A SEMI-LINEAR GROUP WHICH IS NOT AFFINE

PANTELIS E. ELEFTHERIOU

ABSTRACT. In this short note we provide an example of a semi-linear group G
which does not admit a semi-linear affine embedding; in other words, there is no
semi-linear isomorphism between topological groups f : G — G’ C M™, such
that the group topology on G’ coincides with the subspace topology induced
by M™.

Let M be an o-minimal structure. By “definable” we mean “definable in M”
possibly with parameters. A group G = (G, ®, e.) is said to be definable if both
its domain and its group operation are definable.

By [Pi], we know that every definable group G C M"™ can be equipped with
a unique definable manifold topology that makes it into a topological group. We
refer to this topology as the group topology of G. It is shown in [Pi] that the group
topology of G coincides with the subspace topology induced by M™ on a large
subset V of G (dim(G \ V) < dim(G)). We call G affine if the group topology of
G coincides with the subspace topology on (the whole of) G.

Question. Is every definable group affine (up to definable isomorphism)?

Remark 0.1. (i) An isomorphism between two topological groups is a group iso-
morphism which is also a topological homeomorphism.

(ii) By [ElISt, Remark 2.2], the Question can be restated as follows: Given a
definable group G C M™, is there a definable injective map 7 : G — M™, m € N,
such that the topology on 7(G) induced by the group topology of G via T coincides
with the subspace topology on 7(G) induced by M™? If yes, then such a 7 is called
an affine embedding of G.

The Question admits an affirmative answer in case M expands a real closed
field, by [BO, Proof of Lemma 10.4] and [vdD, Chapter 10, Theorem (1.8)]. In fact,
these references concern affine embeddings of “abstract-definable manifolds”, and
the work in [BO] also yields affine embeddings which are moreover diffeomorphisms.
The original proof of embedding semi-algebraic manifolds was given in [Ro].

We present here an example of a semi-linear group which is not affine. A
semi-linear group is a group definable in an ordered vector space M =
(M, 4+, <,0,{d}4ep) over an ordered division ring D. Semi-linear groups were stud-
ied in [EISt] and [El]. The main property of such an M that we use below is that
every definable function f: A C M™ — M™ is piecewise-linear (PL); that is, there
is a partition of A into finitely many definable sets A;, i = 1,...,k, such that for
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each ¢t = 1,..., k, the following holds: there is an n x m matrix A with entries from
D, and an element a € M™, such that for every z € A;, f(z) = Az + a. The group
we present in our example below is definable in an ordered divisible abelian group
(M, +, <,0), which is naturally an ordered vector space over Q.

For z,y € M, we define:

x <py < Vd e D,dlx| <yl

Example 0.2. Let M = (M, 4+, <,0) be an ordered divisible abelian group with
the following property: there are a,b,c > 0 in M such that b <g ¢ <g a. In
particular, there is no definable function from [0, b) onto [0, ¢), and ¥n € N, nc < a.
Let S = [0,a) x [0,b) and L = Z(a,0) +Z(a—c,b) be the lattice in M? generated
by the elements (a,0) and (a — ¢,b). Define G = (S, @, 0), where
rhy=z2z < xrx+y—ze€lL.

By [EISt, Claim 2.7(ii)], G is definable.

Notation. By lim“ we denote a limit with respect to the group topology of G. A
path is a definable continuous map with respect to the subspace topology, and a
G-path is a definable continuous map with respect to the group topology of G.

Claim. There is no definable injective map 7 : G — M™, m € N, such that the
induced topology on T(G) coincides with the subspace topology.

Proof. Assume, towards a contradiction, that there is such a 7. For every element
t € [0,a), consider the one-to-one G-path

¢¢ : [0,0) — {t} x [0,b), with ¢¢(z) = (¢, ).
By definition of G, we see that for every t € [0,a — ¢, lim$_,, ¢¢(z) = (t + ¢,0).
Therefore, for every t € [0,a — ¢|, 7(¢¢) is a path in M™ with the property:
liH})T((JSt(I‘)) =7((t+¢,0)).

Consider now the image 7 ([0,a — ¢| x {0}). By assumption, it contains an infinite
number of elements of the form T((nc, O)), n € N. Since 7 is piecewise-linear, there
must exist some n € N such that 7 is linear on [nc, (n+1)c) x {0}. Hence the image

T([nc, (n+1)c) x {0}) is in bijection with an interval J C M via some projection

map m; : M™ — M onto one of the m coordinates. Since 7(dne) : [0,0) — M™ is a
path with

T(¢nc(0)) = T((nc7 O)) and i{I})T((ﬁnc(.’L‘)) = T(((n + 1)e, 0)),

the image of T<¢m([0, b))) under 7; covers J. Clearly, then, there is a definable

map from T((bnc([O, b))) onto J, and, therefore, there is a definable map from [0, b)

onto J. It follows that there is a definable map from [0,b) onto [nc, (n+ 1)c), and,
therefore, a definable map from [0, b) onto [0, ¢), a contradiction. O

Note that the group G given in our example is definably compact ([PeS]). If a
definable group G is not definably compact, then by [PeS], G contains a torsion-
free one-dimensional definable subgroup. If in particular G is torsion-free, as well
as semi-linear, then by [EdEl], G is definably isomorphic to (M™,+), where n is
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the dimension of G. That is, a torsion-free semi-linear group admits an affine
embedding.

We conclude with some remarks on the classical literature for real PL-manifolds.
These are abstract-definable manifolds (in the sense of [BO]) definable in
(R, <,+,0,{r}rer). It is well-known that every real PL-manifold of dimension n
admits an affine embedding into R?" (see [ReSk, Theorem 3.1], or [Wh] for the orig-
inal proof). The dimension 2n is the best possible in general, but it can be dropped
under further topological assumptions (see, for example, [PWZ]). On the other
hand, stronger notions of embeddings have also been investigated, such as “isomet-
ric” embeddings. In [BuZal, it is shown that every orientable real PL-manifold of
dimension 2 admits an isometric affine embedding into R3. The generalization of
this statement to manifolds of higher dimension is open. The reader is referred
to [ReSk| for a survey on embeddings of real PL-manifolds, whereas a classical
textbook for piecewise-linear topology over the reals is [RouSa].
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