
PREGEOMETRIES AND IMAGINARIES

PANTELIS E. ELEFTHERIOU

Abstract. We give two alternative proofs of the fact that a modular, surgical
pregeometric theory admits geometric elimination of imaginaries.

1. Introduction

A surgical pregeometric theory T , introduced in [G], generalizes both o-minimal
and strongly minimal theories. In [Pi1] it is shown that if an o-minimal theory
is modular, then weak elimination of imaginaries (w.e.i.) follows. In the strongly
minimal case, it is known that, again under modularity, geometric elimination of
imaginaries (g.e.i.) holds

(
see e.g. [Pi3, Ch.2, Lemma 5.2]

)
. In this paper we prove:

Proposition 1.1. G.e.i. holds for any modular, surgical pregeometric theory.

We show the proposition in two ways, adapting each time the corresponding
argument from the above two cases. Notably, the first way makes no reference to
T eq, whereas the second (and much shorter) one employs a proposition from [G]
that establishes the anti-reflexivity property for dimeq. The result can be seen as a
partial converse to [G, Cor. 3.6], that every pregeometric theory with g.e.i. must
be surgical.

1.1. Structure of the paper. We split Section 2 into four parts. In the first
two, we recall definitions and facts about pregeometric theories and elimination of
imaginaries, that are used in the rest of the paper. In part three, we give equivalent
definitions for elimination of imaginaries that do not refer to Meq, whereas in part
four, we present a dimension in Meq following [G].

We split Section 3 in two parts. In the first, we show Proposition 1.1 using the
results from part three of Section 2, resembling the proof of w.e.i. for modular o-
minimal theories in [Pi1]. In the second, we show Proposition 1.1 based on part four
of Section 2, resembling the proof of g.e.i. for modular strongly minimal theories.

1.2. Notation. M denotes a structure. We only allow finite tuples b̄ ⊂ M . By
convention, for every n ∈ N, there is an empty tuple ∅̄ ∈ Mn that satisfies: a ∈
acl(∅) ⇔ a ∈ acl(∅̄). If b̄, A ⊆ M , we write b̄A for {b̄} ∪A.

Aut(M) denotes the set of automorphisms of M , and for A ⊆ M , AutA(M) :=
{f ∈ Aut(M) : f ¹A= iA}.

We assume familiarity with the construction and basic properties of Meq, as
presented e.g. in [Pi2, Chapter 1]. We omit the bar from tuples in Meq. We often
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abuse notation and use the logical symbols for abbreviations, such as ∃ for ‘there
is’.

2. Pregeometries and imaginaries

2.1. Pregeometric theories.

Definition 2.1. A (finitary) pregeometry is a pair (S, cl), where S is a set and
cl : P (S) → P (S) is a closure operator satisfying, for all A,B ⊆ S and a, b ∈ S:

(i) A ⊆ cl(A)
(ii) A ⊆ B ⇒ cl(A) ⊆ cl(B)
(iii) cl

(
cl(A)

)
= cl(A)

(iv) cl(A) = {cl(B) : B ⊆ A finite}
(v) (Exchange) a ∈ cl(bA) \ cl(A) ⇒ b ∈ cl(aA).

Definition 2.2. IfM is a structure, the algebraic closure operator aclM : P (M) →
P (M) is defined as:

aclM(A) = {a ∈ M : there are b̄ ⊆ A and φ(x, ȳ), |φ(M, b̄)| < ω &M ² φ(a, b̄)},
whereas the definable closure dclM : P (M) → P (M) is defined in the same way by
replacing ω by 2. For simplicity we omit the index M.

A complete theory T is called pregeometric if for every model M ² T , (M, acl)
is a pregeometry.

For a structure M, a subset A ⊆ M with acl(A) = A is called algebraically
closed.

Lemma 2.3. (i) For any structure M, (M, acl) satisfies 2.1(i)-(iv).
(ii) If T is o-minimal or strongly minimal, then T is a pregeometric theory.

Proof. (i) Easy.
(ii) See [Mac, p.102] or [PS] for original proof, and [Hart, p.134], respectively. ¤

Lemma 2.4. The intersection of algebraically closed sets is algebraically closed.

