
LOCAL ANALYSIS FOR SEMI-BOUNDED GROUPS

PANTELIS E. ELEFTHERIOU

Abstract. An o-minimal expansion M = ⟨M,<,+, 0, . . . ⟩ of an ordered
group is called semi-bounded if it does not expand a real closed field. Pos-
sibly, it defines a real closed field with bounded domain I ⊆ M . Let us call a

definable set short if it is in definable bijection with a definable subset of some
In, and long otherwise. Previous work by Edmundo and Peterzil provided
structure theorems for definable sets with respect to the dichotomy ‘bounded
versus unbounded’. In [Pet3], Peterzil conjectured a refined structure theorem

with respect to the dichotomy ‘short versus long’. In this paper, we prove
Peterzil’s conjecture. In particular, we obtain a quantifier elimination result
down to suitable existential formulas in the spirit of [vdD1]. Furthermore, we
introduce a new closure operator that defines a pregeometry and gives rise

to the refined notions of ‘long dimension’ and ‘long-generic’ elements. Those
are in turn used in a local analysis for a semi-bounded group G, yielding the
following result: on a long direction around each long-generic element of G the
group operation is locally isomorphic to ⟨Mk,+⟩.

1. Introduction

For an o-minimal expansion M = ⟨M,<,+, 0, . . . ⟩ of an ordered group, there
are naturally three possibilities: M is either (a) linear, (b) semi-bounded (and
non-linear), or (c) it expands a real closed field. Let us define the first two.

Definition 1.1. Let Λ be the set of all partial ∅-definable endomorphisms of ⟨M,<
,+, 0⟩, and B the collection of all bounded definable sets. Then M is called linear
([LP]) if every definable set is already definable in ⟨M,<,+, 0, {λ}λ∈Λ⟩, and it
is called semi-bounded ([Ed, Pet1]) if every definable set is already definable in
⟨M,<,+, 0, {λ}λ∈Λ, {B}B∈B⟩.

Obviously, if M is linear then it is semi-bounded. By [PeSt], M is not linear if
and only if there is a real closed field defined on some bounded interval. By [Ed],
M is not semi-bounded if and only if M expands a real closed field if and only if
for any two intervals there is a definable bijection between them.

An important example of a semi-bounded non-linear structure is the expansion
of the ordered vector space ⟨R;<,+, 0, x 7→ λx⟩λ∈R by all bounded semialgebraic
sets.

It is largely evident from the literature that among the three cases, (a) and (c)
have provided the most accommodating settings for studying general mathematics.
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For example, the definable sets in a real closed field are the main objects of study
in semialgebraic geometry (a classical reference is [DK]). Moreover, o-minimal
linear topology naturally extends the classical subject of piecewise linear topology
and has the potential to tackle problems that arise in the study of algebraically
closed valued fields (see, for example, [HL]). From an internal aspect, the study
of definable groups in both of these two settings has been rather successful (see
further comments below).

On the other hand, the middle case (b) remains as elusive as interesting from
a classification point of view. Although a local field may be definable, and thus
the definable structure can get quite rich, there is no global field, and hence many
known technics do not apply. In particular, little is known with respect to structure
theorems of definable groups in this setting. In this paper, we set forth a project
of analyzing semi-bounded groups, mainly motivated by two conjectures asked by
Peterzil in [Pet3]. Let us describe our project.

For the rest of the paper, we fix a semi-bounded o-minimal expansion
M = ⟨M,<,+, 0, . . . ⟩ of an ordered group, which is not linear. We fix an
element 1 > 0 such that a real closed field, whose universe is (0, 1) and
whose order agrees with <, is definable in M.

Let L denote the underlying language of M. By ‘definable’ we mean ‘definable
in M’ possibly with parameters. A group G is said to be definable if both its
domain and its group operation are definable. Definable sets and groups in this
setting are also referred to as semi-bounded. If they are defined in the linear reduct
Mlin = ⟨M,<,+, 0, {λ}λ∈Λ⟩ of M, we call them semi-linear. The underlying
language of Mlin is denoted by Llin.

Following [Pet3], an interval I ⊆M is called short if there is a definable bijection
between I and (0, 1); otherwise, it is called long. Equivalently, an interval I ⊆ M
is short if a real closed field whose domain is I is definable. An element a ∈ M is
called short if either a = 0 or (0, |a|) is a short interval; otherwise, it is called tall.
A tuple a ∈Mn is called short if |a| := |a1|+ · · ·+ |an| is short, and tall otherwise.
A definable set X ⊆Mn (or its defining formula) is called short if it is in definable
bijection with a subset of (0, 1)n; otherwise, it is called long. Notice that this is
compatible, for n = 1, with the notion of a short interval.

In [Pet1] and [Ed] the authors proved structure theorems about definable sets
and functions. (See also [Bel] for an analysis of semi-bounded sets in a different con-
text.) The gist of those theorems was that the definable sets can be decomposed into
‘cones’, which are bounded sets ‘stretched’ along some unbounded directions. Con-
jecture 1 from [Pet3] asks if we can replace ‘bounded’ by ‘short’, and ‘unbounded’
by ‘long’, in the definition of a cone and still obtain a structure theorem. We answer
this affirmatively (the precise terminology to be given in Section 2 below).

Theorem 3.8 (Refined Structure Theorem). Every A-definable set X ⊆ Mn is a
finite union of A-definable long cones. (In particular, a short set is a 0-long cone.)
Furthermore, for every A-definable function f : X ⊆ Rn → R, there is a finite
collection C of A-definable long cones, whose union is X and such that f is almost
linear with respect to each long cone in C.

As noted in Remark 3.9 below, it is not always possible to achieve disjoint unions
in our theorem.
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This theorem implies, in particular, a quantifier elimination result down to suit-
able existential formulas in the spirit of [vdD1] (see Corollary 3.10). The proof of
the Refined Structure Theorem involves an induction on the ‘long dimension’ of
definable sets, which is a refinement of the notion of ‘linear dimension’ from [Ed].

We then turn our attention to semi-bounded groups. Groups definable in o-
minimal structures have been a central object of study in model theory. The cli-
max of that study was the work around Pillay’s Conjecture (PC) and Compact
Domination Conjecture (CDC), stated in [Pi3] and [HPP1], respectively. In the
linear case, (PC) was solved in [ElSt] and (CDC) in [El]. The proofs involved a
structure theorem for semi-linear groups from [ElSt] that states that every such
group is a quotient of a suitable convex subgroup of ⟨Mn,+⟩ by a lattice. In the
field case, (PC) was solved in [HPP1] and (CDC) in [HP, HPP2] (see also [Ot]
for an overview of all preceding work). In the case of semi-bounded groups, (PC)
was solved in [Pet3] after developing enough theory to allow the combination of
the linear and the field cases. The (CDC) for semi-bounded groups remains open.
Conjecture 2 from [Pet3] asks if we can prove a structure theorem for semi-bounded
groups in the spirit of [ElSt]. In the second part of this paper, we prove a local
theorem for semi-bounded groups which we see as a first step towards Conjecture
2 from [Pet3].

The proof of the local theorem involves a new notion of a closure operator in
M, the ‘short closure operator’ scl, which makes (M, scl) into a pregeometry. The
rising notion of dimension coincides with the long dimension (Corollary 5.10). This
allows us to make use of desirable properties of ‘long-generic’ elements and ‘long-
large’ sets, by virtue of Claim 5.13 below. The local theorem is the following:

Theorem 6.3 Let G = ⟨G,⊕⟩ be a definable group of long dimension k. Then
every long-generic element a in G is contained in a k-long cone C ⊆ G, such that
for every x, y ∈ C,

x⊖ a⊕ y = x− a+ y.

In particular, on C, G is locally isomorphic to ⟨Mk,+⟩.

We expect that Theorem 6.3 will be the start point in subsequent work for
analyzing semi-bounded groups globally.

Structure of the paper and a few words for the proofs. Section 2 contains basic
definitions and preparatory lemmas about the main objects we are dealing with in
this paper: the set Λ, long cones and long dimension.

Section 3 contains the proof of three main statements: Lemma on Subcones 3.1,
Lemma 3.6(v) on long dimension of unions, and the Refined Structure Theorem
3.8. These statements refine the corresponding ones from [Ed], and so do their
proofs. A new phenomenon, however, is that the relative position of two long cones
can now range over a bigger range of possibilities. This is because long cones are
not necessarily unbounded (which was the case with the cones used in [Ed]). The
Lemma on Subcones, as well as Lemma 2.16 from Section 2, provide two main tools
for controlling this situation.

Some difficulties that are incorporated in handling the long dimension are worked
out in Section 4, and they are the following: although it is fairly easy to see that
a definable set X which is the cartesian product of two definable sets with long
dimensions l and m has long dimension l +m (Lemma 3.6(iv)), it is not a priori
clear why if a definable set X is the union of a definable family of fibers each of
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long dimension m over a set of long dimension n, then X has long dimension n+m.
We establish this in Lemma 4.2.

