be clear by context what is meant. A
(non-classical) negation =X can be defined as (X D 1).



Semantics of Many-Valued Modal Languages L (®) is interpreted on an inter-
esting variant of a relational frame, which possesses a kind of Heyting-valued accessibil-
ity relation. Note that there have been other approaches in the literature for defining
many-valued modal logics, but all of them have kept the essence of classical relational
semantics intact (see [Fit92] for references). Given L (®), we define H-modal frames
and H-modal models as follows:

Definition 2.3 An H-modal frame for LY, (®) is a pair § = (S, g), where S is a non-
empty set of states and g : G x & — H is a total function mapping pairs of states to
elements of H.

An H-modal model M = (&, g,v) is built on F by providing a valuation v, that is a
function v : & x (HU®) — H which assigns a H-truth value to atomic formulae in each
state, such that v(s,t) =t, for every s € & and t € H.

In other words, the propositional constants are always mapped to ‘themselves’. In the
sequel, we shall often omit the adjective ‘modal’ and talk simply of H-frames and H-
models.

The valuation v extends to all the formulae of L, (®) in a standard recursive fashion:

Definition 2.4 Let 9 = (&, g,v) be an H-model and s a state of G. The extension
of the valuation v to the whole language L, (®) is given by the following clauses:

e v(s,AANB) = v(s,A) A v(s, B)
e v(s,AV B) = v(s,A) V v(s, B)

e v(s,ADB) = v(s,A) = v(s, B)

e v(s,0A4) = /\ (a(s,t) = v(r, A))

o v(s,0A) = \/ (9(s,t) Av(t, A))

teS

The operators of necessity (O) and possibility (&) are not each other’s dual, unless H
is a Boolean algebra [Fit92]. Note also that all the definitions above collapse to the
familiar ones from the classical case, in the case of the classical language L2 , where 2
is the lattice of two-valued classical logic.

3 Bisimulations for Heyting-Valued Modal Languages

In this section, we define two suitable general notions of bisimulation for a language
LY (®) of the family defined in the previous section. Before proceeding, we have to
define a refined notion of modal truth invariance, which fits our aims and which also
has an interesting interpretation in the multiple-expert context. Note that the following
notion is trivial for ¢t = L.



Definition 3.1 (#-invariance) Let 9 = (&,g,v) and MM = (&', ¢’,v') be H-models
for LY (®), s € © and §' € & two states and ¢ € H a truth value (¢ # L). We say that
modal truth is t-invariant for the transition between s and s’ if for every X € LY, (P)

tANov(s,X) =tAvE,X)

3.1 Strong Bisimulation for Many-Valued Modal Languages

The following definition captures the idea of moving ‘back and forth” between two H-
models by matching steps (‘modulo’ ¢) in both directions.

Definition 3.2 (¢-bisimulations) Given two H-models MM = (S, g,v) and M =
(&, ¢g,v') and a truth value t € H (¢t # L), a non-empty relation B C & x &' is a
t-bisimulation between M and M if for any pair (s,s') € B

(base) t A wv(s,P) =t Av'(s,P) for every P € @

(forth) for every v € & such that ¢t A g(s,t) # L,
there exists an v € & such that ¢t A g(s,tr) = t A g/(¢',v') and (v,v') € B

(back) for every v € & such that t A g'(s',v') # L,
there exists an v € & such that t A g'(s',v') = t A g(s,t) and (v,v') € B

Two states s and s’ are called t-bisimilar (notation s <, s’ or M, s =, M, ') if there is
a t-bisimulation B between 9t and M’ such that (s,s’) € B.

We can now state the basic theorem, which asserts that ¢-bisimulation implies ¢-invariance.

Theorem 3.3 Let M = (S, g,v) and M = (&, g, v') be H-models for L (P), s € &
and 8 € & two states and t € H a truth value (t # 1). If M s =, M s, then
tANvu(s, X) =t Av(sX) for every X € LY, (D).

PROOF. The theorem follows immediately from Lemma 3.9 and Theorem 3.11, which
are presented in the next subsection. A direct proof can be obtained using induction on
the formation of X, as in the proof of Theorem 3.11. [ |

EF-type games for t-bisimulation Bisimulation games are very natural variants of
the Ehrenfeucht-Fraissé (EF) game played in First-Order Logic. Actually, they are so
close to it that, looking back, one can say that the bisimulation technique of character-
izing modal properties, already existed in EF games, awaiting its 'discovery’. Indeed,
bisimulation relations can be naturally viewed as descriptions of non-deterministic win-
ning strategies for one player in the corresponding model comparison games [GOO07].

The t-bisimulation game is a simple variant of the classical EF game. For the pur-
poses of the rest of this section call a state v a t-compatible successor state of s if
t A g(s,t) # L. Two elements a,b of H are called t-equivalent if t Na =t Ab. We call
labels the H-truth values attached to the graph’s edges and to the propositional letters
of the language in each possible world. The ¢-bisimulation game is played on two pointed
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H-models (models with a single distinguished state) 9, s, and 2, s;. There exists one
marked element in each H-model; initially, the marked elements are the distinguished
nodes s, and s;. In each round of the game

e Player I selects one of the H-models, chooses a t-compatible successor of the
marked element and moves the marker along the edge (labelled with a;) to its
target.

e Player II responds with a move of the marker in the other H-model in a cor-
responding t-compatible transition (labelled with a;;) such that a;, and a,, are
t-equivalent and the labels of the propositional letters in the marked elements
(states) of the models are also t-equivalent.

The length of the game is the (finite or infinite) number of rounds and Player II loses
the match if at a certain round cannot respond with an appropriate move or if the
initial states s, and s; are not t-equivalent. It is obvious that Player I is trying to
spoil a t-bisimulation while Player II is trying to reveal one. Player II has a winning
strategy in a game of n rounds if she can win every n-round game played on 9, 5, and
M, s;. In a classical fashion, we can proceed to a finer analysis of ¢-bisimulations using
the inductively defined notion of the modal depth of a formula (the maximum depth of
nesting of modal operators, [BARV01, MV03]). The notion of a t-bisimulation bounded by
a positive integer n, or any ordinal actually, can easily be defined (see [Ger99, Chapter
2.1] for the classical case), but we will not give further details here, since the whole
construction is identical to the classical one. We only provide the following proposition,
which generalizes the known classical results from two-valued modal logic:

Proposition 3.4 Let M = (S, g,v) and M = (&', g',v') be H-models and s € & and
s € & be two states. The following statements hold:

!