Proof. Let {Ai}i∈I be a collection of algebraically closed sets. We show that
acl(∩Ai) = ∩Ai. By 2.1(i), we get ⊇. On the other hand, ∩Ai ⊆ Ai, and thus by
2.1(ii), acl(∩Ai) ⊆ acl(Ai) = Ai, for all i ∈ I. ¤

For the rest of this paper, T denotes a pregeometric complete theory
and M is a sufficiently saturated model of T . Definability always means
definability in M with parameters.

Definition 2.5. Let A,B,C ⊆ M . We say that B is A-independent if for all b ∈ B,
b 6∈ acl

(
A ∪ (B \ {b})). We say that B is independent from C over A, denoted by

B |̂
A

C, if every finite A-independent subset of B is A ∪ C-independent.
A maximal A-independent subset of B is called a basis for B over A.

We refer to the above notion of independence as algebraic independence, and
denote it by |̂ . It can be verified that |̂ satisfies all properties of an ‘independence
relation’. We are going to make use of the ‘extension’ property:

∀A,B, c̄ ⊂ M, ∃c̄′ |= tp(c̄/A), c̄′ |̂
A

B.
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By the Exchange property in a pregeometric theory, (i) the independence relation
is symmetric, and (ii) any two bases for B over A have the same cardinality. By
(ii) we can define the algebraic dimension:

dim(B/A) = the cardinality of any basis of B over A.

In particular, the dimension of tuples in M satisfies several nice properties, among
which we distinguish the following.

Lemma 2.6. For all b̄, c̄, A,B ⊆ M :
(i) Additivity: dim(b̄c̄/A) = dim(b̄/c̄A) + dim(c̄/A).
(ii) Transitivity: A ⊆ B ⇒ dim(c̄/A) ≥ dim(c̄/B).
(iii) Anti-reflexivity: dim(b̄/A) = 0 ⇒ b̄ ∈ acl(A).

Note, (iii)(⇐) is clearly also true.
Independence and dimension are also related via:

b̄ |̂
A

C ⇔ dim(b̄/C) = dim(b̄/AC).

Definition 2.7. Let p be a partial type over A ⊂ M . Then,

dim(p) := max{dim(c̄/A) : c̄ ⊂ M}.
The dimension of a definable set is then the dimension of its defining formula.

Definition 2.8. T is called modular if for all algebraically closed A, B ⊆ M ,
A |̂

A∩B
B.

2.2. Meq and elimination of imaginaries. Recall the construction of Meq. Its
elements are called imaginaries. The corresponding algebraic (definable) closure
operator is denoted by acleq (dcleq). We will need the following facts.

Fact 2.9. (i) Every definable set X has a code e ∈Meq:

for all f ∈ Aut(M), f(e) = e ⇔ f(X) = X,

which is unique up to interdefinability.
(ii) Every e ∈ Meq is the code for some definable set.
(iii) For every e ∈ Meq, there is b̄ ⊂ M , such that e ∈ dcleq(b̄).
(iv) Every f ∈ Aut(M) extends uniquely to an f̄ ∈ Aut(Meq).

Proof. The proofs can be found in [Pi2]. More precisely in that reference, (i) is on
p.7, (ii) and (iii) are by construction of Meq, and (iv) is Lemma 1.7. ¤

By (iv), we obtain that acleq coincides with acl on M , that is, for every X ⊆ M
and A ⊆ Meq,

acleq(A) ∩X = acl(A) ∩X.

We can thus always write acl for acleq without any confusion. Similarly, we write
dcl for dcleq.

Definition 2.10 (Forms of elimination of imaginaries). We say that M, or T , has:
(i) elimination of imaginaries (e.i.) if ∀e ∈ Meq, ∃c̄ ⊂ M, e ∈ dcl(c̄)& c̄ ∈ dcl(e).
(ii) weak elimination of imaginaries (w.e.i.) if ∀e ∈ Meq, ∃c̄ ⊂ M, e ∈ dcl(c̄)& c̄ ∈

acl(e).
(iii) geometric elimination of imaginaries (g.e.i.) if ∀e ∈ Meq, ∃c̄ ⊂ M, e ∈

acl(c̄) & c̄ ∈ acl(e).
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The intuition behind this definition is that the different forms of elimination of
imaginaries express different powers of ‘coding’ imaginaries in M. Since definable
sets can be coded in Meq, the intuition becomes ‘how well definable sets can be
coded in M’. Since definable sets in M do not seem to require anything from Meq

in their definition, this intuition should be expressible in a ‘Meq-free’ way. Lemma
2.18 below verifies that.

