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Abstract

In this paper we define and examine frame constructions for the family of
many-valued modal logics introduced by M. Fitting in the '90s. Every language of
this family is built on an underlying space of truth values, a Heyting algebra H.
We generalize Fitting’s original work by considering complete Heyting algebras
as truth spaces and proceed to define a suitable notion of H-indexed families of
generated subframes, disjoint unions and bounded morphisms. Then, we provide
an algebraic generalization of the canonical extension of a frame and model, and
prove a preservation result inspired from Fitting’s canonical model argument in
[7]. The analog of a complex algebra and of a principal ultrafilter is defined and
the embedding of a frame into its canonical extension is presented.



1 Introduction

Contemporary Modal Logic has been seriously influenced by the applications it has
found in Computer Science, Artificial Intelligence, Formal Linguistics and Philosophy
[2, 14]. The key to the success of Modal Logic in so many disciplines is the underlying
relational semantics, whose importance for the development of the field can be hardly
overstated. The modern trend is to view modal languages as simple languages for talking
about relational structures, a formal device that crops over everywhere in Theoretical
Computer Science, Knowledge Representation and Cognitive Science. The reader can
obtain a picture of the field in the recent books [2, 20, 3] and the survey article [12].

One of the novel approaches in Modal Logic, rather overlooked hitherto, is the family
of many-valued modal logics (mv-MLs) introduced by M. Fitting in a series of papers
from 1992 to 1995 [6, 7, 8, 9]. In this approach, Modal Logic is erected on a version
of many-valued propositional logic (instead of classical two-valued propositional logic),
but in a particular way. Each logic of this family is built on an underlying Heyting
algebra H which provides the space of truth values. Moreover, the elements of H are
directly encoded in the language as special constants and thus we can manipulate them
explicitly. Perhaps the most novel feature of this family of logics is the version of rela-
tional semantics it possesses: the possible-worlds frames interpreting a language of this
family are directed graphs whose edges are labelled with an element of the underlying
Heyting algebra H (henceforth called H-frames). This structure can be conceived as
a possible-worlds frame with a many-valued accessibility relation, a special kind of a
labelled transition system. Semantically, any complete Heyting algebra can serve as
the space of truth values but in order to provide a completeness theorem with respect
to a Gentzen-style sequent calculus, a finiteness assumption has been employed by M.
Fitting in [7]. Note that this family of logics possesses also a tableau proof procedure
[9], modal non-monotonic counterparts [8, 19, 16, 18] and has been recently investigated
from the Completeness Theory [17] and the Correspondence Theory perspective [15].

This paper deals with the model theory of the Fitting family of many-valued modal
logics, focusing on the ‘big four’ frame constructions: generated subframes, disjoint
unions, bounded morphisms and canonical extensions. Historically, the study of frames
has dominated the ‘classical era’ of Modal Logic (see [2, Ch. 1.7]), during which mainly
generated submodels and bounded morphisms were used as tools for transforming the
canonical model, in order to prove frame determination results, whenever the ‘intoxi-
catingly successfull’ completeness-via-canonicity method failed [2, Ch. 4]. The bounded
morphism construction appears usually in the literature as p-morphism, a truncation
of pseudo-epimorphism. The subsequent explosion of modal expressivity investigations
brought into foreground the constructions of disjoint unions and canonical extensions
(also called wultrafilter extensions), which are also useful in another pillar of modal wis-
dom, the duality theory of Modal Logic (see [12, 2, 20] for results and references). The
justification for naming these constructions as the ‘big four’ constructions in the frame-
based analysis of modal logic stems partly from the fact that they occur in the celebrated
Goldblatt-Thomason theorem [13] which characterizes the elementarily definable classes
of frames which are modally definable. Here, we investigate these constructions in the



context of many-valued modal languages. For the first three cases we can elaborate on
‘H-indexed families of constructions which assert invariance results of a special form:
for a fixed truth value a € ‘H, what remains invariant for a given modal formula inside
a state of the modal model is the lattice-theoretic meet of the formula’s truth value
with a. Further on, we proceed to the canonical extension of frames, for languages built
on finite Heyting algebras. This construction seems to be the most interesting one, at
least mathematically. To define the canonical extension of H-frames and H-models we
need to rework many notions, from the algebraic perspective. Building on facts from
Universal Algebra, we define the appropriate algebraic analog of a full complex algebra
of a frame. Then, we proceed to the associated step of getting the ultrafilter frame of
the full complex algebra. The latter step, in the many-valued case employs an involved
technical construction inspired from Fitting’s canonical model argument in [7]. With
the aid of these tools, we obtain an algebraic analog of the classical truth invariance
result in the principal ultrafilters of the full complex algebra of a modal frame. En route,
we discuss also the related areas of algebraic semantics and general H-frames for these
languages. Finally, we hint on the notion of bisimulation, which is very important at
the model level.

In Section 2 we provide the mathematical background and in Section 3 the syntax
and semantics of many-valued modal languages, including an alternative multiple-expert
semantics that may be of some interest in Knowledge Representation situations. Section
4 contains the results of this paper, treating the four frame and model constructions for
many-valued modal languages. The paper ends in Section 5 with a discussion of our
results.