Section 5 deals with the new pregeometry coming from the ‘short closure oper-
ator’.

In Section 6 we prove the local theorem for semi-bounded groups.

Acknowledgements. I wish to thank M. Edmundo and Y. Peterzil for numerous
discussions that were helpful for this work. Early steps were carried out during my
stay at the Fields Institute in Spring 2009, which I thank for its hospitality. Thanks
also to the anonymous referee for invaluable advice on the exposition of the paper.

2. Basic notions and lemmas

We assume familiarity with the basic notions from o-minimality, such as the
inductive definition of cells either as graphs or ‘cylinders’ of definable continuous
functions, the cell decomposition theorem, dimension, generic elements, definable
closure, etc. The reader may consult [vdD2] or [Pi2] for these notions.

Lemma 2.1. Let f : I → M be a definable function, where I is a long interval.
If f(I) is short, then f is piecewise constant except for a finite collection of short
subintervals of I.

Proof. The function f is piecewise strictly monotone or constant. If it were strictly
monotone on a long subinterval of I, then on that subinterval f would be a definable
bijection between a long interval and a short set. �
Lemma 2.2. Let f : X ⊆Mn →M be a definable function. For every i = 1, . . . , n,
and x̄i := (x1, . . . , xi−1, xi+1, . . . , xn) ∈Mn−1, let

Xx̄i = {xi ∈M : (x1, . . . , xn) ∈ X}
be the fiber of X above x̄i and fx̄i : Xx̄i → M the map fx̄i(xi) = f(x̄). Consider
the set

A = {ā ∈ X : ∀i ∈ {1, . . . , n}, fāi is monotone in an interval containing ai}.
Then dim(X \A) < dim(X).

Proof. We may assume that f and X are ∅-definable. The set A is then also ∅-
definable and it clearly contains every generic element of X. �
2.1. Properties of Λ. The definition of a long cone in the next subsection re-
quires the notion of M -independence for elements of Λn. We define this notion and
elaborate on it sufficiently in this subsection. Let us first fix some of our standard
terminology and notation.

By a partial endomorphism of ⟨M,<,+, 0⟩ we mean a map f : (a, b) → M such
that for every x, y, x+ t, y + t ∈ (a, b),

f(x+ t)− f(x) = f(y + t)− f(y).

As we said in the introduction, Λ denotes the set of all ∅-definable partial endo-
morphisms. A definable function f : A ⊆ Mn → M is called affine on A if it has
form

f(x1, . . . , xn) = λ1x1 + · · ·+ λnxn + a,

for some fixed λi ∈ Λ and a ∈M . For every i = 1, . . . , n, we denote by

ei = (0, . . . , 0, 1, 0, . . . , 0)



LOCAL ANALYSIS FOR SEMI-BOUNDED GROUPS 5

the standard i-th unit vector from Λn, where 1 :M →M is the identity map. For
v ∈ Λ, we denote by dom(v) and ran(v) the domain and range of v, respectively.
We write vt for v(t). Following [Pet3], we consider the equivalence relation ∼ on Λ
where two λ, µ ∈ Λ are said to be ∼-equivalent if there is ϵ > 0, a ∈ dom(λ) and
b ∈ dom(µ), such that the restrictions of the maps λ(a+x)−λ(a) and µ(b+x)−µ(b)
on (−ϵ, ϵ) are the same. (That is, those last maps have the same germ at 0). It
is observed in [Pet3, Section 6], that Λ modulo ∼ can be given the structure of an
ordered field with multiplication given by composition. This implies in particular
that

(1) for every λ, µ ∈ Λ and x ∈ dom(λµ) ∩ dom(µλ), λµ(x) = µλ(x).

We also recall from [LP, Proposition 4.1] that

if two partial endomorphisms agree at some non-zero point of their(2)

domain then they agree at any other point of their common domain.

It is a standard practice in this paper that whenever we write an expression of
the form ‘vt’, with v ∈ Λ and t ∈ M , we mean in particular that t ∈ dom(v).
Sometimes, however, we say explicitly that t ∈ dom(v). For a matrix A = (aij)

with entries from Λ, the rank of A is the rank of the matrix A = (āij), where āij
is the ∼-equivalence class of aij . It is then a routine to check, using notes (1) and
(2) above, that various classical results from linear algebra hold for matrices with
entries from Λ. For example, a n × n linear system with coefficients from Λ has a
unique solution if and only if the coefficient matrix has rank n. We freely use such
results in this paper.

We now proceed to the notion of M -independence.

Definition 2.3. If v = (v1, . . . , vn) ∈ Λn and t ∈M , we denote vt := (v1t, . . . , vnt)
and dom(v) := ∩ni=1dom(vi). We say that v1, . . . , vk ∈ Λn are M -independent if for
all t1, . . . , tk ∈M with ti ∈ dom(vi),

v1t1 + · · ·+ vktk = 0 implies t1 = · · · = tk = 0.

If v = (v1, . . . , vn) ∈ Λn and µ ∈ Λ, we denote µv := (µv1, . . . , µvn). We say that
v1, . . . , vk ∈ Λn are Λ-independent if for all µ1, . . . , µk in Λ, with ran(vi) ⊆ dom(µi),

µ1v1 + · · ·+ µkvk = 0 implies µ1 = · · · = µk = 0.

The proofs of the following two lemmas are straightforward computations but
we include them anyway for completeness.

Lemma 2.4. For v1, . . . , vl ∈ Λn with common domain (−a, a) ⊆M , the following
are equivalent:

(i) v1, . . . , vl are M -independent
(ii) v1, . . . , vl are Λ-independent
(iii) the set

H = {v1t1 + · · ·+ vltl : −a < ti < a}
has dimension l. (This was called ‘open l-parallelogram’ in [ElSt].)

Proof. (i)⇒(ii). This is essentially a straightforward application of (1) and (2)
above, but we include the complete proof in the interests of completeness. If
v1, . . . , vl are Λ-dependent, then there are µ1, . . . µl ∈ Λ with ran(vi) ⊆ dom(µi),
not all 0, such that µ1v1 + · · · + µlvl = 0. In particular, the domain of each µi
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contains some interval containing 0 (because so does the range of vi). So we can
restrict µi so that its range contains that interval and is contained in the domain
of vi.

We claim that for any t ̸= 0 in the domain of all µi’s, we have v1(µ1t) + · · · +
vl(µlt) = 0, which will show that the vi’s are M -dependent. To prove the claim
we will need to use commutativity between elements of Λ. We argue how this is
precisely done.

By restricting µi even more, we can assume that the domain of µi is also con-
tained in the domain of vi. Let us call that new restriction µ′

i. We want to argue
that for some t ̸= 0 in the domain of µ′

i, we have

(3) viµ
′
i(t) = µivi(t),

where now all arguments make sense.
If we look at the germs of µi and µ

′
i, they are the same. Hence the germs of the

maps viµ
′
i and µivi are also the same. Hence the maps viµ

′
i and µivi are equal at

any t that lies in both of their domains, by (2) above. This finishes the proof of
(3).

We conclude that there is t ̸= 0 so that

v1(µ
′
1t) + · · ·+ vl(µ

′
lt) = (µ1v1 + · · ·+ µlvl)(t) = 0.

(ii)⇒(iii). Since vi =

(
v1i
...
vni

)
, i = 1, . . . , l, are Λ-independent, the matrix

A =

v
1
1 . . . v1l
... · · ·

...
vn1 . . . vnl


has rank l. Clearly, it is enough to prove that:

the map f : (−a, a)l →Mn with x 7→ Ax is injective and onto H.

This claim can be proved by induction on n. For the base step, if A is 1×1 matrix,
we observe that if λ is not the zero endomorphism, then it must be non-zero at any
non-zero point, by (2). So the kernel is 0.

The inductive step is a straightforward argument, which we omit.
(iii)⇒(ii). This is an easy adaptation of the proof of [El, Corollary 2.5]. �

Lemma 2.5. Let v1, . . . , vl ∈ Λn be Λ-independent with ∩li=1dom(vi) ̸= ∅ and
denote by π : Λn → Λn−1 the usual projection. The following are equivalent:

(i) There are λ1, . . . , λn−1 ∈ Λ, such that for all t1, . . . , tl ∈M with ti ∈ dom(vi),
v1t1 + · · ·+ vltl has form:

v1t1 + · · ·+ vltl = (a1, . . . , an−1, λ1a1 + · · ·+ λn−1an−1).

(ii) π(v1), . . . , π(vl) are Λ-independent.

Proof. (i)⇒(ii). The assertion from (i) says that the last coordinate of v1t1+· · ·+vltl
is a function of the first n − 1 coordinates. Therefore the projections under π
of any two distinct elements from the set {v1t1 + · · · + vltl : ti ∈ dom(vi)} are
distinct. We claim that the projections π(v1), . . . , π(vl) are Λ-independent. Indeed,
if they are not, then one of them, say π(vl), can be written as linear combination
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µ1π(v1) + · · ·+ µl−1π(vl−1). But then, for any a ∈ ∩li=1dom(vi), the elements vla
and (µ1v1 + · · ·+ µl−1vl−1)a would have the same projection, a contradiction.