Example 2.11. (i) The theory of an ACF has e.i.
(ii) The theory of the pure set has w.e.i. but not e.i.
(iii) The theory of an equivalence relation with two infinite equivalence classes

has g.e.i. but not w.e.i. (Recall our convention about the existence of an empty
tuple ∅̄ ∈ Mn, for each n ∈ N.)

(iv) The theory of an equivalence relation with infinitely many infinite equiva-
lence classes does not have g.e.i.

It is plausible to ask if all examples where g.e.i. fails have something in common
with (iv) above. This common property is captured in the following definition from
[G], in the sense of Proposition 2.13 below and our Proposition 1.1.

Definition 2.12 (Definition 2.5 in [G]). A pregeometric theory T is called surgical
if for any definable set X and any definable equivalence relation E on X, at most
finitely many E-classes have the same dimension as X.

For example, any o-minimal theory is surgical, [Pi1, Proposition 2.1]. A strongly
minimal theory is surgical, as well. Our Proposition 1.1 can be seen as a partial
converse to:

Proposition 2.13 (Corollary 3.6 in [G]). Any pregeometric theory with g.e.i. must
be surgical.

Recall that a pregeometric theory is called geometric, if for every definable family
of sets, there is a uniform bound on the size of finite fibers. Although being surgical
may seem to be related with being geometric, it is shown via four examples in [G,
p.316] that the two notions are totally independent. However, a connection of a
different kind can be drawn in the following way:

Proposition 2.14 (Proposition 2.6 in [G]). If a surgical theory T is geometric,
then T eq is geometric.

2.3. Equivalent forms of elimination of imaginaries.

Definition 2.15. Let X ⊆ Mn be a definable set. We say that A ⊆ M is a defining
set for X if X is A-definable, or, equivalently, if for all f ∈ AutA(M), f(X) = X.
We say that X is almost over A ⊆ M if there is an A-definable equivalence relation
E on Mn with only finitely many classes such that X is a union of some of the
classes. Equivalently ([Pi2, Lemma 1.5]), X is almost over A if {f(X) : f ∈
AutA(M)} is finite. In this case, we say that A is an almost-defining set for X.

Lemma 2.16. For all f ∈ Aut(M), X (almost) B-definable ⇒f(X) (almost)
f(B)-definable.

Proof. Straightforward. ¤
Lemma 2.17. Let C = acl(C0) ⊆ M , C0 finite, and X ⊆ M definable such that
∀f ∈ Aut(M), f(X) = X ⇒ f(C) = C. Let e ∈ Meq be a code for X. Then,
C ⊆ acl(e).
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Proof. Since C0 is finite, |C| ≤ |T | is bounded (< |M |). Let c ∈ C, p = tpM(c/e)
and p(M) = {bα : α < λ}. By compactness, λ < ω or λ > |T |: indeed, if
not, the type p ∪ {x 6= bα}α<λ should be realized in the |T |+-saturated M, a
contradiction. Now, since C ⊇ {f(c) : f ∈ Aut{e}(M)} = p(M), we see that
{f(c) : f ∈ Aut{e}(M)} is finite, that is, c ∈ acl(e). ¤

The proofs of (ii) and (iii) of the following lemma proceed in absolute analogy,
but we include them both in the interests of completeness. As far as Proposition
1.1 is concerned, only (iii) will be used in Section 3.1.

Lemma 2.18. M has:
(i) e.i. ⇐⇒ for every definable X there is C = dcl(C0) ⊆ M , C0 finite, such

that ∀f ∈ Aut(M), f ∈ AutC(M) ⇔ f(X) = X.
(ii) w.e.i. ⇔ every definable set has a smallest algebraically closed defining set

C = acl(C0) ⊆ M with C0 finite.
(iii) g.e.i. ⇔ every definable set has a smallest algebraically closed almost-

defining set C = acl(C0) ⊆ M with C0 finite.

Proof. (i) (⇒). Assume M has e.i., and let X be a definable set with some code e.
Let c̄ = (c1, . . . , cn) as in Definition 2.10(i), and define C0 := {c1, . . . , cn}.

(⇐). Let e ∈ Meq, and X some definable set with code e. Define c̄ :=
(c1, . . . , cn), where {c1, . . . , cn} = C0.