2 Mathematical Preliminaries

This section serves mainly for establishing notation and terminology and for recording
some facts that we will use in the proofs of our results. We assume the reader is well
acquainted with the theory of Heyting Algebras (henceforth HAs) and their properties.
For details and proofs see the classical texts [21, 1]; [23] is useful for the elements of
Universal Algebra. In a lattice (L, <), we denote the least upper bound or join, by a+b,
and the greatest lower bound or meet by a-b. A least (or bottom) element of a lattice is
denoted by L and a greatest (or top) one by T. Some fairly obvious properties of infinite

joins and meets, such as [] (a-at> = a- [ a, will be used, generally without comment.
teT teT
The operation of relative pseudo-complementation is denoted by a = b and its existence

in a lattice is equivalent to the fundamental property H, : = < (a = b) iff (x-a) <b.
The following properties of HAs will be used in our proofs: H, : (a = b) =Tiff a <b,
Hy (T = a) = a, Hy : a1 < ay implies (a2 = b) < (a1 = b), H; : by
by implies (a:bl) < (a:>b2),7—l6: (a:b)-(aﬁc) = (aﬁb-c),Hw (a#
c)-(b=c) = ((a+b) =>c),Hg:a= (b=>c¢) = (a-b) =¢c = b= (a= ¢
Hy:a-(a=0b) = (a-b) < b Hy:c-(a=0b = c((c-a)= (cb)),
Hypia < ((a = b) = b). Also, provided that the (possibly infinite) meets and joins

IN



exist, HI : H(a:>bt):<a:> Hbt>,Hlfz H(a:>bt):<a:> Hbt) and

teT teT teT teT

HI H(a:>bt):<a:> Hbt>.

teT teT

3 Syntax and Semantics of Many-Valued Modal Logic

The syntax of a propositional many-valued modal language is defined by first fixing
a complete HA 'H which will serve as the space of truth values. The elements of H
are directly represented in the language by special propositional constants. The syn-
tax definition proceeds as in the classical case, with the remark that the propositional
connectives V, A, D need to be explicitly introduced, as they are no more interdefinable
(negation is non-classical); similarly for the two modal operators. In the BNF specifica-
tion below, a ranges over elements of H, P ranges over elements of a countably infinite
set of propositional variables ® and A is a formula of L (®).

AZI:CL|P|A1\/A2|A1/\A2|A13A2|DA|<>A
(A = Ay) abbreviates (A; D As) A (A2 D Ay) and —A abbreviates (A D L).

Now, we turn to the semantics of many-valued modal languages. The semantics
described below alters in a very interesting manner the notion of relational frames, in
that it concerns a kind of many-valued accessibility relation.

Definition 3.1 An H-modal frame for L (®) is a pair § = (S, g), where & is a non-
empty set of states and g : © x & — H is a total function mapping pairs of states to
elements of H.

An H-modal model M = (&, g,v) is built on F by providing a valuation v, that is a
function v : & x (HU®) — H which assigns an H-truth value to atomic formulas in each
state, such that v(s,a) = a, for every s € & and a € H. That is, propositional constants
are always mapped to ‘themselves’. Valuation extends to all formulae in a standard
recursive fashion. The propositional connectives are interpeted over the corresponding
algebraic operation: v(s, A A B) = v(s, A) - v(s, B), v(s, AV B) = v(s,A) + v(s, B),
v(s, A D B) =v(s, A) = v(s, B), while for the modal operators

e v(s,04) = ] (g(s,t) :>v(t,A))

te s

o v(s5,04) = T (g(s,t) ~v(t,A)>

te 6

Definition 3.2 A formula A of L, is true in a state s of an H-model M = (&, g,v)
(denoted as M, s IF A) if v(s, A) = T; we also say that A is satisfied in 5. Further on,
A is true in a model M (denoted as M |- A) if v(t,A) = T for every t € &, and it
is walid in an H-frame § (denoted as § IF A) if it is true in every H-model built on F.
The notions of truth and validity extend in a class C of H-models or H-frames, in the
obvious way (notation: C I+ A).



Finally, a modal formula A is called a-true in an H-model 9, if the formula (a D A)
is true in 9M; similarly for a-validity. We assume that the reader is acquainted with the
notion of correspondence between a modal formula and a class of frames (see [2]).

3.1 Multiple-Expert Semantics for many-valued modal languages

Let us, for the moment, confine ourselves in the class of many-valued modal languages
built on finite HAs. Assume an epistemic situation involving (possibly infinitely) many
states of affairs (possible worlds) and (finitely) many experts, whose opinion we value.
Obviously, if the experts are independent there is nothing genuinely interesting to deal
with. The scenario becomes interesting when the experts are related through a sort of
hierarchical organization, which affects the way each of them makes up her mind on
the truth of certain statements: some experts dominate others. Reasonably enough,
we consider that the binary dominance relation is antisymmetric and transitive, and is
broadly conceived: every experts dominates herself, that is the relation is also reflexive.
In simple words, a partial order relation is imposed on the experts. Before proceeding
to a technical description of the epistemic situations, an example is in order.

{517 627 83 }
{&:.,8}
&, &,
\/ {& 1 (&}
&
0
(1) (ii)

Figure 1: From many experts (i), to many truth values (ii), and vice versa

Assume we have three experts &, &,, &;, related as in Fig. 1.(i): £, dominates &, and
&L, Further on, assume a set of possible worlds, common to all agents and a common
epistemic language. We require that the dominance relation has the following effect on
the accessibility relation each expert considers on the set of possible worlds:

D:: an expert & considers that s; ‘sees’ s, iff every expert dominated by &, , does so

Note that each expert provides us a classical relational frame but, as a whole, the experts’
accessibility relations should satisfy condition D;. We can proceed from multiple-expert

Tt would be perhaps more intuitive to represent the hierarchically ordered experts, by placing the
‘dominating’ above the ‘dominated’ ones. We have chosen however to follow the standard mathematical
practice and represent both the partial ordering of Fig. 1.(i), as well as the lattice of Fig. 1.(ii) with
their Hasse diagrams; this will facilitate the discussion on the transitions between these two structures.



frames to models, by providing a valuation. Again, we impose a similar requirement,
which reasonably reflects the effect of dominance in truth assignments to propositional
variables, for every expert, inside every possible world:

D,: what an expert &, accepts to be true in a possible world, must also be accepted
by every expert £ dominates

The rules for extending the valuation to all formulae of the epistemic language, also
reflect the dominance relation. Formulae of the form A A B and A V B are treated
locally by an expert inside a possible world, in the obvious way. On the other hand,
formulae of the form —A, A D B, OA, CA, are set to true by an expert inside a possible
world, iff every dominated agent considers them to be true also in this possible world.
A flavour of intuitionistic logic is more than obvious.