1. Player II has a winning strategy for the infinite game played on M, s, and M, s
iff 50 <, 8.

2. If Player II has a winning strategy in the n-round game played on M, s, and
M, s, then modal truth is t-invariant for the transition between s, and s, for
every formula up to modal depth n.

PrROOF. The first item follows from the definitions of ¢-bisimulation and the correspond-
ing game. The proof of the second item runs by induction on n; it also follows from
Proposition 3.12 and Lemma 3.9, using the first item. ||

t-unravellings and the tree-model property The idea of unravelling a model into
a modally-equivalent tree model is known both from modal logic and the theory of pro-
cesses. In the latter field, the states of the unravelled model represent traces (histories)
of processes, starting from a state s. The following definition provides the many-valued
analog of this notion.



Definition 3.5 Given a pointed model MM = (&, g, v), 5, its t-unravelling is the model
mtzl = <6§179217U§1>, where

1. 6:1 consists of all tuples (s,,--- ,s,) where s,,, is a t-compatible successor of s,

N

g, (51,7 ,80), (81,0 ,8k1)) = t A 9(Sk,5041), and g; (z,y) = L for any other
pair of tuples z,y € &; .

3. vl ({81, ,80), P) =t Av(sy, P), (P € )

Obviously 91, is a tree model and the following proposition can be proved by a careful
inspection on the definition of a ¢-bisimulation.

Proposition 3.6 The graph of the function from &; to &, which maps every tuple to
its last component (and (s,) to s,) is a ¢t-bisimulation.

Thus, modal truth is t-invariant for the transition from s, to the root (s,) of the tree
and this is a generalized version of the tree model property [Var97].

Satisfiability in Many-Valued Modal Languages The general satisfiability prob-
lem in this context can be phrased as follows: given X € LY (®) and t € H, is there a
state s of an H-model 9 in which v(s, X) > ¢7 This is equivalent (by Lemma 2.2(2))
tot = v(s,X) = T, which is equivalent (by Def. 2.4) to v(s,t D X) = T. Thus, the
general satisfiability problem is subsumed by the question of finding a state in which
a formula is mapped to the top element of the lattice. By the previous paragraph, if
such a state/model exists, then this formula can be also satisfied at the root of a (T-
unravelled) tree. Imitating the classical arguments ([MVO03]), it is easy to prove that,
if H is finite, every formula can be satisfied in a finite tree whose size is bounded: its
depth is bounded by the modal depth of X and its branching degree is bounded by the
number of box and diamond subformulas of X multiplied by the number of elements in
‘H. This leads to a simple way of proving the fact that the many-valued analog of the
system K (which is determined by the class of all H-models [Fit92]) has a decidable
general satisfiability problem.

3.2 Weak Bisimulations for Many-Valued Modal Languages

We proceed now to define, a weaker, more fine-grained notion of bisimulation that is
directly inspired from (and can be better explained in the context of) the multiple-expert
semantics of these languages.

3.2.1 Defining Weak Bisimulations

We first fix some notation. Let H be a complete Heyting algebra and let I, denote the
set of join-irreducible elements of H. Define the function Dy from H —{L} to 2%, such
that Dy (t) = {c € Iy | ¢ < t}. The following lemma states an useful property of Dy (t).

8



Lemma 3.7 Let 'H be a Heyting algebra. Then, for everyt € 'H

t:\/c.

c€ Dy (1)

PROOF. Since every Heyting algebra is a distributive lattice, by Theorem 2.1, for every
t € 'H there exists a set of join-irreducible elements S; C Iy such that ¢t = VCGSt C.
Obviously, for every ¢ € S; it is ¢ < ¢, which implies that Sy C Dy (t). Therefore

\/ c:\/c\/ \/ c=tV \/ c=t

c€ Dy (t) ceSt c€ Dy (t)—St c€ Dy (t)—St

In the next definition, a bisimulation relation is defined for every truth value, but in
a way that it is ‘upwards consistent’ (with respect to the lattice of truth values). The
intuition behind the consistency property and the role of join-irreducible elements can
be better understood using the multiple-expert interpretation of the truth values in a
H. We will discuss this issue in section 4.

Definition 3.8 (Weak bisimulation) Given two H-models 9 = (S, g,v) and M’ =
(&, g',v'), a function Z from H — {1} to 29%% is a weak bisimulation between M and
M if it satisfies the following properties:

e for every t,to € H — {L}
(consistency) Z(t1 Vte) = Z(t1) N Z(t2)

e for every join-irreducible value ¢ € Iy, and any pair (s,s') € Z(t)
(base) t A wv(s,P) = t AN v'(s,P) for every P €

(forth) for every v € & such that ¢t A g(s,t) # L

and for every ¢ € Dy (t A g(s,v)),

there exists an v € & such that ¢ < g'(s',v’) and (t,v') € Z(c)
(back) for every v € &' such that t A g'(s',v') # L

and for every ¢ € Dy(t A g'(s',v)),
there exists an v € & such that ¢ < g(s,t) and (v,v) € Z(c)

Two states s and §' are called weakly t-bisimilar (notation s <, §' or M, s <, M’ s') if
there is a weak bisimulation Z between 9t and 9 such that (s,s’) belongs to Z(t).

We next prove that we have indeed defined a weaker notion than that of a t-
bisimulation:

Lemma 3.9 Let M = (S,g,v) and M = (&', ¢',v') be H-models for L (P), s € &
and §' € & two states and t € H a truth value (t # 1). Then IM,s <, M, s" implies
M, s <, M 5.