(ii)⇒(i). We need to compute the λi’s and ai’s. Assume vi = (v1i , . . . , v
n
i ). Since

π(v1), . . . , π(vl) are Λ-independent, the system

vn1 = λ1v
1
1 + · · ·+ λn−1v

n−1
1

...

vnl = λ1v
1
l + · · ·+ λn−1v

n−1
l

has a unique solution for λ1, . . . , λn−1. The above equations imply that

vn1 t1 + · · ·+ vnl tl = λ1(v
1
1t1 + · · ·+ v1l tl) + · · ·+ λn−1(v

n−1
1 t1 + · · ·+ vn−1

l tl)

and, hence,

v1t1 + · · ·+ vltl = (a1, . . . , an−1, λ1a1 + · · ·+ λn−1an−1).

where ai = vi1t1 + · · ·+ vil tl, for i = 1, . . . , n− 1. �

Here is another lemma.

Lemma 2.6. Let v1, . . . , vl ∈ Λn beM -independent. Then, for every t1, . . . , tl ∈M
with ti ∈ dom(vi),

v1t1 + · · ·+ vltl is short ⇒ t1, . . . , tl are short.

Proof. Since vi =

(
v1i
...
vni

)
, i = 1, . . . , l, are Λ-independent, the matrix

A =

v
1
1 . . . v1l
... · · ·

...
vn1 . . . vnl


has rank l. Let B be an l × l submatrix of A of rank l. Then B

(
t1
...
tl

)
=

(
s1
...
sl

)
,

for some short s1, . . . , sl ∈M . Hence

(
t1
...
tl

)
= B−1

(
s1
...
sl

)
and each row of the last

matrix consists of a short element. �

The following two lemmas will be used in the proof of the Lemma on Subcones
3.1 below.

Lemma 2.7. Let w, v1, . . . , vm ∈ Λn, with dom(w) = (0, a) and dom(vi) = (−ai, ai),
for some positive a, ai ∈M . Assume that

wt = v1t1 + · · ·+ vmtm

for some t, t1, . . . , tm ∈ M , with t ∈ dom(w) and ti ∈ dom(vi). Then for every
s ∈ dom(w) with s < t, there are s1, . . . , sm ∈M with |si| < |ti| such that

ws = vs1 + · · ·+ vmsm.

Moreover, si has the same sign as ti.
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Proof. This follows from [ElSt, Lemma 3.4], whose proof used only the fact that
M is an o-minimal expansion of an ordered group. Indeed, since s < t, then by
convexity of the set A = {v1x1+· · ·+vmxm : xi ∈ dom(vi)} and the aforementioned
lemma, ws ∈ A. �

Lemma 2.8. Let w1, . . . , wn ∈ Λn be M -independent and λ1, . . . , λn ∈ Λn. Let
t1, . . . , tn ∈M be non-zero elements. Assume that:

w1t1 = λ1s
1
1 + · · ·+ λns

n
1

...

wntn = λ1s
1
n + · · ·+ λns

n
n

for some sji ∈M . Then there non-zero a1, . . . , an ∈M and bji ∈M , i, j = 1, . . . , n,
such that:

λ1a1 = w1b
1
1 + · · ·+ wnb

n
1

...

λnan = w1b
1
n + · · ·+ wnb

n
n

Proof. In the Appendix. �

2.2. Long cones. Here we refine the notion of a ‘cone’ from [Ed].

Definition 2.9. Let k ∈ N. A k-long cone C ⊆Mn is a definable set of the form{
b+

k∑
i=1

viti : b ∈ B, ti ∈ Ji

}
,

where B ⊆ Mn is a short cell, v1, . . . , vk ∈ Λn are M -independent and J1, . . . , Jk
are long intervals each of the form (0, ai), ai ∈M>0 ∪ {∞}, with Ji ⊆ dom(vi). So
a 0-long cone is just a short cell. A long cone is a k-long cone, for some k ∈ N. We
say that the long cone C is normalized if for each x ∈ C there are unique b ∈ B

and t1 ∈ J1, . . . , tk ∈ Jk such that x = b+
∑k
i=1 viti. In this case, we write:

C = B +
k∑
i=1

viti|Ji.

In what follows, all long cones are assumed to be normalized, and we thus drop the
word ‘normalized’. We also often refer to v̄ = (v1, . . . , vk) ∈ Λkn as the direction
of the long cone C. If we want to distinguish some vj , say vk, from the rest of the
vi’s, we write:

C = B +
k−1∑
i=1

viti|Ji + vk|Jk.

By a subcone of C we simply mean a long cone contained in C.

Remark 2.10. By Lemma 2.4, a (normalized) k-long cone C = B+
∑k
i=1 viti|Ji has

dimension k if and only if B is finite. In fact, dim(C) = dim(B) + k.

Definition 2.11. Let C = B +
∑k
i=1 viti|Ji be a k-long cone and f : C → M a

definable continuous function. We say that f is almost linear with respect to C if
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there are µ1, . . . , µk ∈ Λ and an extension f̃ of f to {b +
∑k
i=1 viti : b ∈ B, ti ∈

{0} ∪ Ji}, such that

(4) ∀b ∈ B, t1 ∈ {0} ∪ J1, . . . , tk ∈ {0} ∪ Jk, f̃

(
b+

k∑
i=1

viti

)
= f̃(b) +

k∑
i=1

µiti.

Remark 2.12. Let C = B +
∑k
i=1 viti|Ji be a k-long cone.

(i) If f : C →M is almost linear with respect to C, then, since C is normalized,

the µ1, . . . , µk and f̃ as above are unique. In particular, f̃ is continuous. For this
reason, we often abuse notation and write f for f̃ . Indeed, we simply denote (4) by

f

(
b+

k∑
i=1

viti

)
= f(b) +

k∑
i=1

µiti.

(ii) If B = {b} and f : C → M is a definable function, then f is almost linear
with respect to C if and only if f is affine on C. More generally, f is almost linear

with respect to B +
∑k
i=1 viti|Ji if and only if there are µ1, . . . , µk ∈ Λ such that

for every b ∈ B and si, si + ti ∈ Ji, we have

f

(
b+

k∑
i=1

vi(si − ti)

)
− f

(
b+

k∑
i=1

visi

)
=

k∑
i=1

µiti.

(iii) If f : C →M is almost linear with respect to C, then the graph of f is also
k-long cone, with the short cell being {(b, f(b)) : b ∈ B}:

Graph(f) =

{
(b, f(b)) +

k∑
i=1

(vi, µi)ti : b ∈ B, t ∈ Ji

}
,

(iv) Let j ∈ {1, . . . , k} and assume Jj = (0, aj) with aj ∈M . Then

C = B + vjaj +
k∑
i=1

v′iti|Ji,

where v′j = −vj and for i ̸= j, v′i = vi. Indeed, if x = b +
∑k
i=1 viti is in C, then

for sj = aj − tj ∈ Jj we have x = b+ vjaj − vjsj +
∑
i ̸=j viti.

If, moreover, f : C →M is almost linear with respect to C and of the form

f

(
b+

k∑
i=1

viti

)
= f(b) +

k∑
i=1

µiti,

then

f

(
b+ vjaj +

k∑
i=1

v′iti

)
= f(b+ vjaj) +

k∑
i=1

µ′
iti,

where µ′
j = −µj and for i ̸= j, µ′

i = µi.

Corollary 2.13. If D = b +
∑l
i=1 viti|Ji ⊆ Mn is an l-long cone, then some

projection π :Mn →M l, restricted to D, is a bijection onto an l-long cone.

Proof. By Lemmas 2.4 and 2.5. �
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Notation. If J = (0, a), we denote ±J := (−a, a). Let C = B +
∑m
i=1 viti|Ji be an

m-long cone. We set:

⟨C⟩ :=

{
m∑
i=1

viti : ti ∈ ±Ji

}
.

Corollary 2.14. Let C = b +
∑k
i=1 viti|Ji be a k-long cone. Let λ ∈ Λk be such

that for some positive t ∈ M , λt ∈ ⟨C⟩. Then there is a tall b ∈ M such that
λb ∈ ⟨C⟩.

Proof. Fix i. Let a = sup{x ∈ M : λx ∈ ⟨C⟩}. It is easy to see that a =
v1t1 + · · · + vktk, with at least one of t1, . . . , tk, say ti, equal to ±|Ji|. Hence, by
Lemma 2.6, a is tall. Take b = 1

2a (since a is not in ⟨C⟩). �

2.3. Long dimension. Here we refine the notion of ‘linear dimension’ from [Ed].

Definition 2.15. Let Z ⊆ Mn be a definable set. Then the long dimension of Z
is defined to be

lgdim(Z) = max{k : Z contains a k-long cone}.