We are interested now in finding the experts’ ‘consensus’, that is, in elegantly calcu-
lating the modal formulae on which our experts agree. This problem can be reformulated
as one involving a many-valued language, where sets of experts who agree on the truth
of an epistemic statement can be seen as generalized truth values. For instance, to
denote that all experts agree on the truth of OA, we say that the truth value of OA
is {&,,&,,& }. Note however an important point: by D,, not every set of experts
is an ‘admissible’ generalized truth value. For instance, it cannot happen that
&, alone considers A to be true. The ‘admissible’ sets of experts are those which are
dominance-closed, that is, upwards-closed in ordered sets terminology. Similarly for the
accessibility relation between states: it can be given a generalized truth value (the set
of experts who agree on the existence of an edge) and ‘admits’ (by D;) the same sets
of experts as such. To complete the example, it remains to notice that the ‘admissible’
sets of experts provide us a finite Heyting algebra, when ordered under set inclusion:
the lattice of sets of Fig. 1.(ii). A straightforward proof verifies that the rules (we infor-
mally sketched above) for extending the valuation to all formulae preserve requirement
D,, and thus this kind of multiple-expert modal models ‘captures’ the dominance rela-
tion. Actually, the multiple-expert situation described can be entirely translated to a
many-valued modal model of the language LY, , where H is the lattice of Fig. 1.(ii); for
a detailed proof of this claim see [7, Sect. 5]. The other translation is also feasible: as a
first step, the reader can check that we recover the dominance relation of Fig. 1.(i) by
ordering (under set inclusion) the prime filters of the lattice in Fig. 1.(ii)?.

In general, multiple-expert epistemic situations of the kind sketched above are for-
mally described by multiple-expert modal frames of the form (£, D, G, R), where:
£ is a finite non-empty set of experts, D is the partial-order dominance relation on £, G
is a non-empty set of possible worlds, and R is an £-indexed set of accessibility relations
on G satisfying requirement D; [7, Sect. 3]. We construct a multiple-expert modal model
by providing a valuation v that respects D,, and in a similar fashion, we extend it to
all modal formulae (as sketched above). In [7] the equivalence of multiple-expert modal
models with the H-modal models is established and thus we speak of an equivalent
formulation of these logics. The starting point for proving this equivalence is actually

2Note that in finite HAs, prime filters are obtained as the principal filters generated by the join-
irreducible elements [5, Lem. 8.16, Prop. 9.4]. The join-irreducible elements of the lattice in Fig. 1.(ii)
are shaded.



G. Birkhoff’s theorem on the dual representation between finite partial orders and finite
distributive lattices (that is, finite HAs), as in our example above; see [5, 8.17-8.19]
for a proof stated in terms of down-sets and prime ideals. In [7] this is significantly
extended, actually lifting to the modal setting the proofs on the equivalence between
the algebraic and the possible- world semantics of propositional intuitionistic logic. The
technical construction is very elegant and at the same time a very interesting example
of application of mathematical ideas in Al problems.

The interested reader should verify, after reading the next section where our results are
exhibited, that we proceed to define model theoretic construction which guarantee to
keep invariant the epistemic consensus of a predefined group of experts. Thus, they
might be of some interest to the Knowledge Representation community. Note though,
that our results carried out in the many-valued facet of these logics are more general as
they hold for any complete Heyting algebra.

4 Model and Frame Constructions in mv-ML

4.1 Generated Subframes and Submodels

In the classical case, generated submodels embody a facet of the ‘locality of computation’
in relational semantics. Namely, the fact that in order to compute the truth value
of any modal formula in a state s of a model, we only need the set of states that
can be accessed from s following any finite number of R-steps, where R is the binary
accessibility relation. This allows to prove a truth invariance result and a validity
preservation result. The former, at the level of modal models, states that the modal
theory of a state in a model coincides with its modal theory in the model this state
‘generates’.

In many-valued modal logic, we can refine this idea to a more general one. For every
truth value a € 'H and a set of states, we build a ‘generated’ subframe in which we keep
only those edges whose label does not provide the L element as the meet with a. For
‘generated’ submodels, we further require that the assignment of truth values in the two
models, satisfies a similar requirement®. Below, we prove that this allows us to prove
an a-invariance result at the model level.

Definition 4.1 Let 9 = (S, g,v) and M = (&', ¢',v’) be two H-models for L* (D).
M is an a-preserving generated submodel of M (notation: M’ —* M) iff:

1. 8C6
2. for states 5,tin & : a-g'(s,t) =a-g(s,t)
3. foreverys € & and Pe ®: a-v'(s,P)=a-v(s,P)

3 Actually, the term inner substructure, used in [11, 12], would be more appropriate here, as there is
no ‘generation’ actually involved. We decided however to stay with the more standard terminology of
generated subframes and submodels.



and the following closure condition holds:

4. if s € & and a-g(s,t) # L, then t € & (a-cc)

The notion of an a-preserving generated subframe § = (&', ¢’) of § = (S, g) (notation:
§ —*F) is defined by leaving out item (3).

The following theorem states that modal truth is a-invariant under a-preserving gener-
ated submodels.

Theorem 4.2 For H-models M = (&, g,v) and M = (&', g',v'), let M —* M. Then,
for each formula A of LY, and state s of M,

v(s,A) =a-v'(s, A).