PROOF. Suppose that B is a t-bisimulation between 9t and 9t such that (s,s’) € B.

Define Z as follows:
B ifa<t
Z(a) = { ® otherwise

We will prove that Z is a weak bisimulation. For the consistency condition it suffices to
prove that Z(a VvV b) = B iff Z(a) N Z(b) = B:

Zavb)=B iff aVvb<t
ff a<tandb<t
if Z(a)=Band Z(b)=B
it Z(a)NZ(b) =B

For the remaining properties, suppose that (s,s') € Z(a), for some join irreducible
element @ € H — {L}. From the definition of Z it follows that a < ¢, which implies
aNt=a.

We now prove that Z satisfies the base condition. From the definition of Z, it follows
that (s,s’) is also in B; using the base condition for B we obtain that for every P € ®
itist A w(s, P) = t A v'(s, P). By taking the join of both sides of this equation with
a and using the fact that a At = a, we get the base condition for Z.

We finally prove that Z satisfies the forth condition (the back condition can be
proved using completely symmetric arguments). Suppose that a A g(s,t) # L for some
t € G and consider any ¢ € Dy(a A g(s,v)). Since a < t, it is also t A g(s,t) # L
and by the forth condition for B we conclude that there exists an t" € &’ such that
tAg(s,t) = tAg(s,v)and (v,v') € B. Therefore ¢ < a A g(s,t) <t A g(s,¢) =
t A g(s,v) < g(s,v). Moreover ¢ < t, which implies that (t,t') is also in Z(c).
Therefore, Z satisfies the forth condition.

From the definition of Z, (s,s") € Z(t), which implies that 91,5 <, M’ 5. i

The converse of the above lemma does not hold, unless the truth space H has only
two elements; in this case, the H-model is a modal model in the classical sense and it is
easy to verify that the two notions of bisimulation coincide with the standard notion of
bisimulation in modal logic. The following example demonstrates that if H contains
at least three elements, the two notions of bisimulation do not coincide, even
in the case that ® contains a single propositional variable and the H-models have only
two states.

Example 3.10 Let ® = {P}, H be a Heyting algebra with at least three elements and
let ¢ be an element in H different from L and T. Let MM = (&, g,v), where & = {s, t},
g(s,v) = ¢, g(r,8) = g(s,5) = g(r,v) = L, v(s,P) = L and v(xr, P) = c¢. Moreover, let
M = (&', ¢g,v), where & = {s'. v}, g'(s'.v') = ¢, g'(v,s') = g'(s,5) = g'(v,v') = L,
v'(s',P) = L and v'(v/, P) = T. It is easy to check that the following function Z is a
weak bisimulation between 9t and 9U':

Z(a) = { {<575/>> <t7 t/>} if a <c

{(s,5")} otherwise

10



Therefore, M, s >+ M',s’. Suppose now, for the sake of contradiction, that M, s <+
MM’ s" and let B be a T-bisimulation such that (s,s) € B. The forth condition implies
that (v,t’) € B (since the only possible transition from state s’ is to state t’). Since
T Av(r, P) # T Av' (v, P), B violates the base condition (contradiction). Consequently,
s and §' are weakly T-bisimilar but not (strongly) T-bisimilar.

3.2.2 Weak bisimulation and truth invariance

In this subsection, we state and prove the basic truth invariance result; the related result
for strong bisimulation follows immediately.

Theorem 3.11 Let M = (&, g,v) and M = (&', g',v') be H-models for LY, (P), s € &
and ' € &' two states and t € H a truth value (t # L). If M s <, M s, then
t ANvu(s,X) =t ANv'(s,X) for every X € L (D).

ProoOF. We first prove that the theorem holds in the case that ¢ is join-irreducible. The
proof runs by induction on the formation of X. If X € &, the result follows by the base
condition and if X € H is a propositional constant it is trivial. If X = AV B, then

tAuEAVB) = tA (v(s,A) V s, B)) Def. 2.4)

(
- <t A v(s,A)) v (t A v(s, B)) (distributivity)
- <t A v’(s’,A)) v (t Av'(s, B)) (inductive hypothesis)
= tA <v’(s/,A) vU'(gf,B)) (
— tAV(s, AV B) (Def. 2.4)

distributivity)

If X = A A B the result is obtained similarly, using the idempotency of the meet
operation in lattices. If X = A D B, then

tAUEADB) = tA (v( B)) (Def. 2.4)
= tA ( t/\w (t/\v(ﬁ,B))) (Lemma 2.2(6))
= tA ( t/\v (s A <t/\v’(5’,B))> (inductive hypothesis)
= A (VL A) = (s, B)) (Lemma 2.2(6))
— tAV(s,ADB) (Def. 2.4)

For the case X = OA, the proof is split into two inequalities. Let R = {r € & | t A
g(s,t) # L}. Notice that for any state q in & — R, it is g(s,q) = v(q,4) = L =
v(q,A) = T by Lemma 2.2(2), which implies that q does not play any role in the
computation of v(s,0A). We also denote by PR’ the set that contains all the states ¢
specified in the definition of the forth condition.

11



tA (s, 04) = EA /\<g(5,t):>v(t,A)>

= mZ\(%(m (a(s,0) = (. A)))

= tA té\@(m <(t Aa(s, 1)) = o, A)))
= A A ((tns(s0) = o, 4))

= m7\6(<tAg<s,r>>:»v<r,A>)

_ mt;\m(( \/ o= A))

te€R  ceDy(tAg(s,v))

= A A

t€ ReeDy (tAg(s,v)) <

= A A

t€ ReeDy(tAg(s,v))

= tA /\ /\ (c:>(c/\v’(t',A))>

v € R ceDy (tAg(s,t))

= tA /\ /\ (c:>v/(t’,A)>

v € R €Dy (tAg(s,1))

C:>U >

c= (cAu(r, A)))

> A A ( v) = v (¢, A))
> A A ( v) = (¢, A))
= t Arve’((:’, OA)

(Def. 2.4)

(idempotency)

(Lemma 2.2(7))
(idempotency)
(Lemma 2.2(2), properties of A)