Equivalently, the long dimension of Z is the maximum k such that Z contains a
definable homeomorphic image of Jk, for some long interval J . Indeed, this follows
from the proof of Lemma 2.4, (ii)⇒(iii).

Some main properties of long dimension will be proved in Section 3.2 below, after
proving the Lemma on Subcones in Section 3.1. For the moment, we state a lemma
which says that given a cone we can always find subcones of suitable direction. An
analogous statement fails in the context of [Ed], where all cones were unbounded.

Lemma 2.16. Let C = b+
∑k
i=1 viti|Ji be a k-long cone. Let w1, . . . , wk ∈ Λn be

M -independent such that for every i, there is a positive si ∈M , wisi ∈ ⟨C⟩. Then

there is a k-long subcone C ′ ⊆ C of the form C ′ = c +
∑k
i=1 witi|(0, κi), for some

tall κi ∈M .

Proof. By Corollary 2.14, we may assume that each si is tall. Assume Ji = (0, ai).

Let c = b +
∑k
i=1

1
2viai and for each i, let κi =

1
2k |si|. Using Lemma 2.7, one can

easily check that C ′ = c+
∑k
i=1 witi|(0, κi) ⊆ C. �

The following lemma will be used in the proof of the Refined Structure Theorem.

Lemma 2.17. Let X = (f, g)π(X) be a cylinder inMn+1 such that π(X) is a k-long
cone and f and g are almost linear with respect to π(X). If there is an x ∈ π(X)
such that π−1(x) is long, then lgdim(X) = k + 1.

Proof. If k = 0, then there is an 1-long cone π−1(x) ⊆ X. Now assume k > 0 and
that for some x ∈ π(X), π−1(x) =

(
f(x), g(x)

)
is long. Since f, g are almost linear

on π(X), there is clearly a k-long cone Cx = x+
∑k
i=1 viti|(0, ai) ⊆ π(X) such that

for each element y ∈ Cx, g(y)−f(y) must be tall. Let α = inf{g(y)−f(y) : y ∈ Cx}.
Since f is affine,

∀t1 ∈ J1, . . . , tk ∈ Jk, f

(
x+

k∑
i=1

viti

)
= f(x) +

k∑
i=1

µiti,
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for some µ1, . . . , µk ∈ Λn. Then clearly the (k + 1)-long cone

(
x, f(x)

)
+

k∑
i=1

(vi, µi)ti|Ji + en+1tk+1|(0, α)

is contained in X. �

3. Structure Theorem for semi-bounded sets

In this section we prove the main results for semi-bounded sets.

3.1. Generalizing the Lemma on Subcones [Ed, Lemma 3.4]. The Lemma
on Subcones can be viewed as a kind of converse to Lemma 2.16. Recall from
Section 2 that if C = B +

∑m
i=1 viti|Ji is an m-long cone, we denote ⟨C⟩ =

{
∑m
i=1 viti : ti ∈ ±Ji}.

Lemma 3.1 (Lemma on subcones). If C ′ = B′ +
∑m′

i=1 witi|J ′
i and C = B +∑m

i=1 viti|Ji are two long cones such that C ′ ⊆ C ⊆ Mn, then ⟨C ′⟩ ⊆ ⟨C⟩ (and
hence m′ ≤ m).

Proof. Clearly, we may assume that B′ is a singleton. Moreover, we can translate

both C ′ and C, so that C ′ gets the form C ′ =
∑m′

i=1 witi|J ′
i . Let j ∈ {1, . . . ,m′},

and denote for convenience J := J ′
j . Then ∀u ∈ J,wju ∈ C ′ ⊆ C, so there

exist a unique b ∈ B and, for each i ∈ {1, . . . ,m}, a unique ti ∈ Ji such that
wju = b+

∑m
i=1 viti. This yields the following definable functions:

• β : J → B, with u 7→ β(u)
• for each i ∈ {1, . . . ,m}, τi : J → Ji, with u 7→ τi(u),

where

wju = β(u) +
m∑
i=1

vi(τi(u)).

By Lemma 2.1 and o-minimality, there are long subintervals I1, . . . Il ⊆ J such that
J \ (I1 ∪ · · · ∪ Il) is short and on each of them β(u) is constant. Let I = (p, q) be an
interval with maximum length among the Ii’s, and assume that on I the map β(u)
is equal to b. Now let u1 < u2 in I, with u1 close enough to p and u2 close enough
to q, so that, if u := u2 − u1, then for some k ∈ N, J ⊆ (0, ku) (this is possible by
the choice of I). We have:

wju = wj(u2 − u1) =
m∑
i=1

vi(τi(u2)− τi(u1)).

If we denote ti = τi(u2)− τi(u1), then

(5) wju =
m∑
i=1

viti.

Hence the condition of Lemma 2.7 is satisfied for w = wj .
Now pick any t ∈ J . We have to show that wjt ∈ ⟨C⟩. We split two cases.
CASE I. t ≤ u. By Lemma 2.7, we have wjt =

∑m
i=1 visi, for some 0 < |si| ≤ |ti|,

and we are done.
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CASE II. t > u. By the choice of u, there is k ∈ N, so that t − u < ku. Hence,
by Lemma 2.7 again, we have 1

kwj(t− u) =
∑m
i=1 visi, for some 0 < |si| ≤ |ti|, and

si having the same sign as ti. Equivalently,

(6) wj(t− u) =
m∑
i=1

viksi.

By (5) and (6), we obtain

(7) wjt =

m∑
i=1

vi(ti + ksi),

so it remains to show that −ai < ti + ksi < ai, where Ji = (0, ai). We split two
subcases:

SUBCASE II(a). ti > 0. We observe that, since C ′ ⊆ C, we have

wjt = b′ +

m∑
i=1

viri,

for some ri ∈ Ji and b
′ ∈ B. Together with (7),

m∑
i=1

vi(ti + ksi) = b′ +
m∑
i=1

viri.

If ti + ksi > ri, then we would have b′ =
∑m
i=1 vizi, for some positive zi < ti + ksi.

By (7), this would imply that b′ = wjs for some 0 < s < t. In particular, b′ ∈ C ′,
a contradiction. So 0 < ti + ksi ≤ ri < ai, as required.

SUBCASE II(b). ti < 0. Then also si < 0. Since 0 ∈ C ′, we have

0 = b′ +

m∑
i=1

viri,

for some ri ∈ Ji and b
′ ∈ B. Together with (7),

wjt = b′ +
m∑
i=1

vi(ri + ti + ksi).

Hence, 0 < ri + ti + ksi and, therefore, −ai < −ri < ti + ksi < 0 < ai, as required.
Finally, the fact that m′ ≤ m is now a consequence of Lemma 2.4. �

Remark 3.2. Observe that it is not always possible to get wjt ∈ ⟨C⟩>0 := {
∑m
i=1 viti : ti ∈ Ji},

as in the corresponding conclusion of [Ed, Lemma 3.4].

We can now characterize exactly the subcones of a given long cone C.

Corollary 3.3. The subcones of a long cone C are exactly those cones whose
direction v̄ = (v1, . . . , vk) satisfies the following property: for every i = 1, . . . , k,
there is a positive s ∈M , such that vis ∈ ⟨C⟩.

Proof. By Corollary 2.16 and Lemma on Subcones. �

Lemma 3.4. Let C ′ = B′+
∑k′

i=1 v
′
iti|J ′

i ⊆ C = B+
∑k
i=1 viti|Ji be two long cones

and f : C →M a definable function which is almost linear with respect to C. Then
f is almost linear with respect to C ′.
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Proof. By the Lemma on Subcones, for each i = 1, . . . , k′ and t ∈ J ′
i , we have

v′it ∈ ⟨C⟩. It is then an easy exercise to check that f is affine in each v′i, uniformly
on b′ ∈ B′; that is, there are µ1, . . . , µk′ ∈ Λ such that for every b′ ∈ B′ and
si, si + ti ∈ J ′

i , we have

f

(
b′ +

k∑
i=1

vi(si − ti)

)
− f

(
b+

k∑
i=1

visi

)
=

k∑
i=1

µiti.

This exactly means (Remark 2.12(ii)) that f is almost linear with respect to C ′. �

Corollary 3.5. Let C ⊆ C ′ be two k-long cones and let v̄ be the direction of C ′.
Then there is a k-long cone of direction v̄ contained in C.

Proof. By the Lemma on Subcones, Lemma 2.8 and Corollary 2.14. �

3.2. Properties of long dimension.

Lemma 3.6. Let X,Y,X1, . . . , Xk be definable sets. Then:

(i) lgdim(X) ≤ dim(X).
(ii) X ⊆ Y ⊆Mn ⇒ lgdim(X) ≤ lgdim(Y ) ≤ n.
(iii) If C is a n-long cone, then lgdim(C) = n.
(iv) lgdim(X × Y ) = lgdim(X) + lgdim(Y ).
(v) lgdim(X1 ∪ · · · ∪Xk) = max{lgdim(X1), . . . , lgdim(Xk)}.