ProoOF. By induction on A. The case of propositional variables and constants is trivial.
The argument for the propositional connectives employs the properties of HAs; for
instance the proof for disjunction requires just the distributivity of HAs and implication
requires property H,,; the reader can easily verify. We provide the argument for O and
note that the argument for < is similar.

v(s,0A4;1) = a- H (g(s,t) = v(t, A1)>

te &
- T (o (g(s,o =t ) )
te s
= Ha <a g(s,t) = a- v(tA)) (by Hyp)
te s
= H a- (a g(s,t) = a-v(t, A1)> (by H,; & Def. 4.1, a-cc)
te®
= a- (a g(s,t) = a-v(tA) )
, —— ————
te s by Def. 4.1 Induct. Hypothesis
= a- H(gst:vtA)) (by Hy)
S
= v'(s,0A;) (Def. 3.1)

The frame validity preservation result, whose proof is easy, is as follows:

Theorem 4.3 Let § = (6, g) be an H-frame. For every X € LT,

S ko X iff for every H-frame §', § —*§ implies §' Ik, X



4.2 Disjoint Unions

The construction of disjoint unions is of interest mainly to the definability theory of
modal logic. Its direct transfer to many-valued modal logic is more or less immediate, in
the sense that, again, computation is ‘local’: the truth value of a formula is not affected
by inaccessible worlds and disconnected components of the edge-labelled directed graph.
Now, in the context we examine here, we can provide a fairly general notion of a disjoint
union which allows us to prove an a-invariance result, as in the previous subsection.

Definition 4.4 For an index set I, let 9M; = (&;,9,,v:), (i € I) be a collection of
disjoint (for every i,j € I,6,N6S; = 0) H-models for L (®). The a-preserving disjoint
union of this collection, is the H-model |4, M; = (&, g, v), where

1. & is the union of the sets &;
2. forevery s € §;,t € S;: a-g(s,t) =a-gi(s,t)if i =7, elsea-g(s,t) = L

3. for every s € G, and P € ®, a-v(s, P) = a-v;(s, P)

The a-preserving disjoint union of H-frames 4, §; = (S, g) is defined by leaving out
item (3).

The truth invariance result is stated in the next theorem: modal truth is a-invariant
under a-disjoint unions. The proof runs by induction and requires property H3; it is
left to the reader.

Theorem 4.5 Let 4,9, = (8, g,v) be the disjoint union of a collection of disjoint
H-models M; = (S, gi,v;), (1 € I). Then, for each formula A of LY, and state s of M,

a-v(s,A) =a-vs, A).

Using the results we have proved so far, we can prove that naturally arising logical
modalities, variants of the global modality and the difference operator (see [2, Ch. T7])
are not definable in the language L7, . For instance, it is natural to consider a global
modality A,¢ (a € H) which would capture the fact that ¢ has the truth value a in
every state of the H-model considered. A ‘dual” existential modality E,p can be also
considered. A variant of the difference operator is given below: D,y is true in a state s,
iff ¢ has the truth value a in a different state t. None of these modalities is L -definable.
The proof is easy and it is left to the reader.

Example 4.6 None of the following logical modalities is definable in L7, .

e (s, Ap) =T iff v(t,p)=a,foreveryte S
e v(s,E,0)=T iff Jt e Sst. v(t,p)=a
e v(5,D,p)=T iff Fte &st. t#£s andov(t,9) =a



The validity preservation principle at the level of H-frames is given in the next theorem.

Theorem 4.7 Let 4, §; = (S,g) be the disjoint union of a collection of disjoint H-
frames §; = (&;,8:), (i € I). Then, for each formula X of L}

mEo)

W, 8 lFe X dff Vie I,§; -, X.

4.3 Bounded Morphisms

The case of bounded morphisms is a bit more interesting, technically. We again define
a family of transformations that guarantee an a-invariance result. Note below however,
that the traditional back and forth conditions need not be in absolute ‘symmetry’. This
will be of help in cases, such as the one in Example 4.11.

Definition 4.8 Let M = (S, g,v) and M = (&', ¢',v’) be two H-models for L (D).
An a-preserving bounded H-morphism from 91 to M’ is a function f : & — &' satisfying
the following conditions, where s,t € & are states of 91 and P € & is a propositional
variable:

1. a-v(s,P)=a-v'(f(s),P)

2. a-g(s,t) < a-g(f(s), (1) (forth)

3. for every s € G and v € 6" (back)

ifa-g(f(s)w) £ L,
then Ju € & such that a-g(s,u) =a-g'(f(s),u) and f(u) =

For § = (6, g) and § = (&', g’) H-modal frames, an a-preserving bounded H-morphism
from § to § is a function f : & — &’ which satisfies the above (forth) and (back)
conditions. If f is onto, we call § (9') an a-preserving bounded morphic image of §
() through f (notation: § = F (I —* M')).

Theorem 4.9 Let M = (&, g,v) and M = (&', ¢, v') be two H-models and f : & — &
an a-preserving bounded H-morphism. Then, for each formula A of LY, and state s of
m,

a-v(s,A) = a-v(f(s), A).

PROOF. The proof runs again by induction on A. We omit the routine cases of the
propositional connectives and proceed to the modal operators. We will provide (half of)
the argument for O, as an indication of the techniques employed. We split our proof
into two parts:

(Part 1, >) a-v(s,041) > a-v'(f(s),0A4):

10



a-v(s,04;) = a- H <g(s,t) = v(t,Al))

— tH@ <a : (g(ﬁ, £ = o(t, A1)>)

- tiw(a-g(s,t):aw(t,Al)) (by Hy,)

> le_[ea~<g-9’(f(v5),f(f)2=>g-v’(Ji(f%A;)) (M. Def. 4.8)
te forth Induct. Hypothesis

- teea-(g'<f<s>,f<t>>:»v'<f<t>,A1>) (by H,0)

- 1l (/(F(s), £(0) = v(F(8), A1)

> H §(f(s),6) > v/(t, A) (f16] c &)

= a-Z’e(;és),DAl) (Def. 3.1)

(Part 2, <) a-v'(f(s),041) > a-v(s,0A;). This part requires an application of the
Axiom of Choice, along with the back condition, to ensure that a suitable h : &' — &
exists, which, for every t € & (such that a - g'(f(s),t) # L), picks one state h(t) €
f{t}] € &, such that a - g'(f(s),t') = a- g(s, h(t)). Details are left to the reader. W

The result at the level of frames follows immediately and is stated without proof.