(Lemma (3.7))

(Lemma 2.2(5))

(Lemma 2.2(4))

(def. of R, induct. hypothesis)
(Lemma 2.2(4))

(Lemma 2.2(3), Def. of R)
(R C &)

(Def. 2.4)

The proof of the other inequality (<) runs in a completely symmetric way by the back
condition. For the case of the other modal operator (X = ¢A), we provide below the
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argument for the first direction (<):

tAus,0A) = tA\/ (g(s,t) Au(e, A)) (Def. 2.4)

teS

= tA \/ ( a(s,v) Ao, A))) (idempotency, distributivity)
te S

= tA \/ ( (tAg(s,t)) Ao, A)) (associativity)
e

= tA \/ ( (tAg(s,t)) Ao(r, A)) (properties of 1)
teR

= tA \/ ( \/ c) Ao, A)) (Lemma (3.7))

teR  ceDx(tAg(s,v))

= tA \/ \/ (c Ao, A)) (distributivity)

t € Rce Dy (tAg(s,v))

< tA \/ ( ) AU(Y, A)) (def. of R, induct. hypothesis)
v eNR

< AV ( ) AV(Y A)) (R C &)
vee

= tAV(s,OCA) (Def. 2.4)

The other direction is symmetric and the proof for that case in which ¢ is join-irreducible
is complete.

Suppose now that ¢ is not join-irreducible. Then:

tA (s X) = ( \/ c) A u(s, X) (Lemma (3.7))
c€Dy(t)
= \/ (c A v(s, X )) (distributivity)
c€Dy(t)
= \/ (c A U'(E',X)) (¢ is join-irreducible)
ceDy(t)
= ( \/ c) A v'(s', X) (distributivity)
CGD’H(t)
= tAV(sX) (Lemma (3.7))

EF-type games for weak-bisimulation We can define a variant of the Ehrenfeucht-
Fraissé game for the weak-bisimulation, by modifying the game proposed in the previous
subsection for the t-bisimulation. One important difference is that the truth value under
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consideration changes as the game proceeds; Player I has one more choice to make
in each round. Therefore, the current configuration consists of two pointed models
together with the current truth value. In each round, in which the current configuration

is (O, 5; M, 8"; 1)

e Player I: [i] selects one of the H-models, chooses a t-compatible successor t of
the marked element and moves the marker along the edge (labelled with a;) to
its target. [ii] picks a join-irreducible value ¢ < t A a; and sets the current truth
value to c.

e Player II: responds with a move of the marker in the other H-model along an edge
labelled with a;; to a state v/, such that ¢ < a,;; and the labels of the propositional
letters in v and t' are c-equivalent.

The new configuration after this round is (9, v; 9, v'; ¢).

The number of rounds can be finite or infinite. Player II loses the game that starts
from the configuration (9M,s,; M, s.;t), if at a certain round cannot respond with an
appropriate move or if the initial states s, and s, are not t-equivalent. Again, we can
think that Player I challenges the claim of bisimilarity, which is defended by Player II.

Proposition 3.12  Let M = (&, g,v) and M = (&', ¢, v') be H-models and s € &
and ' € &' be two states. The following statements hold:

1. Player II has a winning strategy for the infinite game that starts from the config-
uration (M, s,; M, s,;t) iff 5, <, 5.

2. If Player II has a winning strategy in the n-round game that starts from the config-
uration (M, sq; M, 5.;t), then modal truth is t-invariant for the transition between
s, and s, for every formula up to modal depth n.

PrRoOOF. The first item follows from the definition of weak bisimulation and the corre-
sponding game. The proof of the second item runs by induction on n and is actually a
restatement of the proof of Theorem 3.11. [ |

3.2.3 t-image-finite H-models and weak bisimulations

One of the fundamental questions in the bisimulation-based analysis of modal languages,
concerns the identification of cases in which the converse of Theorem 3.11 is true. Much
obviously, it is not always true: the classical counterexample of two tree models, both
with a finite branch for each natural number, one of which possesses an infinite branch,
suffices (cf. [BARVO1, Chapter 2.2]). The simplest example of Hennessy-Milner classes
of modal models (classes in which modal equivalence is itself a bisimulation relation)
is the class of image-finite models, in which each state has only a finite number of
successors. It is natural to consider a straightforward many-valued analog of this notion
by considering H-models in which for each state s, the set of t-compatible successors of
s is finite and check whether in this case t-invariance implies ¢-bisimilarity. Formally,
the notion of t-image-finite H-models is defined as follows.
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Definition 3.13 (t-image-finite H-models) An H-model M = (S, g, v) is called ¢-
image-finite if for every s € &, the set &L = {v € & |t A g(s,t) # L} is finite.

The following theorem states that for t-image-finite H-models, t-invariance implies t-
bisimilarity.

Theorem 3.14 Lett € H be a truth value (t # L), M = (S, g,v) and M = (&', g, ')
be t-image-finite H-models for LY, (®) and s € & and s € &' two states. If modal truth

!

is t-invariant for the transition between s and s', then M, s <, M, 5.

PROOF. Define the function Z from H — {1} to 2%% so that for every s € &, every
s € & and every d € H — {L}, (s,5') € Z(d) iff modal truth is d-invariant for the
transition between s and s’. We will prove that Z is a weak bisimulation between 9
and 97,

We first prove that Z satisfies the consistency condition. Suppose that (s,s") €
Z(t1 Vta). Then for every formula X € L (®), (t1 Vi) Av(s, X) = (t; Vi) ANv'(8, X).
By taking the meet of both sides of this equation with ¢;, we obtain t; A v(s, X) =
t1 Av'(s', X). Therefore, truth is ¢;-invariant for the transition between s and s'; which
implies (s,s') € Z(¢;). Similarly we obtain (s,s") € Z(t3). Thus, (s,8") € Z(t1) N Z(t2).