Proof. (i) is by Lemma 2.4, and (ii) is clear. Item (iii) follows from the Lemma on
Subcones 3.1. The proof of (iv) is word-by-word the same with the proof of [EdEl,
Fact 2.2(3)] after replacing ‘ldim’ by ‘lgdim’ and the notion of a cone by that of a
long cone we have here.

For (v), we prove by parallel induction on n ≥ 1 the following two statements.

(1)n For all definable X1, X2 such that lgdim(X1 ∪X2) = n, either lgdim(X1) = n
or lgdim(X2) = n.

(2)n Let C ⊆Mn be an n-long cone. For any definable set X ⊆ C with dim(X) ≤
n− 1 we have lgdim(C \X) = n.

Statement (v) then clearly follows from (1)n by induction on k.

STEP I: (2)1 follows from [Pet3, Lemma 3.4(2)].

STEP II: (1)n−1 and (2)l for l ≤ n− 1 imply (2)n, for n ≥ 2. Assume (1)n−1 and
(2)l for all l ≤ n− 1. We perform a sub-induction on dim(X). Observe that after
some suitable linear transformation we may assume that C has form

C =

n∑
i=1

eiti|Ji,

where the ei’s are the standard basis vectors.
If dim(X) = 0, then X is finite and, without loss of generality, we may assume

that X contains only one point a. Then it is easy to see that C \ {a} contains 2n

disjoint long cones of the form a+
∑n
i=1 eiti|J ′

i such that, for at least one of them,
all J ′

i ’s are long.
Suppose the result holds for all X with dim(X) ≤ l < n − 1, and assume now

that dim(X) = l + 1. If l + 1 < n − 1, then dim(π(X)) ≤ n − 2 and by (2)n−1,
lgdim(π(C) \ π(X)) = n− 1, which implies that lgdim(C \X) = n, by (iv).
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So now assume that dim(X) = n − 1. By cell decomposition and by the Sub-
Inductive Hypothesis, we may assume that X is a finite union of cells X1, . . . , Xk,
each of dimension n− 1. We perform a second sub-induction on k.

Base Step: suppose k = 1. IfX1 is not the graph of a function or lgdim(X1) < n−1,
then by (2)n−1 or (1)n−1, respectively, we have lgdim(π(C)\π(X1)) = n−1, which
implies lgdim(C \X1) = n, by (iv). Thus it remains to examine the case where X1

is the graph of a function f : π(X1) → M and lgdim(X1) = n − 1. In this case,
lgdim(π(X1)) = lgdim(X1) = n− 1, where the first equality is by Lemma 2.5. Let
D ⊆ π(X1) be a (n− 1)-long cone. Let

A = {ā ∈ D : ∀i ∈ {1, . . . , n− 1}, fāi is monotone around ai}.
according to the notation of Lemma 2.2. By that lemma,

dim(D \A) < dim(D) = n− 1.

Hence, by (2)n−1, A contains an (n− 1)-long cone E, and by Lemma 2.16, we may

assume that E = b +
∑n−1
i=1 eiti|(0, κ), for some tall κ. Let ā = b +

∑n−1
i=1 ei

1
2κ.

Since f is continuous on E, each fx̄i is monotone on its domain (0, κ). Without loss
of generality, we may assume that ∀i ∈ {1, . . . , n − 1}, fx̄i is increasing on (0, κ).
We split into two cases:

Case 1: f(ā) is short. Then the n-long cone

E1 = (b, f(ā)) +
n−1∑
i=1

eiti|(0, κ/2) + entn|Jn/2

is contained in X1.
Case 2: f(ā) is tall. Then the n-long cone

E2 = (ā, 0) +
n−1∑
i=1

eiti|(0, κ/2) + entn|Jn/2

is contained in X1. This completes the case k = 1.

Inductive Step: suppose the result holds for any X which is a union of less than k
cells of dimension n−1, and assume now that X is the union of the cells X1, . . . , Xk,
each of dimension n − 1. By Second Sub-Inductive Hypothesis, there is an n-long
cone F contained in C \ (X1 ∪ · · · ∪ Xk−1). Now, we reduce to the Base Step
for C equal to F and X1 equal to Xk. This completes the proof of the second
sub-induction, as well as that of Step II of the original induction.

STEP III: (2)n ⇒(1)n. Without loss of generality, we may assume that X1 and X2

are disjoint. Since lgdim(X1 ∪ X2) = n, we may also assume that X1 ∪ X2 is an
n-long cone C of dimension n. If X = bd(X1) ∪ bd(X2), then dim(X) ≤ n− 1. By
(2)n, we conclude that either X1 or X2 contains an n-long cone. �

The following corollary will not be used until Section 6.

Corollary 3.7. Let X ⊆Mn be a definable set of long dimension k. If C ⊆ X×X
is a 2k-long cone, then there are k-long cones C1, C2 ⊆ X, such that C1 ×C2 ⊆ C.

Proof. We may assume that C = b +
∑2k
i=1 viti|Ji. Let π : M2n → M2k be the

projection given by Corollary 2.13, whose restriction π�C is a bijection onto the
2k-long cone π(C). Moreover, as it can easily be checked, its inverse (π�C)−1 can
be written as π�C = (f1, . . . , f2n) for some affine maps fj :M

2k →M . By Remark
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2.12(ii) and (iii), the graph of π−1
�C on a k-long cone contained in π(C) is a k-long

cone, contained in C.
Now let p1 : M2k → Mk and p2 : M2k → Mk be the suitable projections, so

that π(C) ⊆ p1π(C) × p2π(C). Since π(C) has long dimension k, by the Lemma
on Subcones and 3.6(iv), each of p1π(C) and p2π(C) must have long dimension k.
In particular, for each i = 1, . . . , 2k, there is t > 0 with eit ∈ ⟨π(C)⟩. By Lemma
2.16, π(C) contains a 2k-long cone

C ′ = (b1, b2) +
2k∑
i=1

eiti|(0, a).

The k-long cones

C ′
1 = b1 +

k∑
i=1

eiti|(0, a) and C ′
2 = b2 +

2k∑
i=k

eiti|(0, a)

are clearly contained in p1π(C) and p2π(C), respectively. By the first paragraph of
this proof, the set

D = π−1
�C (C ′)

is a 2k-long cone contained in C, and each of

D1 = π−1
�C (C ′

1 × {b2}) and D2 = π−1
�C ({b1} × C ′

2)

is a k-long subcone of D. If we take the projection C1 of D1 onto the first n
coordinates, and the projection C2 of D2 onto the last n coordinates, then both C1

and C2 are k-long cones, contained in X, such that

C1 × C2 = D ⊆ C,

as desired. �
3.3. The Refined Structure Theorem. We are now in a position to prove the
first main result of this paper. For a given a definable function f : A ×M → M ,
with A ⊆Mn, let us denote

∆tf(a, x) := f(a, x+ t)− f(a, x),

for all x, t ∈M and a ∈ A.

Theorem 3.8. (Refined Structure Theorem). Let X ⊆ Mn be an A-definable set.
Then

(i) X is a finite union of A-definable long cones.
(ii) If X is the graph of an A-definable function f : Y → M , for some Y ⊆

Mn−1, then there is a finite collection C of A-definable long cones, whose union is
Y and such that f is almost linear with respect to each long cone in C.

Proof. By cell decomposition we may assume that X is an A-definable cell. We
prove (i) and (ii), along with (iii) below, by induction on ⟨n, lgdim(X)⟩.

(iii) In the notation from (ii), Y contains an A-definable lgdim(Y )-long cone
such that f is almost linear with respect to it.

If n = 1, then (i), (ii) and (iii) are clear. Assume the Inductive Hypothesis (IH):
(i), (ii) and (iii) hold for {⟨n, k⟩}k≤n, and letX ⊆Mn+1 with lgdim(X) = k ≤ n+1.

Case (I): dim(X) < n+1. So, after perhaps permuting the coordinates, we may
assume that X is the graph of a continuous A-definable function f : Y →M .
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(i) This is clear, by (IH)(ii) and Remark 2.12(iii).

(ii) By (IH)(i), we may further assume that Y = B′ +
∑k
i=1 viti|Ji is an A-

definable k-long cone, where k ≤ n.

Claim. We may assume that Y = B +
∑k
i=1 en−k+iti|Ji.

Proof. To see this, we will define a suitable affine transformation from Y into Mn.
The idea is to map elements of the form vit to en−k+it. Since the vi’s are not nec-
essarily global endomorphisms, we need to explain how this transformation works.