Theorem 4.10 Let § = (6,g) and §' = (&', g') be two H-frames, and f a surjective
a-bounded morphism : § —-* . Then, for every X € L, § Ik, X implies §' Ik, X.
Example 4.11 It is tempting to consider a many-valued analog of the reflexive frames:
the H-frames, in which every label g(s,s) has the value a, where a # L and a # T.
Assume that there exists a formula X € L7 which defines this class of H-frames.
Consider the H-frame §; = (N, g;), where for every n € N, g1(n,n) =a,g1(n,n+1) =
T, and g1(m,n) = L, for every other pair m,n. Then §; IF X. Now, consider the H-
frame §2 = ({0}, g2), where g2(0,0) = T. The function f : F; — o with f(n) =0 for
every n € N, is a surjective T-preserving bounded morphism (check with the back and
forth conditions). However, §> I X, a contradiction. Further on this example, it has
been proved in [15, Theorem 16(1)] that the class of H-frames satisfying the condition
Vs(g(s,s) > a) is modally definable by the formula T* : OA D (a D A). It follows
that the property of H-frames Vs (g(s,s) < a) is not definable, lest the generalization of
reflexivity in the beginning of the example be.

The following theorem asserts that, a well-known intimate relation between the notions

of generated subframes and bounded morphisms [10, Lemma 3.2.2|, carries through in
the many-valued setting.

11



Proposition 4.12 If f is an a-preserving bounded H-morphism from My = (S, go, Vo)
to M= (6, g,v) (from Fo = (So, g0) to F = (S,8)), then the image of My (Fo) under
f is an a-preserving generated submodel (subframe) of M (§).

4.4 Canonical Extensions of H-frames and H-models

The construction of canonical extensions of relational frames is very interesting in its
own right as it imports elements of classical model theory in modal logic. Canonical
extensions are also called ultrafilter extensions as the set of states in the resulting frame
consists of the ultrafilters over the set of states in the initial frame. This construction
has been employed in many aspects of classical modal logic: as a tool for building
modally saturated models [2, Chapter 2.5], as a fundamental tool in definability theory
(cf. the Goldblatt-Thomason Theorem [13]) and in the metamathematical investigations
of modality in the "70s and '80s (see [22] for an example and [2, 12] for references).

Setting the stage. The process of building the canonical extension (F'), of a rela-
tional frame F consists classically of two steps: (i) building its full complex algebra F,
the prime example of a Boolean Algebra with Operators (BAO), and (ii) constructing the
ultrafilter frame (F*), of the full complex algebra (see [2, Ch. 5] and [11]). We are
going to provide the many-valued analogs of these steps, starting with the analog of a
full complex algebra. To this end, we employ the direct power H® of H. In doing so,
we imitate the classical construction, generalizing the fact that every powerset algebra
is isomorphic to a direct power of 2. To assist in seeing the analogy with the classical
case, let us remind that every subset of the set of states © can be identified with its
characteristic function, which is a function from & to 2. For the basic connection be-
tween logic and universal algebra, comprising the elementary facts we generalize in this
Section, the reader can consult the excellent notes of Y. Venema [23].

Definition 4.13 Let § = (&,g) be an H-frame for LY . We augment the power
algebra H® with two operators mg, 1y, to obtain a a Heyting Algebra with Operators,
denoted as

F=(H® +¢, =¥ Le,mg, 1g)

where the two operators mgy and 15 : H® — H® are coordinate-wise defined as follows:
for every s € G and f € H®,

mg(f)(s) = > (36,0 F(0)  1(f)e) = [T (sts.0) = ()

te 6 te 6

The operators my and l; will interpret <& and O respectively and it can be easily checked
that in the case of the classical language L2, they fall respectively to mg(X) (the states
that can ‘see’ a state in X) and 1z (X) (the states that ‘see’ only states in X'). For an
element t € H, we denote by [t] the constant function (an element of H®) which maps
every state s € G to t.
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Remark 4.14 (Proviso & Notation) In this section, the algebra H underlying L',
is finite. An algebraic operation without a subscript refers to H: for instance, = means
=, while = is explicitly denoted. In the interests of readability, we are going however
to deviate from the standard notation (F*), and use fonts to differentiate between the
different constructions: we move from an H-frame § to its associated Heyting algebra
with operators F and then to its canonical extension §¢.

The following lemma gathers some useful properties of the operators mgy and l;. The third
one is not actually used in the proofs to follow, but we record it here for completeness.
The details of the proofs are left to the reader.

Lemma 4.15 For every a € H and f,,f, € F,

1. f, <¢ f, implies 14(f,) <¢14(f,) (monotonicity of 1)

2. 15(f, ¢ fo) = 1g(f)) ¢ 1g(f)  (multiplicativity of 1)
3. mg(f, +¢ fy) = my(fy) +r my(f,) (additivity of my)
4 1(la) =¢ ) = (la] =< 14()

5. 14(f = [a]) = (mg(F) = [a])

The following definition generalizes the classical function V(p) of a relational model,
which maps a formula ¢ to the set of states in which it is true.