Conversely, suppose that (s,s") € Z(t1)NZ(t3). Then for every formula X € L (®),
th ANv(s, X) =ty AV'(8,X) and to A v(s, X) = to A v'(s', X), which imply, using the
distributivity of H, that (¢; V ta) Awv(s, X) = (t1 V t2) Av'(s', X). Therefore, truth is
(t1 V to)-invariant for the transition between s and s, which implies (s,s') € Z(t; V t2).

Thus, Z satisfies the consistency condition. It is easy to see that the base condition
also holds. We next show that Z satisfies the forth condition; the proof for the back
condition is completely symmetric.

Suppose for the sake of contradiction that Z does not satisfy the forth condition.
This means that there exist a join-irreducible value d € Iy, a pair (s,5") € Z(d), a state
t € G such that d A g(s,t) # L and a join-irreducible value ¢ € Dy (d A g(s,t)), such
that for every v € &', if ¢ < g/(¢',¢') then (v,v) ¢ Z(c).

Since MM is t-image finite and ¢ < ¢, the set R = {v € & | ¢ < ¢g'(s/,v')} is finite.
We will show that R’ is non-empty. We have:

c<dAg(s,t) <dA \/ (9(s,q) A T) =dAv(s,OT) =dAv'(s,0T)

qe S
=dA \/ (g, )NT) = \/ (dAg(s,v))
Ve Ve

By Lemma 2.2(8), there exists some v € & such that ¢ < dAg'(s',v) < ¢g'(s',v'). Thus,
R’ is non-empty.

Suppose that R = {v},v),...,t;}. Then for every i, 1 < i < k, (v,¢v/) ¢ Z(c),
which implies that there exists a formula X; such that ¢ A v(v, X;) # ¢ A V' (v, X;).
We will define a new formula Y; such that ¢ A v(r,Y;) = c and ¢ A v'(v/,Y;) < ¢. Let
a; = cAv(r, X;) and b; = ¢ Av'(v/, X;). We consider two cases:
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Case 1: a; < b;. Define Y; = X; D a;. Then, cAv(t,Y;) = cAv(e, X; D a;) =
cA(v(r, X;) = a;) = cA((ehv(r, X)) = (cAa;)) = cA(a; = a;) = c (the third equality
follows from Lemma 2.2(6)). Similarly we obtain ¢ Av'(¢/,Y;) = ¢ A (b; = a;). Suppose,
for the sake of contradiction, that ¢ A (b; = a;) = ¢. Then, ¢ < (b; = a;), which implies
¢ ANb; < a; (by Lemma 2.2(1)). Since b; = ¢ A b;, we obtain a; = b; (contradiction).
Therefore, ¢ Av'(v{,Y;) < c.

Case 2: a; £ b;. Define Y; = a; O X;. Then, c Av(v,Y;) = ¢ A (a; = a;) = ¢ and
NV (v, Y;) = ¢A(a; = b;). Suppose, for the sake of contradiction, that cA(a; = b;) = c.
Then, ¢ < (a; = b;), which implies ¢ A a; < b; (by Lemma 2.2(1)). Since a; = ¢ A a;, we
obtain a; < b; (contradiction). Therefore, ¢ A v'(¢/,Y;) < c.

Let Y = /\f:1 Y;. It is easy to see that c Av(r,Y) = c and ¢ Av'(v/,Y) < ¢, which
imply that ¢ < wv(v,Y) and ¢ £ v'(v/,Y), for every i, 1 <i < k. Moreover,

v(s, QYY) = \/ <g(5, q) A v(q,Y)) >g(s,v) Nv(e,Y) >cAhe=c (i)
qge S

Since (s,8') € Z(d), it is d A v(s,QY) = d Av'(s/,QY), which implies (since it is
also ¢ < d) that c Av(s,OY) = cAvV'(s,OY). Then, (i) implies that ¢ A v'(s',OY) = c.
Therefore:

c < (g, QY)
= \/ <g’(5’,t’)/\v’(t’,Y)>

ved

-V (gEnrven)v Vo (60 avey)
v e R ve & -

< \/ V' (¢,Y) VvV \/ g'(s',v)
veR v e &R

Since ¢ is a join-irreducible element, Lemma 2.2(8)) implies that either there exists an
v € R such that ¢ < v'(v,Y) or there exists an v € & — R’ such that ¢ < g'(s', ),
which is a contradiction.

Consequently, Z satisfies the forth condition, and the proof is complete. [ |
For t-image-finite models, the converse of Proposition 3.12(2) also holds.

Proposition 3.15 Let t € H be a truth value (t # L), M = (S,g,v) and M =
(&, g, v') be t-image-finite H-models and s € S and s € &' be two states. If modal
truth is t-invariant for the transition between s, and s, for every formula up to modal
depth n, then Player Il has a winning strategy in the n-round weak bisimulation game
that starts from the configuration (M, s,; M, s,;1).

PRrOOF. The proof runs by induction on n and is actually a restatement of the proof of
Theorem 3.14. [ ]
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3.2.4 Bisimulation in Models based on Linear Heyting Algebras

In this subsection we consider H-models, in which H is a Linear Heyting Algerbra (LHA
for short), that is, a lattice in which the truth values are totally ordered. In LHAs the
definitions of the join, meet and pseudo-complement operations can be simplified as
follows:

a Vb= max(a,b)

a A'b=min(a,b)

T ifa<b
mﬁm:{"“—

b, otherwise.

Moreover, in every LHA, every element different from L is join-irreducible: if ¢ =
a V b, then ¢ = max(a,b), which obviously implies that either ¢ = a or ¢ = b. Using
the above properties of LHAs, the definitions of ¢-bisimulation and weak-bisimulation
become simpler:

Definition 3.16 (Weak bisimulation for Linear Heyting Algebras) Let H be a
LHA. Given two H-models M = (&,g,v) and M = (&', g, v'), a function Z from
H — {L} to 257 is a weak bisimulation between M and I if it satisfies the following
properties:

e for every t1,to € H—{L}
(consistency) t; <ty implies Z(t3) C Z(t1)

e for every value t € H (t # L) and any pair (s,s') € Z(t)
(base) min(t,v(s, P)) = min(t,v'(s', P)), for every P € ®

(forth) for every v € & such that g(s,v) # L there exists an v € &
such that min(¢, g(s,t)) < g'(¢’,¢') and (v,v') € Z(min(¢, g(s,v)))

(back) for every v € & such that g'(s',t') # L there exists anvr e &
such that min(¢, g'(s’,v')) < g(s,t) and (v, ') € Z(min(t, g'(s',v')))

A similar simplified definition can be given for the notion of ¢-bisimulation. The ¢-
bisimulation games can be formulated in a simple way for the class of languages built
on finite linear orders. Assuming further that truth values are colours, linearly ordered,
the game can be described in an easy way that provides also an element of fun.