First extend each vi, 1 ≤ i ≤ k, to a vector ui in Λn with domain 2Ji. More
precisely, if Ji = (0, ai), let ui : (0, 2ai) → Mn be equal to vi(t) for t ∈ (0, ai), and
equal to (lims→ai vis) + vi(t− ai) for t ∈ (ai, 2ai). Also, choose uk+1, . . . , un ∈ Λn

with long domains Jk+1, . . . , Jn so that all u1, . . . un are M -independent (in fact,
uk+1, . . . , un can be chosen among the unit vectors in Λn).

Now, fix any b ∈ B′ and let C =
∑n
i=1 viti|Ji. By Lemma 2.4, b + ⟨C⟩ is open.

We claim that b+ ⟨C⟩ contains Y . First we observe that B′ is contained in b+ ⟨C⟩.
Since B′ is connected and contains b, if B′ were not contained in b+ ⟨C⟩, we would
have a definable path that starts from b and ends outside b + ⟨C⟩. This path has
short domain but long range, a contradiction.

Now we want to see that every element x in Y is contained in b + ⟨C⟩. Let

x = b′+
∑k
i=1 viti. Since b

′ is in b+ ⟨C⟩, we have b′ = b+
∑k
i=1 visi+

∑n
i=k+1 uisi.

Therefore, x = b+
∑k
i=1 ui(si + ti) +

∑n
i=k+1 uisi, that is, x ∈ b+ ⟨C⟩.

Now that we know that b+ ⟨C⟩ contains Y , we define the following transforma-
tion:

T : b+ ⟨C⟩ →Mn, T

(
b+

n∑
i=1

uiti

)
= b+

k∑
i=1

en−k+iti +
n∑

i=k+1

en−i+1ti

This is a bijection map onto its image. Clearly, T (Y ) = T (B′) +
∑k
i=1 en−k+iti|Ji,

as the reader can verify that T (b′ +
∑k
i=1 viti) = T (b′)+

∑k
i=1 en−k+iti. Hence, we

can let B = T (B′ and replace Y by T (Y ). �

Let π : Mn → Mn−1 be the usual projection. By [Pet3, Lemma 4.10] and
its proof, there are A-definable linear functions λ1, . . . , λl, A-definable functions
a0, . . . , am : π(Y ) → M and a short positive element b ∈ dcl(A) of M , such that
for every x ∈ π(Y ),

• 0 = a0(x) ≤ a1(x) ≤ · · · ≤ am−1(x) ≤ am(x) = en|Jk|
• for every i, either |ai+1(x) − ai(x)| < b or the map t 7→ ∆tf(x, ai(x)) on
(0, ai+1(x)− ai(x)) is the restriction of some λj ; that is

(8) f(x, ai(x) + t)− f(x, ai(x)) = λj(t).

For every z = (x, y) ∈ Y , let bz := ai+1(x) − ai(x), where y ∈ (ai(x), ai+1(x)).
Observe that bz ∈ dcl(∅). Set

Y0 = {z ∈ Y : bz ≥ b},

and consider (by cell decomposition) a partition C of Y0 into cells so that for every
Z ∈ C,

• there is some λj such that the restriction of f on Z satisfies (8) above,
• Z is contained in {(x, y) : ai(x) ≤ y ≤ ai+1(x)}.
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By (IH)(ii), there is a finite collection C′ of A-definable long cones, whose union is
π(Z) and such that each ai is almost linear with respect to each C ∈ C′. By (IH)(i),
there is a finite collection C′′ of A-definable long cones, whose union is Z ∩π−1(C).
Observe now that Z ∩ π−1(C) is contained in some long cone W on which f is

almost linear; namely, if C = D +
∑l
i=1 witi|Ki, then W is of the form

W = D × {d}+
l∑
i=1

witi|Ki + entn|Kn,

where Kn is a long interval of length equal to max{ai+1(x) − ai(x) : x ∈ C}. By
Lemma 3.4, we conclude that f is almost linear with respect to each long cone in
C′′.

It remains to prove (i) for Y \ Y0. But this is given by (IH)(ii), since, in fact,
lgdim(Y \Y0) < k: assuming not, apply (IH)(iii) to get a k-long cone C ⊆ Y \Y0 ⊆
Y . By Corollary 3.5, there is a tall a ∈ M such that ena ∈ C. But then f is
linear in xn on some long interval contained in Y \ Y0, a contradiction. Hence
lgdim(Y \ Y0) < k.

(iii) In the above notation, for every i ∈ {0, . . . ,m− 1}, the set

Pi := {x̄ ∈ π(Y ) : ai+1(x̄)− ai(x̄) ≥ b}

is A-definable and, since Jn is long, π(Y ) =
∪m−1
i=0 Pi. By Lemma 3.6(v), one of

the Pi’s, say Pj , must have long dimension k − 1. By (IH)(iii), there is a finite
collection C′ of A-definable long cones, whose union is Wj and such that each aj
and aj+1 are almost linear with respect to each C ∈ C′. By Lemma 2.17, there is
an A-definable k-long cone E ⊆ Y and, as before, f is almost linear with respect
to E.

Case (II): dim(X) = n + 1. The argument in this case is a combination of
the proofs of [ElSt, Lemma 3.6] and of [Pet1, Theorem 3.1]. So X = (g, h)Y is a

cylinder. By (IH)(ii) and Lemma 3.4, we may assume that Y = B +
∑k
i=1 viti|Ji

is a long cone and that g, h are almost linear with respect to it. Assume they are
of the form:

g

(
b+

k∑
i=1

viti

)
= g(b) +

k∑
i=1

niti and h

(
b+

k∑
i=1

viti

)
= h(b) +

k∑
i=1

miti.

Since g < h on Y , it follows that for every b ∈ B, g(b) ≤ h(b). One of the following
two cases must occur:

Case (IIa): for all i = 1, . . . , k, we have ni = mi.
Case (IIb): for all i = 1, . . . , k, we have ni ≤ mi, and for at least one i we have

ni < mi. (We may assume so by Remark 2.12(iv): indeed, if for some i, ni > mi,
then we can change B and replace ni by n′i = −ni, and mi by m′

i = −mi, as
indicated in Remark 2.12(iv). Then n′i < m′

i.)

Proof of Case (IIa). We have

X =

{
(b, y) +

k∑
i=1

(vi, ni)ti : g(b) < y < h(b), b ∈ B, ti ∈ Ji

}
.
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It is easy to check that, if (g(b), h(b)) is a long interval, then

X = {(b, g(b)) : b ∈ B}+
k∑
i=1

(vi, ni)ti|Ji + en+1tn+1|(0, h(b)− g(b))

is a (k + 1)-long cone, and if (g(b), h(b)) is short, then

X =
{
{b} × (g(b), h(b)) : b ∈ B

}
+

k∑
i=1

(vi, ni)ti|Ji

is a k-long cone.

Proof of Case (IIb). We have

X =

{(
b+

k∑
i=1

viti, y

)
: g(b) +

k∑
i=1

niti < y < h(b) +

k∑
i=1

miti, b ∈ B, ti ∈ Ji

}
.

Notice that if h = +∞ on X (similarly, if g = −∞), then we are done because

X = {(b, g(b)) : b ∈ B}+
k∑
i=1

viti|Ji + entn|(0,+∞).

We partition X in the following way, going from “top” to “bottom”:

X1 =

{(
b+

k∑
i=1

viti, y

)
: h(b) +

k∑
i=1

niti < y < h(b) +
k∑
i=1

miti, b ∈ B, ti ∈ Ji

}
,

X2 =

{(
b+

k∑
i=1

viti, y

)
: y = h(b) +

k∑
i=1

niti, b ∈ B, ti ∈ Ji

}
,

X3 =

{(
b+

k∑
i=1

viti, y

)
: g(b) +

k∑
i=1

niti < y < h(b) +
k∑
i=1

niti, b ∈ B, ti ∈ Ji

}
.

By Remark 2.12(iii), X2 is a k-long cone, whereas X3 clearly satisfies the condition
of Case (IIa). Hence we only need to account for X1.

Let SX1 = {i = 1, . . . , k : ni < mi}. By induction on |SX1 | we may assume that
|SX1 | = 1. Indeed, if, say, n1 < m1 and n2 < m2, then we can partition X1 in the
following way, going again from “top” to “bottom”:

X ′
1 =

{(
b+

k∑
i=1

viti, y

)
: h(b) + n1t1 +

k∑
i=2

miti < y < h(b) +
k∑
i=1

miti, b ∈ B, ti ∈ Ji

}
,

X ′′
1 =

{(
b+

k∑
i=1

viti, y

)
: y = h(b) + n1t1 +

k∑
i=2

miti, b ∈ B, ti ∈ Ji

}
,

X ′′′
1 =

{(
b+

k∑
i=1

viti, y

)
: h(b) +

k∑
i=1

niti < y < h(b) + n1t1 +
k∑
i=2

miti, b ∈ B, ti ∈ Ji

}
.