Definition 4.16 Given an H-model MM = (&,g,v) and a formula ¢ € L% (P), we
define [¢]y : LY (®) — F to be the function of H® defined by: for every s € &,

[Pl (5) = v(s, )
Of course, for t € H, [t]s is [t]. Whenever it is implied from the context, the subscript in

[¢]n Will be omitted. It can be now easily verified that this function correctly captures
the interplay between the modal operators and their algebraic incarnations.

Fact 4.17  [Oply = my([¢lm) and [Oplw = lg([@]m).
PRrROOF. For an arbitrary state s € G, it holds that

[O¢lm(s) = v(s, 00) "= D g, )0t 0) =D as, ) [l (8) D= mg([)m) (5)

te 6 te 6

The proof for [Oply, is similar. i
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In order to define the canonical extension of an H-frame, we have to define first
its set of states, the many-valued analog of an ultrafilter over &. Before doing so, we
remind the reader that there exists an one-to-one correspondence between the set of
ultrafilters of any Boolean algebra B and the set of homomorphisms of B onto 2 [23, 1].
Every powerset boolean algebra is identified with a direct power of 2 and this grasps the
intuition behind our choice to define the states of the canonical extension in the general
many-valued case, using the homomorphisms from the Heyting algebra F onto H, but
not all of them. We will use those that ‘properly’ interpret the elements of H.

Definition 4.18 Let F be the algebra arising from an H-frame §. A homomorphism h
from F to H, which maps [t] to t, for every t € H, is called H-proper *.

Observe that an H-proper homomorphism is trivially onto. The following definition
provides the algebraic equivalent of the logical notion of consistency. In the many-
valued case this notion is more refined, cf. the discussion in [7, Sect. 4]. Moreover, the
equivalent of the well-known notion of sets with the finite intersection property [4, Ch.
4.1] is also more complex.

Definition 4.19 Let T and f be respectively a subset and an element of F. An H-
proper homomorphism h is f-compatible w.r.t. T iff for every finite subset Tg of T,

[] b(g) £ h().

geTo

Let S, T and f be respectively two subsets and an element of F. We say that the pair
(S, T) has the finite meet property with respect to f (short: has the f-f.m.p.) iff for every
pair of finite subsets S C S and Tg C T, there exists an H-proper homomorphism h
such that:

o h[Sy) ={T}
* 1l h(g) £h(f)

We say that (S, T) is maximal® with respect to the f-f.m.p., iff (S,, T) has the f-f.m.p.,
and for every proper extension S’ of S, it cannot be the case that (S, T) has the f-f.m.p..

4Tf H is to be considered as part of the signature, every homomorphism is H-proper and this
definition does not make sense. From the perspective of logic this is not necessary as the elements of
‘H are ‘special’ atomic formulae, hence the definition of H-proper homomorphisms.

®As in Fitting’s canonical model argument in [7], we have been unable to avoid the pair (S, T) and
work only with its second component. In [7, 17] the sets of sentences with the proof-theoretic equivalent
of this maximality property are called maximal left-consistent sets, as it is the first component which
is maximized. We do not wish to complicate further the terminology in this paper: whenever we refer
to a maximal pair (S,,, T) we always mean that its first component S,, is maximal with respect to the
f-f.m.p.; hence the subscript to S,,.
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Note that if (S, T) is maximal with respect to the f-f.m.p., then [T] = T¢ is in S,.
We argue now about the existence of maximal sets with the f-f.m.p., and their essential
property, that will allow us to build H-proper homomorphisms, f-compatible w.r.t. T,
out of them. We will first state, without proof, a useful lemma. In the results to follow,
we assume that F is the algebra arising from an H-frame §.

Lemma 4.20 If a pair (S,,T) of subsets of F is mazimal with respect to the f-f.m.p.,
S. is a filter in (the lattice reduct of) F.

Proposition 4.21 If (S, T) has the f-f.m.p., then it can be extended to a mazximal
(S, T) with the f-f.m.p.. Moreover, it holds that for every f € F, there exists a unique
t € H such that (f - [t]) €S,.

ProoOF. The existence of S, is a typical application of Zorn’s lemma. For the existence
claim,the finiteness of H = {t1,...,¢,} is essential. For the uniqueness claim, assume
that there exist two different members ¢1,t2 € H and a g’ € F such that both g’ < [t4]
and g’ < [to] are in S,,. Lemma 4.20 asserts that S, is upwards closed and closed under
meet, which implies that [t1] < [t2] should be in S,,. But for any H-proper function h,
h([t:] & [ta]) # T, since t; # to, and hence trivially, (S,,, T) would have not have the
f-f.m.p. | |

We can now prove that we can obtain suitable H-proper functions from a maximal pair
(S,, T). It is actually the first part of Theorem 4.23 that we will use; the other part
is recorded in the interests of completeness. Before going to the theorem, we have to
state a useful Proposition, which is proved by applying simple properties of congruence
relation in Heyting algebras to filter S, (Lemma 4.20).

Proposition 4.22 For any = € {-,+,=} and (its corresponding) *¢ € {-¢,+¢, =}, if
{(gl F [tl])a (g2 F [t2])} C S, then (gl *r 82 ¢ [t *t2]) €S,.

Theorem 4.23 If (S,,T) is mazimal with respect to the f-f.m.p., then the function
hs : F — H defined by:

for every g € F, hs_ (g) = the unique t € H s.t. (g < [t]) € S,

is f-compatible w.r.t. T.

Conversely, if h is f-compatible w.r.t. a set T C F, then there exists a (unique) set
S, such that (S,,, T) is mazimal with respect to the f-f.m.p.