3.3 Characteristic Formulas

Characteristic formulae aim at capturing the bisimulation game, in a purely syntactic
fashion [GOO07]. So, in the case that the set of propositional variables ® as well as
the truth space H are finite, the weak-bisimulation game can be expressed in terms
of a modal formula in LY, (®). More specifically, for a fixed state s of a model 9, we
can construct a formula X[’;i o which is satisfied in s, and for every state s’ of any

17



model M', X [% J is satisfied in &' iff Player II has a winning strategy in the n-round
weak-bisimulation game starting from the configuration (91, s; 9V, s’;t). The definition
of X [szvi g I8 actually based on a formula Yign g With the followmg property: Player 11
has a winning strategy in the n-round game starting from (9, s; 9V, s';¢) iff ¢ is a lower
bound for the truth value of Y[nsm qins.

Definition 3.17 Let ® be a finite set of propositional variables, H be a finite Heyting
algebra, MM = (S, g,v) be a H-model for L (®), s a state in & and n a non-negative
integer. We define the formula Y[gﬁ 4 recursively:

Y[gﬁ’s} = /\ (P 2 w(s, P)) A (v(s, P) D P))

Ped
Yiotg = Yima A [\ ((8(5,0) O O¥igng) AT/ ((0(s,1) A Vi)
€S €S

For every t € 'H, we define X{;}fti,s] =tD Y[nzms]

Notice that, although the set {t | g(s,t) # L} may be infinite, it is easy to prove (by
induction on n) that for every n there exists a set of formulas S, such that for every
te S Y, g 1 modally equivalent to a formula in S,,. Thus, although the definition of
Y["t}] involves infinite disjunctions and conjunctions, it is easy to obtain an equivalent
finite formula, by replacing each Y["m q with an equivalent formula in S,, and then using
the idempotency property of meet and join operations. Therefore, Y[ Mg is a well defined

formula.
The following theorem and corollaries, demonstrate the properties of Ym 4 and
n,t
Xomg)

Theorem 3.18 Let ® be a finite set of propositional variables, H be a finite Heyting
algebra, M = (S, g,v) and M = (&', g, v') be H-models for L (P), s € S and s’ € &
two states and t € H a truth value (t # L ). Then, Player II has a winning strategy in
the n-round weak-bisimulation game starting from the configuration (9N, s; M’ s';t) iff
ETIER )

PROOF. The proof is by induction on n. For the basis case (n = 0), we have

V(s Yiong) = /\ ((v'(s',P) = v(s, P)) A (v(s,P) = v'(s, P))) (ii)

Ped
If Player II has a winning strategy in the O-round game from (9, s; 90, s';¢), then for
every P € & itist Awv(s, P) =t Av'(s, P). Thus, t Av(s, P) < v'(s', P), which implies
t < w(s,P) = v'(s, P). Similarly we get t < v'(s', P) = v(s, P). From (ii) we obtain
t<w (5 )/[gﬁ 5])
Conversely, if ¢ < v'(s',Ygy ), then (ii) implies that for every P € @, it is ¢ <
v(s, P) = v'(s', P) and t < v'(s', P) = v(s, P). The first inequality implies t Av(s, P) <
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v'(s', P); since it is also t A v(s, P) < t, we obtain ¢ A v(s, P) <t Av'(s', P). Similarly,
from the second inequality we obtain ¢ Av'(s’, P) <t Awv(s, P). Therefore, t Av(s, P) =
t Av'(s, P), which implies that Player II has a winning strategy in the 0-round game
from (9, 5; 9, s';t). This completes the proof for the basis case.

For the inductive step, suppose that the statement holds for n. For the ‘only if’
direction, suppose that Player II has a winning strategy in the (n+ 1)-round game from
(M, 5; 900, 8';t). Using the same arguments as in the basis case, we get

L < V(8 Vi) (i)

Consider now any state v € & such that tAg(s,t) # L and any join-irreducible value
¢ < tAg(s,t). Since Player IT has a response in the case that Player I selects the state t
and the truth value c in his first move, there exists a state v/, € &', such that ¢ < g/(s’, ¢,
and Player II has a winning strategy in the n-round game from (90, ¢; 9V, ¢/;¢). Using
the inductive hypothesis, we have ¢ < v'(¢., Yion ]) Therefore,

V(s OYig) > (@) AV Yg)) >/ e=tAg(s )
c€Dw (tAg(s,7)) c€Dy(tAg(s,v))
which implies ¢ < g(s,v) = v'(s', OY[zp 4) = v'(s", g(s,t) D OY[zp ). Consequently,

t< \v(s, a(s.t) DOV y) (iv)
€S

Consider now any state v € &’ such that t A g'(s’, ') # L and any join-irreducible
value ¢ < tAg'(s',v'). Since Player II has a response in the case that Player I selects the
state v’ and the truth value c in his first move, there exists a state t. € &, such that ¢ <
g(s,t.) and Player II has a winning strategy in the n-round game from (90, t.; M, v'; ¢).
Using the inductive hypothesis, we have ¢ < v'(v/, Y[g:rt,rc])' Therefore,

Ul(tlv \/ (9(57 t)/\Yv[gﬁ,t]» > \/ (9(57 tC)/\v/(tl7 Sf[gﬁ,tc])) > \/ c= t/\g,(5/7 tl)

€6 ce€Dy (tNG (5,1)) ceEDy (tAY (s',1)))

which implies ¢ < g'(s',v') = v'(v', Ve (8(5,¥) A Ygn ). Consequently,
t<v'(s D\/ (5,%) A Yigng)) (v)

From (iii), (iv) and (v), we obtain ¢ < v'(s', Y[g;rl]) This completes the proof of the
‘only if” direction of the inductive step.