(ii) (⇒). Assume M has w.e.i., and let X be a definable set with some code
e ∈ Meq and c̄ = (c1, . . . , cn) ∈ Mn such that e ∈ dcl(c̄)& c̄ ∈ acl(e). Let C0 :=
{c1, . . . , cn} and C := acl(C0). We show that C is the smallest algebraically closed
defining set for X. It is a defining set for X, since e ∈ dcl(c̄). For some index set I,
let {Bi}i∈I be the set of all algebraically closed defining sets for X, and B :=

⋂
i∈I

Bi.

It suffices to show that C ⊆ B. By Lemma 2.4, B is algebraically closed, and since
C = acl(C0), it suffices to show that C0 ⊆ B, that is, that C0 ⊆ Bi for all i ∈ I.
Since X is Bi-definable, we have ∀f ∈ AutBi(M), f(X) = X, that is, e ∈ dcl(Bi).
Since c̄ ∈ acl(e), we have c̄ ∈ acl(Bi), and hence C0 ⊆ acl(Bi) = Bi.

(⇐). Let e ∈ Meq, and X ⊆ Mn some definable set with code e. By hypothesis
there is a smallest algebraically closed defining set for X, C = acl(C0), with C0

finite. Then, if we let {Bi}i∈I be all the algebraically closed defining sets for X, it
must be C =

⋂
i∈I

Bi.

Claim. For all f ∈ Aut(M), f(X) = X ⇒ f(C) = C.
Proof. Let f ∈ Aut(M) with f(X) = X. By Lemma 2.16, for all i, X is f(Bi)-
definable, that is, f permutes {Bi}i∈I . On the other hand, since f is one-to-one,

f

( ⋂
i∈I

Bi

)
=

⋂
i∈I

f(Bi). It follows, f(C) = C.

Lemma 2.17 applies, to give C ⊆ acl(e). Now, pick some c̄ ⊆ C such that X is
definable by a formula with parameters c̄. Clearly, e ∈ dcl(c̄), and by the above,
c̄ ∈ acl(e).

(iii) (⇒). Assume M has g.e.i., and let X be a definable set with some code
e ∈ Meq and c̄ = (c1, . . . , cn) ∈ Mn such that e ∈ acl(c̄)& c̄ ∈ acl(e). Let C0 :=
{c1, . . . , cn} and C := acl(C0). We show that C is the smallest algebraically closed
almost-defining set for X. It is an almost-defining set for X, since e ∈ acl(c̄).
Let {Bi}i∈I be the set of all algebraically closed almost-defining sets for X, and
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B :=
⋂
i∈I

Bi. It suffices to show that C ⊆ B. By Lemma 2.4, B is algebraically

closed, and since C = acl(C0), it suffices to show that C0 ⊆ B, that is, that C0 ⊆ Bi

for all i ∈ I. Since X is almost over Bi, we have that {f(X) : f ∈ AutBi
(M)}

is finite, and since e is a code for X, e ∈ acl(Bi). Since c̄ ∈ acl(e), it follows
c̄ ∈ acl(Bi) and hence C0 ⊆ acl(Bi) = Bi.

(⇐). Let e ∈ Meq, and X ⊆ Mn some definable set with code e. By hypothesis
there is a smallest algebraically closed almost-defining set for X, C = acl(C0), with
C0 finite. Then, if we let {Bi}i∈I be all the algebraically closed almost-defining
sets for X, it must be C =

⋂
i∈I

Bi.

Claim. For all f ∈ Aut(M), f(X) = X ⇒ f(C) = C.
Proof. Let f ∈ Aut(M) with f(X) = X. By Lemma 2.16, for all i, X is almost
over f(Bi), that is, f permutes {Bi}i∈I . On the other hand, since f is one-to-one,

f

( ⋂
i∈I

Bi

)
=

⋂
i∈I

f(Bi). It follows, f(C) = C.

Lemma 2.17 applies, to give C ⊆ acl(e). Now, pick some c̄ ⊆ C such that X is
almost over c̄. Clearly, e ∈ acl(c̄), and by the above, c̄ ∈ acl(e). ¤

2.4. Dimension in Meq. It is easy to see that (Meq, acleq) is not always a pre-
geometry. Consider, e.g., Example 2.11(iv), and notice that if a ∈ M belongs to
some class with code e ∈ Meq, then e ∈ acl(a) \ acl(∅) but a 6∈ acl(e).