PROOF. We have to show first that hs is H-proper . To this end, let x € {-,+,=} and
*¢ € {-¢, +¢,=¢}. Then, for every g; and g in F, there exist unique ¢; and ¢, in H, s.t.
{(g1 S [tl]), (g2 e [tQ])} C S,.. By Proposition 4.22: (g1 *e 82 < [t ‘ktz]) € S,, and
hence, hs,_ (g1 *¢ g2) = t1 xty = hg_(g1) * hs,,(g2). It follows that hg_ is a homomorphism
from F to H. Also, for every t € H, h([t]) = ¢, since ([t] < [t]) = [T]isin S,. Thus, by
Definition 4.18 hg_ is an H-proper function.
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Assume further, that hg_ is not f-compatible w.r.t. T. Then, there exists a fi-
nite Tg C T, such that [] hs,(g) < hs,(f). Since hg  is a homomorphism, it holds
g€To
that hg, <(H To) = f) = T, or equivalently <(H To) = f) € S,.. Then, the pair
({(I[ To) =+ f}, To) witnesses that (S,,, T) does not have the f-f.m.p., since every H-
proper h such that h({[[ To = f}) = {T} satisfies h(][ To) < h(f); we have reached a
contradiction.

For the second part of the theorem, if h is f-compatible w.r.t. T C F, then the
desired S,, is the set h™'[{T}] = {g € F: h(g) = T}. Indeed,

e (S,,T) has the f-fm.p.: for every pair of finite subsets Sg C S,, and Ty C T,
h[So] = {T} by the definition of S,, and ] h(g) £ h(f) since h is f-compatible

g€To
w.r.t. T.

e (S,,T) is maximal w.r.t. the f-fm.p.: extend (S,,, T) to a maximal (S, T) with
the f-f.m.p., according to Proposition 4.21. We will show that S,, = S,’. Let
g € S,'. Then, by properties H, and Hs, (g < [T]) € S..’. Now, since h is a
function, there exists a t € H s.t. h(g) = t. Hence, h(g < [t]) = T, which
implies (g < [t]) € S, €S, and this forces ¢ be T. That is, h(g) = T and hence
ges,.

The analog of principal ultrafilters. The principal ultrafilters of a powerset algebra
are generated by the singleton sets and they play an important role in the classical
ultrafilter extensions of frames. The following definition properly generalizes this notion
in the context of H-frames and their corresponding Heyting algebras with operators.

Definition 4.24 Assume § = (&, g) is an H-frame and F is its corresponding Heyting
algebra with operators. For every s € G, the point-generated function associated to s is
the function 75 : F — H, defined by: for every f € F, m4(f) = f(s)

The following proposition verifies that point-generated functions are of interest for the
purposes of this section. Its proof is based on the coordinate-wise definition of operations
in the direct power of H, on which F is based.

Proposition 4.25 7, is an H-proper function.

A first use of point-generated functions is in the following lemma, which will be needed
in the proof of our main result in this section.

Lemma 4.26 If T is a subset of F such that for every finite To C T, [[To ¢ f, then
(0, T) has the f-f.m.p.
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PROOF. To prove that (), T) has the f-f.m.p., it suffices to show that for every finite
To C T, there exists an H-proper h s.t. [] h(g) £ h(f). Since [[Ty %¢ f, or,

geTo

equivalently, ((H To) =+ f) # T¢ (by H,), there exists an s € & such that ((H To) =+

f) (s) # T. Then, the point-generated H-proper function 7 is the required function,

since wﬁ((n To) =+ f) - ((H To) =+ f> (5) # T, and thus [] mo(g) £ me(f). i

geTo

Canonical extensions and the main theorem. We are now ready to define the
canonical extension of an H-frame and an H-model. The set of states is the set of all
‘H-proper functions. The accessibility function defined below collapses to the original
definition of the accessibility relation between ultrafilters (see [2, Ch. 2]) in the case of
the language L2, as the reader can verify.

oo

Definition 4.27 Let § = (S, g) be an H-frame. Its canonical extension is the frame
§¢ = (6%, g%), where &°¢ is the set of H-proper homomorphisms from F to H and the
accessibility function between two states (H-proper functions) h, and h, is defined by

0° (b 1) = TT (1a(®) = hu(mg()) - [T (B () = huth))

feF feF

Further on, if 9 = (&, g,v) is an H-model built on §, its canonical extension is the
H-model M* = (S¢, g%, v*), where the valuation function v® is defined by: for every
P e ® v, P)=h([P]y).

Note that the definition of v¢ is legitimate as it satisfies the requirement that, for every
t € H,v®(h,t) = h([t]m) = h([t]) =t (by Def. 3.1 and Def. 4.18). The main theorem for
canonical extensions, stated below, verifies that the valuation function v¢ given above
for propositional variables, can be lifted to every formula in L, (P).

Theorem 4.28 For every formula ¢ € L (®) and every H-proper function h € G¢

PRrROOF. The proof is by induction on ¢. The propositional cases are fairly easy and
are omitted. The cases of the modal operators are more complicated. We provide the
proof for the case of ¢ = O¢’, and omit the similar proof for &. The interested reader
can check that our argument closely follows the relevant theorem of M. Fitting in his
original paper [7, Theorem 7.6].

(O, Part 1.) h([0¢]y) < v¢(h, 0¢')
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vh,0y) = T (a7 = ()

_ :ﬁ: (g@(h,h’) = h’([gp’]m)) (by Ind. Hyp.)

- 1 ( (1) = nena) - TT () = w19) = () )

= 11 (T (w0t = i) = ﬁ'([gow) (by 7)

> TL (0 = W) > WD) ) (B [,
- T W (by o)

_ ;/(E[DG;']W) (by Fact 4.17)

(0, Part 2.) v¢(h, 0p) < h([O¢'])
Towards a contradiction, suppose that for a fixed h, € &%, v*(hy, dp’) £ he([O¢]m).
Let T be the following subset of F:

T = {[hy(l4(g)] =+ & z = [ho(mgy(2))] : g,z € F}.