For the ‘if” direction, suppose that ¢t < v'(s’ Y[;;l]) Then,
E< (Vi) (+i)
Moreover, for every state v € & it is t < g(s,t) = v'(s/, O}/'[”m,ﬂ), which implies
A a(s,1) < (s, OV ) (vi)
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and for every v € & it is t < g'(¢',v') = v'(v', V,cs(8(5,¥) A Vg y)), which implies

tAg(s, ) <v(v, \/ (9(s,v) A Yignyg)) (viii)
€S

Using the same arguments as in the basis case, (vi) implies that ¢t A v(s, P) = t A
v'(s', P), for every P € ®, that is, Player II does not lose the game in the initial
configuration.

Suppose that Player I moves the marker from s to a state v such that t A g(s,t) # L
and chooses a join-irreducible value ¢ <t A g(s,t). Then (vii) implies that

¢ <8, OV img) =\ (g, ¥) Av(Y, Vi)

ved

Since ¢ is a join-irreducible element of H, by Lemma 2.2(8) there exists some t, € &' such
that ¢ < g'(¢', ) A v'(x;, Yigy ), which implies ¢ < g'(s',v;) and ¢ < v'(v, Yjgy 4). The
latter inequality implies, using the inductive hypothesis, that Player II has a winning
strategy for the n-round game, from the configuration (9, t; MV, t; ¢); thus she also has

a winning strategy for the (n + 1)-round game: she moves the marker from s to ¢, and
then follows the winning strategy for the n-round game.

On the other hand, suppose that Player I moves the marker from s’ to a state t’ such
that ¢t A g'(s’, ') # L and chooses a join-irreducible value ¢ < t A g/'(s',¢'). Then (viii)
implies that

¢ <v'(¥, \(8(5,v) A Vi) =V (a(s,v) Av'(¥, Vi g))
G eSS

Since c is a join-irreducible element of H, there exists some t. € & such that ¢ < g(s, v.)A
v'(v, Yo ,p), which implies ¢ < g(s,vc) and ¢ < v'(v, Vg ). The latter inequality
implies, using the inductive hypothesis, that Player II has a winning strategy for the
n-round game, from the configuration (9M,t.; M, v’;c); thus she also has a winning
strategy for the (n+ 1)-round game: she moves the marker from s to t. and then follows
the winning strategy for the n-round game.

This completes the proof of the ‘if’ direction of the inductive step. [ |

Corollary 3.19 Let ® be a finite set of propositional variables, H be a finite Heyt-
ing algebra, M = (S, g,v) be a H-model for L (P), and s € & be a state. Then,
v(s,Ygnq) = T. Moreover, for every t € H, U<5’X§)3§75}) =T.

PROOF. Suppose that the weak-bisimulation game is played on two copies of 91. Then
Player II has a winning strategy for the n-round game from (9, s;90,s; T): she always
performs the same move as Player 1. Therefore, Theorem 3.18 implies v(s, Y[”mﬁ]) =T

and Lemma 2.2(2) implies v(s,XE;is}) =T. |

Corollary 3.20 Let ® be a finite set of propositional variables, H be a finite Heyting
algebra, M = (S, g,v) and M = (&', g',v') be H-models for L (D), s € S ands' € &
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two states and t € H a truth value (t # L1 ). Then, Player II has a winning strategy in

the n-round game for weak-bisimulation from the initial configuration (I, s; M, s';t) iff
1wt n,t _

v'(s, Xgng) = T-

PrOOF. It follows from Theorem 3.18 and Lemma 2.2(2). i

Remark. In the beginning of this subsection we required that ® and ‘H are finite. If
® is infinite, then Y[gims] is obviously an infinite formula; this implies that [gﬁﬁ] is also
infinite for every n. If ® is finite and H is infinite, then Y[gﬁ,s] remains finite (since
only finitely many truth values are used locally in s), but it is possible that Yign g 18
infinite. However, if in addition 91 is image-finite, then Yion g 18 finite for every n. Thus,
in defining characteristic formulas, we may require image-finite models instead of finite
Heyting algebras.

At this point, it should be noted that it is not possible to construct characteristic
formulas for the t-bisimulation game, even for Heyting algebras with only three elements
and for models with only two states. The reason for this is that modal equivalence does
not imply ¢-bisimilarity. Therefore, it is possible that Player II does not have a winning
strategy in the ¢-bisimulation game, but no modal formula in L, (®) can express this
fact. This scenario is demonstrated in the following example.

Example 3.21 Consider again the two models 9t and 9V of Example 3.10. Suppose
that L, ¢, T are the only elements of H (that is, H is a LHA with L < ¢ < T). We
can prove by induction on the formation of X, that v(v', X) = L iff v'(v/, X) = L, for
every X € LM (®). Then, using the above fact, we can prove by a similar induction
that v(s’, X)) = v'(s', X), for every X € L% (D).

We have shown in Example 3.10 that s and s’ are not T-bisimilar, which implies that
Player II does not have a winning strategy for the T-bisimulation game played on 901, s
and ', s’. On the other hand, Player II has a winning strategy for the T-bisimulation
game played on two copies of 91, 5. Since s and s’ are modally equivalent, we conclude
that no formula in L, (®) can capture the T-bisimulation game.

4 Multiple-Expert Semantics

The perspective on Heyting-valued modal logics exposed in this section, is presented
in full detail in [Fit92, Sect. 1, 3 & 5]. We briefly review below this facet of Fitting’s
many-valued modal languages and interpret our definitions and results in this alternative
context. Note that, in the very recent expository paper [Fit09], this perspective (‘to
wdentify the truth value of a formula with the set of those agents who say the formula is
true’) is coherently presented, although basically at the level of Boolean algebras.