Therefore, acleq cannot give rise to a meaningful notion of dimension in the
same way that acl did for tuples in M , but it is possible to define a good notion of
dimension in Meq, in the way we describe below. The definition goes back to [HP].

Lemma 2.19 (Lemma 3.1 in [G]). acl satisfies the Exchange property for elements
in M over imaginary parameters, that is: for all ā, b̄ ⊂ M and A ⊂ Meq, ā ∈
acl(b̄A) \ acl(A) ⇒ b̄ ∈ acl(Aā).

It follows that for any two maximal A-independent subtuples of b̄ ⊂ M have the
same cardinality and thus we can again define, for b̄, C ⊆ M and A ⊆ Meq,

dim(b̄/A):= the cardinality of a maximal A-independent subtuple of b̄, and

b̄ |̂
A

C :⇔ dim(b̄/C) = dim(b̄/AC).

Remark 2.20. Lemma 2.6 is still true for A,B ⊆ Meq.

Recall that
(
Fact 2.9(iii)

)
every imaginary tuple e ∈ Meq is definable over M .

Definition 2.21. Let e ∈ Meq and A ⊂ Meq. We let:

dimeq(e/A) = |b̄| − dim(b̄/Ae),

where b̄ is some/any tuple in M which is A-independent and e ∈ acl(Ab̄).

A justification why |b̄| − dim(b̄/Ae) does not depend on the choice of the tuple
b̄ is given in [G, Lemma 3.3]. In [G] it is also shown that in a pregeometric theory
dimeq satisfies additivity and transitivity, whereas more interestingly:

Proposition 2.22 (Proposition 3.5 in [G]). A pregeometric theory is surgical if
and only if for all e ∈ Meq and A ⊆ Meq, dimeq(e/A) = 0 ⇒ e ∈ acl(A).

Easily, dimeq(e/A) = 0 ⇐ e ∈ acl(A) is also true.
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Remark 2.23. Notice that the property in Proposition 2.22 is ‘anti-reflexivity’ but
not in the same sense as in Lemma 2.6, since dimeq(e/A) is not algebraic dimension.

Accordingly, we can define e |̂ eq

A
C :⇔ dimeq(e/C) = dimeq(e/AC), but again,

|̂ eq is not algebraic independence.

One can check that for ā, b̄ ⊂ M and A ⊆ Meq, dimeq(ā/A) = dim(ā/A), and
a |̂ eq

A
C ⇔ a |̂

A
C. We thus omit the index ‘eq’, keeping however in mind the

last remark.

3. Proofs of Proposition 1.1

Let T = Th(M) be a modular, surgical pregeometric theory.

3.1. Imitating [Pi1] - and avoiding Meq. The argument is at times ‘almost’
word-by-word the argument in [Pi1]. Namely, the following lemma corresponds to
[Pi1, Proposition 2.2] and the rest of the proof to [Pi1, Proposition 3.2].

Lemma 3.1. Let A,B, C ⊆ M , with B |̂
A

C. If X ⊆ Mn is almost over B and
almost over C, then it is almost over A.

Proof. Let φ(x̄, ȳ, b̄) be a formula over B and ψ(x̄, ȳ, c̄) a formula over C, defining
the equivalence relations Eφ and Eψ, respectively, such that each of them has
finitely many classes, and X is the union of some of the Eφ-classes, as well as the
union of some of the Eψ-classes.

We assume that c = (c1, . . . , ck), for some {c1, . . . , ck} which is A-independent
(or replace {c1, . . . , ck} by a maximal such subset of it). It is then easy to see
that Eψ is defined by some formula χ(x̄, ȳ, c̄, ā), ā ⊆ A. For w̄ = (w1, . . . , wk) and
z̄ = (z1, . . . , zk), let

E(w̄, z̄) : ∀x̄∀ȳ(
χ(x̄, ȳ, w̄, ā) ↔ χ(x̄, ȳ, z̄, ā)

)
.

Then E defines an equivalence relation on Mk over A.
Furthermore, consider the equivalence relation Eφ ∩Eψ, and pick elements di ∈

X, one in each of the finitely many (Eφ ∩ Eψ)-classes whose union is X. Let d̄ be
a tuple consisting of the di’s. Then, each of

σφ(x̄, d̄, b̄) :=
∨

di∈d̄

φ(x̄, di, b̄)

and
σχ(x̄, d̄, c̄, ā) :=

∨

di∈d̄

χ(x̄, di, c̄, ā)

defines X. For w̄ = (w1, . . . , wk) and z̄ = (z1, . . . , zk), let

E′(w̄, z̄) : ∀x(
σχ(x̄, d̄, w̄, ā) ↔ σχ(x̄, d̄, z̄, ā)

)
.