Observe then that X ′′
1 is a k-long cone, and for X ′

1 and X ′′′
1 , each of the correspond-

ing SX′
1
and SX′′′

1
has size less than |SX1 |.
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So assume now that |SX1 | = 1 with, say, n1 < m1 and ni = mi for i > 1. Let

A =

{(
k∑
i=1

viti, y

)
:

k∑
i=1

niti < y <

k∑
i=1

miti, b ∈ B, ti ∈ Ji

}
.

We show that A is the union of long cones which clearly implies that so is X1. If
J1 = (0,∞), then

A = (v1, n1)t1|J1 +
k∑
i=1

(vi,mi)ti|Ji

is already a (k + 1)-long cone. If J1 = (0, a1), with a1 ∈M , then A is the union of
the following (k + 1)-long cones:

Y1 = (v1, n1)t1|(0,
a1
2
) + (v1,m1)t1|(0,

a1
2
) +

k∑
i=2

(vi,mi)ti|Ji,

Y2 = (v1, n1)
a1
2

+ (v1, n1)t1|(0,
a1
2
) +

k∑
i=2

(vi,mi)ti|Ji + entn|(0,
(m1 − n1)a1

2
)

Y3 = (v1, n1)
a1
2

+ (v1,m1)t1|(0,
a1
2
) +

k∑
i=2

(vi,mi)ti|Ji + entn|(0,
(m1 − n1)a1

2
)

�
Remark 3.9. As opposed to the corresponding results from [Ed] and [Pet1], it is
not always possible to achieve a disjoint union in (i) or (ii). We leave it to the
reader to verify that the following set cannot be written as a disjoint union of long
cones: let X be the ‘triangle’ with corners the origin, the point (a, a) and the point
(0, 2a), for some long element a.

As a first corollary, we obtain a quantifier elimination result down to suitable
existential formulas in the spirit of [vdD1].

Corollary 3.10. Every definable subset X ⊆ Mm is a boolean combination of
subsets of Mm defined by

∃y1 . . . ∃ymB(y1, . . . , ym) ∧ φ(x1, . . . , xm, y1, . . . , ym),

where B(y) is a short formula and φ(x, y) is a quantifier-free Llin-formula. In fact,
X is a finite union of such sets.

Another corollary is the following.

Corollary 3.11. If f : X →Mn is a definable injective function, then lgdim(X) =
lgdim

(
f(X)

)
.

Proof. Assume that X ⊆ Mk and that f = (f1, . . . , fn), where f j : X → M . By
the Refined Structure Theorem and Lemma 3.6(v), we may assume that X is a long

cell of the form X = b+
∑k
i=1 viti|Ji and such that each fj is almost linear on X.

Hence, for every j, there are µj1, . . . , µ
j
k so that f

j(b+
∑k
i=1 viti) = f j(b)+

∑k
i=1 µ

j
i ti.

Thus, f(X) is the long cell

(f1(b), . . . , fn(b)) +
k∑
i=1

µiti|Ji,

where each µi = (µ1
i , . . . , µ

n
i ) ∈ Λn. �
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4. On definability of long dimension

The following example shows that we lack ‘definability of long dimension’.

Example 4.1. Let a > 0 be a tall element and let

X = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ x}.
Denote by π :M2 →M the usual projection. Then, by [Pet3, Proposition 3.6], the
set

X1 = {x ∈ [0, a] : π−1(x) has long dimension 1}
is not definable.

However, X1 clearly contains a ‘suitable’ definable set; namely, a definable set of
long dimension 1. It follows from the lemmas of this section that the set of fibers
of long dimension ≥ l of a given definable set X always lies between two definable
sets each of long dimension lgdim(X)− l (Corollary 4.4 below).

Lemma 4.2. Let X ⊆Mn+m be a definable set such that the projection π(X) onto
the first n coordinates has long dimension k. Let 0 ≤ l ≤ m. Then

(i) lgdim(X) ≤ k +m.
(ii) lgdim(X) ≥ k + l if and only if π(X) contains a k-long cone C such that

every fiber Xc, c ∈ C, has long dimension ≥ l.

Proof. (i) By Lemma 3.6(ii)&(iv), since X ⊆ π(X)×Mm.
(ii) (⇐) Assume that every fiber Xc, c ∈ C, has long dimension l. We prove

that lgdim(X) ≥ k + l by induction on k. For k = 0, it is clear, since any fiber
above C contains a l-long cone. Now assume that it is proved for lgdim(C) < k,
and let lgdim(C) = k. Clearly, we may assume that π(X) = C. For the sake of
contradiction, assume lgdim(X) < k+ l. By the Refined Structure Theorem, X can
be covered by finitely many long cones X1, . . . , Xs, each with lgdim(Xi) < k + l.
By the inductive hypothesis, each π(Xi) has long dimension < k. But then C =
π(X1) ∪ · · · ∪ π(Xs) must have long dimension < k, a contradiction.

(⇒) This is clearly equivalent to the following:

Claim. Let

Xl = {x ∈ π(X) : π−1(x) has long dimension ≥ l}
Then there is a definable set Yl ⊆ Xl, such that

lgdim(Yl) = lgdim(X)− l.

The proof of the Claim is by induction on m.

Base Step: m = l = 1. By cell decomposition, X is a finite union of cells, and
by the Refined Structure Theorem the domain of each cell is a finite union of long
cones such that the corresponding restrictions of the defining functions of the cell
are almost linear with respect to each of the long cones. If a cell is a graph of a
function, or if its domain has long dimension < k, then clearly its long dimension is
at most k. Hence X contains a cylinder X1 = (f, g)π(X1), where π(X1) is a k-long

cone, such that X1 contains a (k + 1)-long cone C = b+
∑k+1
i=1 viti|(0, αi). We will

first show that for some elements x, y ∈ C in the closure of C, with ∀i = 1, . . . , n,
xi = yi, and (y − x)n+1 tall. This is straightforward and we only sketch its proof.

The projection π(C) is a union of long cones whose directions are tuples with
elements from the set {v1, . . . , vk+1}. By (i) and Lemma 3.6(v), there must be
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subset of {v1, . . . , vk+1} of k elements, say {v1, . . . , vk}, whose projections onto the
first n-coordinates is an M -independent set. Without loss of generality, assume
A = {v1, . . . , vk}. It is then an easy exercise to see that there is an element y =
v1t1 + · · ·+ vk+1tk+1 ∈ C, such that the element

x = min{z ∈ C : ∀i ≤ n, zi = yi}
has form x = v1s1 + · · · + vk+1sk+1 ∈ C such that tk+1 − sk+1 is long. But then
y − x must be tall, by Lemma 2.6. It follows that (y − x)n+1 must be tall.

Now, we conclude that there is x ∈ π(X1), such that π−1(x) =
(
f(x), g(x)

)
is

long. Since f, g are almost linear on π(X1), it is easy to see that there is a k-

long cone Cx = x +
∑k
i=1 viti|(0, ai) ⊆ π(X1) such that for each element y ∈ Cx,

g(y)− f(y) is tall. We let Yl = Cx. Since, by (i), k ≥ lgdim(X)− 1, we are done.

Inductive Step: assume we know the lemma for every n and X ⊆ Mn ×Mm, and

let X ⊆Mn ×Mm+1. Let q :Mn+m+1 →Mn+m and r :Mn ×Mm →Mn be the
usual projections. Of course, π = r ◦ q.

Case (I). lgdim(q(X)) = lgdim(X). In this case, by the Inductive Hypothesis,
the set

q(X)l = {x ∈ π(X) : lgdim(r−1(x)) ≥ l}
contains a definable set A such that

lgdim(A) = lgdim(q(X))− l = lgdim(X)− l.

Since, clearly, q(X)l ⊆ Xl, we are done.

Case (II). lgdim(q(X)) = lgdim(X)− 1. Let

Y1 = {x ∈ q(X) : lgdim(q−1(x)) = 1}.
By the Base Step, Y1 contains some definable set Y with lgdim(Y ) = lgdim(X)−1.
By the Inductive Hypothesis, the set

Yl = {x ∈ r(Y ) : lgdim(r−1(x)) ≥ l − 1}
contains a definable set A with

lgdim(A) = lgdim(Y )− (l − 1) = lgdim(X)− l.

But clearly Xl contains A and hence we are done. �

On the other hand, we have the following lemma. It will not be essential until
the proof of Proposition 6.4.

Lemma 4.3. Let X ⊆ Mn+m be a definable set and denote by π : Mn+m → Mn

the usual projection. For 0 ≤ l ≤ m, let

Xl = {x ∈ π(X) : π−1(x) has long dimension ≥ l}.
Then there is a definable subset Zl ⊆ π(X) with Xl ⊆ Zl such that

lgdim(Zl) = lgdim(X)− l.