In this section, we confine ourselves in the class of many-valued modal languages
built on finite HAs. Each language of this class can be reformulated in a way that is of
interest to KR situations involving many interrelated experts. We note, however, that
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our results carried out in the previous sections hold in the broader class of complete
Heyting algebras.

A multiple-expert modal model is a structure (€, &, { R }ees, {Ve }ece, D), such that:
e & is a finite set of experts.
e D is a partial-order dominance relation on &.

e S is a common set of worlds.

For each e € €, (6, R,, v.) is a (two-valued) modal model, such that
(Dy) if R.(s1,52) and D(e, f), then Ry(s;,s2), and
(Dy) for any propositional variable P, if v.(s, P) and D(e, f), then vs(s, P).

The valuations v, are then properly extended to all modal formulae, so that (D) above
is preserved.

We are interested now in finding the experts’ ‘consensus’, that is, in elegantly calcu-
lating the modal formulae on which our experts agree. This problem can be reformu-
lated as one involving a many-valued language, where sets of experts who agree on the
truth of an epistemic statement can be seen as generalized truth values. Note however
an important point: by (D;) and (D3), not every set of experts is an ‘admissi-
ble’ generalized truth value. The ‘admissible’ sets of experts are those which are
dominance-closed, that is, upwards-closed in the order D. The set of all admissible sets
of experts form a finite Heyting algebra H when ordered under set inclusion. We can
thus produce an H-model (&, g, v) as follows:

e Fors,t € G, g(s,v) :={e € £ : sR.t}.
e For a propositional variable P, v(s, P) :={e € £ : v (s, P) = 1}.

It can then be proved that for any modal formulae X,
v(s,X)={eec & :v(s, X) =1}

We have thus provided a translation of the multiple-expert situation into a many-valued
modal model of the language L (®). The other translation is also feasible. Both
translations are presented in [Fit92, Sect. 5].

We are now in the position to express the meaning of our results in this alternative
setting. It suffices to observe that in the finite Heyting algebra H of the ‘admissible’
subsets of experts, meet is set intersection and join is set union. Moreover, a join
irreducible element c is the set that consists of an expert e. and all the experts that
dominate e.; in other words, it is the minimum admissible set that contains e.. Assume
that Z is a weak bisimulation between two H-models (S, g,v) and (&', ¢’,v’) and let
s € 6,5 € & be two states. If ¢ is a join-irreducible value then Z(c) represents the
bisimulation relation “from the expert’s e. point of view”. The consistency property
guarantees that for an arbitrary set of experts t, the pair of states (s, s") belongs to Z(t)
iff every expert in ¢ thinks that these states are related by Z. Therefore, in the case of
weak bisimulation we have a sharp description:
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e If ¢ is a join-irreducible value, then the states s and s’ are weakly c-bisimilar iff
the states s and &' are bisimilar in the models (&, R,_,v..) and (&', R, v.,).

e The states s and s’ are weakly ¢-bisimilar iff for every expert e in ¢ the states s
and &’ in the corresponding models (&, R,,v.) and (&', R, v.) are bisimilar.

As one might expect from Example 3.10, an analogous statement does not hold for
the notion of ¢t-bisimulation, as the example below shows.

Example 4.1 Let € = {e, f} be the set of experts, D = 0, & = {s1,82,53} and & =
{84,855} two sets of states, P the unique propositional variable, and:

e R.(s1,82) and R.(s4,55) hold, and R, fails for any other pair of states,
o Rf(s1,53) and Ry(sy,85) hold, and Ry fails for any other pair of states,
® VU.(82, P) =v.(s5,P) =1 and v.(x, P) =0 for every x € {s1, 53,54},

o vi(s3, P) =vs(s5, P) =1 and ve(z, P) =0 for every x € {s1,82,54}.

Then, for the expert e the modal models (S, R.,v.) and (&', R.,v.) are bisimilar,
for the expert f the modal models (S, Ry, vs) and (&', Ry, vy) are bisimilar, but the
corresponding H-models (&, g,v) and (&, g, v") are not {e, f}-bisimilar.

We can, however, interpret the conditions of the ¢-bisimulation in the multiple-expert
scenario as follows:

e The base condition of Def. 3.2 says that moving back and forth between ¢-bisimilar
states does not affect the belief of any expert from the set ¢, for any propositional
letter P.

e The forth condition of Def. 3.2 says that any transition in the first model that
involves experts from the fixed set t can be matched with a transition in the
second model where all the relevant experts from t are also involved; more experts
can also be involved; what we require concerns only those in ¢.

e Similarly for the back condition.

Finally, the meaning of Theorems 3.3 and 3.11 is that the bisimulation relation between
states of models guarantees the invariance of the epistemic consensus of some experts
from a predefined fixed set t. It is also easy to give an equivalent definition of the
EF-type games of bisimulation, in terms of the epistemic agreement of the experts.
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5 Conclusions - Future Work

In this paper, we have examined the notion of bisimulation for Fitting’s Heyting-valued
modal languages and attempted to establish its basic facts. As for future work: there
exists a matrix-based approach to bisimulations developed in [Fit03], where a compu-
tational test is presented for examining frame and model bisimulations. It is noted in
[Fit09] that our weak bisimulations from Section 3.2 seem to be the Heyting algebra
counterpart of the Boolean-based bisimulations from [Fit03]. So, the most immediate
direction of future research is to establish the exact relationship between our approach
and the one in [Fit03] and try to transfer the matrix methods of [Fit03] to the Heyting
algebra case.

In general, with respect to the logical content of bisimulation techniques, perhaps
the most interesting question in the broad area of multiple-valued modal logic is the
identification of bisimilarity notions in bilattice-valued modal languages (see [Fit06] for
an exposition and [Fit09] for some basic questions). From the Computer Science appli-
cations perspective, it seems that the area of distributed systems might provide a field
of applications for this family of logics; the consensus of many interacting agents is a
premium notion there and it is intensively investigated.
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