Also let
f = [0 (hy, O¢')] =¢ [¢']on-

Note that v¢(h,, O¢’) is a member of H and thus [v°(h,, O¢’)] is a legitimate constant
function in F. We will first show that ((), T) has the f-f.m.p.: by Lemma 4.26, it suffices
to show that for every finite To C T, [[ To &¢ f. If this was not the case, there would
exist finite subsets {g, ..., g.} and {z,, ..., z,} of F, such that:

T (el =re) - TT (2= Molmg(z))]) <r [0 (ho, 02)] = [

Combining Lemma 4.15[(1),(2),(4),(5)] and Fact 4.17 in one step, we obtain

T (0] =+ la(e))- TT (malz) = Malmg(z))]) < [0 (b, 0] =+ [0 .

Noting that h, is H-proper and homomorphisms are order-preserving, we apply h, to
each part of the inequality, to obtain that

T (ho(le(e)) = holle(e))): [T (ho(mg(z,)) = hy(mg(z,))) < v (b, O¢) = by([O]m).

i=1,....m 7=1,..., n
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Hence,
T < v%(h,, 0¢') = hy([O¢]m)

or equivalently
v* (hy, O¢') < hy([B¢]m)
and we have reached a contradiction.

Now, we can extend ((), T) to a maximal (S, T) with the f-f.m.p., according to Theo-
rem 4.23, and take hg be the f-compatible function corresponding to (S,,, T). We will
combine some facts to reach a contradiction:

oy, 0¢) = T (6°heh) = o (h,e)
he &¢

< g%(hy, hs) = v°(hs,, ¥)
= g°(hy, hs,) = hg ([¢]n) (Ind. Hyp.)

and hence, by H,,
g°(ho, hs,) < v*(hy, By") = hg, ([¢]m)
= by, ([* (b, 09)] = [0 )
= hg(f). (1)
Also,

0°(hohs,) = [T (Be(@) = homg(@)) - TT (bolls(e) = bs, (6))

(1) and (2) imply:

[] be.(t) < b, (F).

teT
Since H is finite, then for a finite T C T we infer that [] hs,(t) = ][] hs,(t), and
teT te Ty
thus J] hs,(t) < hs, (f), which contradicts the fact that hs, is f-compatible w.r.t. T.H

teTo

Embedding an H-model to its canonical extension. The key to this embedding
is of course the set of the point-generated H-proper functions. We report here that,
as in the classical case, by identifying a state s of a frame § with its associated point-
generated function 7, § can be embedded in its canonical extension §¢. Moreover, not
only the accessibility function, but also modal truth remains intact with respect to the
mapping § — ms.
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Theorem 4.29 1. For every s,t in &, g(s,t) = g*(ms, m¢)

2. For everys € G and p € L, v(s,p) = v*(ms, )

Theorem 4.30 Let § = (S, g) be an H-frame, ¢ = (&%, g%) its canonical extension
and X a formula of LY, . Then

§¢ I X implies §1F X.

Remark 4.31 [Algebraic semantics and general frames for mv-ML]. The struc-
ture F of Definition 4.13 is a Heyting Algebra with Operators, the bimodal general-
ization of a full complex algebra. Based on this, it is tempting to try to define an
algebraic semantics for mv-ML. The operators l; and mgy serve for the interpretation of
the modal operators O and <; Lemma 4.15[(4) & (5)] asserts that the operators satisfy
two basic axioms of the proof theory of mv-MLs (cf. [7]) and it is easy to verify that
K. O(A D B) D (OA D OB) is satisfied as well. Everything seems perfect, with a sole
exception: we have to guarantee in this semantics that every ¢ € H is interpreted on [t]
and thus [t] implicitly becomes a part of the similarity type, if our intended ‘algebraic’
semantics are to be well-behaved®. In that way, the encoding of H in L, which provides
a certain amount of flexibility for epistemic applications in Knowledge Representation
(cf. the weak modal axioms in [18]), practically trivializes the most straightforward
attempt to algebraize mv-MLs. However, we have gained a small profit. En route, we
have set the tools for defining a decent notion of a general H-frame. It is obvious now
that such a structure consists of an H-frame, accompanied by a subalgebra of F. An
‘H-model built on a general H-frame will then require that for each P € ®, [Py, is an
element of the subalgebra.

5 Conclusion

In this paper we have developed a part of the model theory of many-valued modal
logics, focusing on the most important frame constructions, and their associated model
versions. There exist several reasons for considering such a project worth pursuing.

An independent mathematical interest: it is natural to develop model-theoretic struc-
tures in a broader context and this usually assists in understanding things better in the
classical case. Moreover, it allows for testing the robustness of techniques and construc-
tions which is an additional indication for their formal value. Many-valued modal logics
provide a good context for developing a unifying modal model theory with a strong
algebraic flavor.

An interesting perspective on model theory: this family of logics embodies an interesting
mix of lattice theory and logic, actually inherited from its semantics which combine
Kripke intuitionistic and modal frames [7]. Thus, setting up the model theory of mv-
MLs imports some sophisticated techniques from algebra, at least if one is willing to

6The footnote in Def. 4.18 is also relevant here.
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accept that Universal Algebra and Lattice theory provide some level of sophistication
in logical investigations. Actually we believe that mv-MLs provide a context in which
the classical Chang & Keisler equation “model theory = universal algebra + logic” [4]
finds a very natural incarnation.

The potential for applications in AI provided by the equivalent multiple-expert seman-
tics. Multi-agent systems research is at a premium nowadays, as emphasis is paid on
situations with complex intelligent entities collaborating in heterogeneous environments.
Applications include distributed systems, formal verification, etc. In that respect, mv-
MLs are useful items in the rich and varying collection of non-classical logics in Al
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