Then E′ defines an equivalence relation on Mk over Ad̄. Note that E is a refine-
ment of E′. Let Z be the E′-class of c̄. Then Z is the union of some E-classes.

Claim. Z is almost over A.

Proof of Claim. First notice that Z is defined by the formula

∀x̄(
σφ(x̄, d̄, b̄) ↔ σχ(x̄, d̄, z̄, ā)

)
,
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that is, Z is (ABd̄)-definable. Now, (c1, . . . , ck) ∈ Z, and on the other hand,
since {c1, . . . , ck} is A-independent and B |̂

A
C, {c1, . . . , ck} is AB-independent.

Moreover, by the extension property of |̂ , we can replace c̄ by some c̄′ |= tp(c̄/AB)
such that c̄′ |̂

AB
d̄. Then, c̄′ ∈ Z

(
since E(c̄, c̄′)

)
and c̄′ is ABd̄-independent. It

follows that dim(Z) = k.
Since E refines E′, Z is the union of some E-classes. Since T is surgical, only

finitely many classes of E on Mk can have dimension equal to dim(Mk) = k.
Since any f ∈ AutA(M) permutes the classes of E, and preserves their dimension,
{f(Z) : f ∈ AutA(M)} is finite, that is, Z is almost over A. ¤

Let F (w̄, z̄) denote an A-definable equivalence relation on Mk with finitely many
classes, such that Z is the union of some of them. Then the following equivalence
relation witnesses that X is almost over A: for all x̄, ȳ ∈ Mn,

x̄ ∼ ȳ : ∀w̄, z̄
(
F (w̄, z̄) → [χ(x̄, ȳ, z̄) ↔ χ(x̄, ȳ, w̄)]

)
.

¤

Proof of Proposition 1.1. Let X be a definable set and B0 = {b0, . . . , bk} a ∅-
independent set, almost-defining X and with k least possible. We show that
B = acl(B0) is the least algebraically closed almost-defining set for X. Suppose
not. Then for some C = acl(C0), C0 finite, with B 6⊆ C, X is almost over C.
Let A = B ∩ C. Then A is algebraically closed and A  B. By Exchange,
A = acl({a0, . . . , ak′}) for some k′ < k. Since T is modular, B |̂

A
C. By Lemma

3.1, X is almost over A, contradicting the choice of B. ¤

3.2. By analysis in [G].

Lemma 3.2. Let a, b, c ∈ Meq, D ⊆ Meq with b |̂
D

c. If a ∈ acl(b) and a ∈ acl(c),
then a ∈ acl(D).

Proof. We first show that b |̂
D

c implies ba |̂
D

ca. Assume dim(b/D) = dim(b/cD).
We have:

dim(ba/D) =a∈acl(b) dim(b/D) = dim(b/cD) =a∈acl(c) dim(b/caD) = dim(ba/caD).

We now show that ba |̂
D

ca implies dim(a/D) = 0. Assume dim(ba/D) =
dim(ba/caD). We have:

dim(ba/D) = dim(ba/caD) ≤transitivity dim(ba/aD) = dim(b/aD).

On the other hand, by additivity:

dim(ba/D) = dim(b/aD) + dim(a/D).

It follows that dim(a/D) = 0. By Proposition 2.22, a ∈ acl(D). ¤

Proof of Proposition 1.1. Let e ∈ Meq, and b̄ ⊂ M such that e ∈ acl(b̄). By
saturation, there is b̄′ ⊂ M with b̄ |̂

e
b̄′ and tp(b̄/e) = tp(b̄′/e). By modularity,

if X := acl(b̄) ∩ M and Y := acl(b̄′) ∩ M , we have b̄ |̂
X∩Y

b̄′. By Lemma 3.2,
e ∈ acl(X ∩ Y ).

Let d̄ ∈ X ∩ Y such that e ∈ acl(d̄). Since d̄ ∈ acl(b̄), d̄ ∈ acl(b̄′) and b̄ |̂
e
b̄′,

Lemma 2.6 and Remark 2.20 (or simply Lemma 3.2) give that d̄ ∈ acl(e). ¤
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