Proof. The proof is by induction on m. For any m, if l = 0, then take Zl = π(X),
since, by Lemma 4.2(ii), lgdim(π(X)) ≤ lgdim(X).
Base Step: m = 1. Let X ⊆ Mn × M and l = 1. By cell decomposition and
Lemma 3.6(v), we may assume that X is a cell. If X is the graph of a function,
then let Zl be any subset of π(X) of long dimension lgdim(X)− 1. So assume X is
the cylinder (f, g)π(X) between two continuous functions f and g. By the Refined
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Structure Theorem, we may further assume that π(X) is a long cone such that f
and g are both almost linear with respect to it. If lgdim(π(X)) = lgdim(X) − 1,
then take Zl = π(X). If lgdim(π(X)) = lgdim(X), then by Lemma 2.17, for every
x ∈ π(X), π−1(x) is short, in which case we let again Zl be any subset of π(X) of
long dimension lgdim(X)− 1.
Inductive Step: assume we know the lemma for every n and X ⊆ Mn ×Mm, and

let X ⊆Mn ×Mm+1. Let q :Mn+m+1 →Mn+m and r :Mn ×Mm →Mn be the
usual projections. Let

Y1 = {x ∈ q(X) : lgdim(q−1(x)) = 1}.
By Lemma 4.2(ii), Y1 is contains some definable set Y with lgdim(Y ) = lgdim(X)−
1. Now, Xl is contained in the union of the following two sets:

A1 = {x ∈ r(Y ) : lgdim(r−1(x)) ≥ l − 1} and

B1 = {x ∈ r(q(X) \ Y ) : lgdim(r−1(x)) = l}.
By the Inductive Hypothesis, A1 is contained in a definable set A with

lgdim(A) = lgdim(Y )− (l − 1) = lgdim(X)− l

and B1 is contained in a definable set B with

lgdim(B) = lgdim(q(X) \ Y )− l ≤ lgdim(X)− l.

Hence Xl is contained in the definable set Zl = A ∪ B, satisfying lgdim(Zl) ≤
lgdim(X)− l. By Lemma 4.2(ii), lgdim(Zl) = lgdim(X)− l. �

We sum up the two previous lemmas in the next statement.

Corollary 4.4. Let X ⊆Mn+m be a definable set and denote by π :Mn+m →Mn

the usual projection. For 0 ≤ l ≤ m, let

l(X) = {x ∈ π(X) : π−1(x) has long dimension ≥ l}.
Then there are definable subsets Y, Z ⊆ π(X) with Y ⊆ l(X) ⊆ Z such that

lgdim(Y ) = lgdim(Z) = lgdim(X)− l.

5. Pregeometries

In this section we develop the combinatorial counterpart of the long dimension
and define the corresponding notion of ‘long-genericity’. This notion is used in the
application to definable groups in the next section.

Definition 5.1. A (finitary) pregeometry is a pair (S, cl), where S is a set and
cl : P (S) → P (S) is a closure operator satisfying, for all A,B ⊆ S and a, b ∈ S:

(i) A ⊆ cl(A)
(ii) A ⊆ B ⇒ cl(A) ⊆ cl(B)
(iii) cl

(
cl(A)

)
= cl(A)

(iv) cl(A) = ∪{cl(B) : B ⊆ A finite}
(v) (Exchange) a ∈ cl(bA) \ cl(A) ⇒ b ∈ cl(aA).

Definition 5.2. We define the short closure operator scl : P (M) → P (M) as:

scl(A) = {a ∈M : there are b̄ ⊆ A and ϕ(x, ȳ) from L, such that

ϕ(M, b̄) is a short interval and M � ϕ(a, b̄)}.
We say that the formula ϕ(x, ȳ) ∈ L witnesses a ∈ scl(b̄) if ϕ(M, b̄) is a short
interval and M � ϕ(a, b̄).
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We will omit, as usually, the bar from tuples.

Remark 5.3. Given a formula ϕ(x, y) ∈ L witnessing a ∈ scl(b), we can form a

formula Sϕa,b(x, y) ∈ L which is satisfied by the pair (a, b) and such that for every

b′ ∈Mn, Sϕa,b(M, b′) is short. Indeed, let κ ∈M be short such that

∀z1, z2[ϕ(z1, b) ∧ ϕ(z2, b) → |z1 − z2| < κ].

By [Pet3, Corollary 3.7(3)], κ may be taken in dcl(∅). We then let

Sϕa,b(x, y) : ϕ(x, y) ∧ ∀z1, z2[ϕ(z1, y) ∧ ϕ(z2, y) → |z1 − z2| < κ].

Lemma 5.4. a ∈ scl(b) ⇔ ∃a′ ∈ dcl(b), a− a′ is short.

Proof. (⇒). Let f be a ∅-definable Skolem function for Sϕa,b(x, y), where ϕ witnesses

a ∈ scl(b); that is, for every c ∈M , |= ∃zSϕa,b(z, c) → Sϕa,b(f(c), c). Let a
′ = f(b).

(⇐). Assume ϕ(x, y) witnesses a′ ∈ dcl(b). Let κ ∈ dcl(∅) such that |a−a′| < κ.
Then a satisfies the following short formula:

∃x′ϕ(x′, b) ∧ (|x− x′| < κ).

�

Lemma 5.5. (M, scl) is a pregeometry.

Proof. Properties (i), (ii) and (iv) are straightforward.
(iii). This boils down to the fact that (Lemma 4.2(ii)) a short union of short sets

is short. We provide the details. Let a ∈ scl(b̄), where b̄ = (b1, . . . , bn) ∈Mn, such
that each bi ∈ scl(c̄), for some c̄ ⊆ A. Assume that ψ(x, b̄) witnesses a ∈ scl(b̄), and
that for each i = 1, . . . , n, ϕi(yi, c̄) witnesses bi ∈ scl(c̄), where ψ, ϕi ∈ L. Denote

S(ȳ, z̄) := Sϕ1

b1,c̄
(y1, z̄) ∧ · · · ∧ Sϕn

bn,c̄
(yn, z̄)

Then the set X defined by the formula

∃ȳS(ȳ, c̄) ∧ Sψ
a,b̄

(x, ȳ)

is c̄-definable and contains a. We show that X is short. Clearly, the set

X ′ =
∪

ȳ∈S(M,c̄)

{ȳ} × Sψ
a,b̄

(M, ȳ)

has long dimension at least the long dimension of X, since the function f : (ȳ, x) 7→
x maps X ′ onto X. But X ′ is a short union of short sets and, by Lemma 4.2(ii), it
must have long dimension 0.

(v). Without loss of generality, assume A = ∅. Let ϕ(x, y) be a formula wit-
nessing a ∈ scl(b). We assume that b ̸∈ scl(a) and show a ∈ scl(∅). Let f(x) be a

∅-definable Skolem function for Sϕa,b(x, y). Let κ ∈ M be short and in dcl(∅) such
that

∀z1, z2[ϕ(z1, b) ∧ ϕ(z2, b) → |z1 − z2| < κ].

(see Remark 5.3). Let

Y = {b′ ∈M : |f(b′)− a| < κ}.
Then since Y is a-definable and contains b, it must be long. By Lemma 2.1, there
is some interval contained in Y on which f is constant, equal say to a′. But then
a′ ∈ dcl(∅) and, by Lemma 5.4, a ∈ scl(∅). �
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Definition 5.6. Let A,B ⊆M . We say that B is scl-independent over A if for all
b ∈ B, b ̸∈ scl

(
A ∪ (B \ {b})

)
. A maximal scl-independent subset of B over A is

called a basis for B over A.

By the Exchange property in a pregeometric theory, any two bases for B over A
have the same cardinality. This allows us to define the rank of B over A:

rank(B/A) = the cardinality of any basis of B over A.

Lemma 5.7. If p is a partial type over A ⊆ M and a |= p with rank(a/A) = m,
then for any set B ⊇ A there is a′ |= p (possibly in an elementary extension) such
that rank(a′/B) ≥ m.

Proof. The proof of the analogous result for the usual rank (coming from acl) is
given, for example, in [G, page 315]. The proof of the present lemma is word-by-
word the same with that one, after replacing an ‘algebraic formula’ by a ‘short
formula’ in the definition of ΦmB ([G, Definition 2.2]) and the notion of ‘algebraic
independence’ by that of ‘scl-independence’ we have here. �

Definition 5.8. Assume M is sufficiently saturated. Let p be a partial type over
A ⊂M . The short closure dimension of p is defined as follows:

scl-dim(p) = max{rank(ā/A) : ā ⊂M and ā |= p}.

Let X be a definable set. Then the short closure dimension of X, denoted by
scl-dim(X) is the dimension of its defining formula.

In Corollary 5.10 below we establish that the scl-dimension of a definable set
coincides with its long dimension we defined earlier. We note that the equivalence
between the usual geometric and topological dimension was proved in [Pi1].

Lemma 5.9. Let ā ⊆ M be an n-tuple and A ⊆ M a set. Then rank(ā/A) = n if
and only if ā does not belong to any A-definable set with long dimension < n.

Proof. (⇐) Assume ā = (a1, . . . , an) and rank(ā/A) < n. Then for some i, say
i = 1, a1 ∈ scl(A ∪ {a2, . . . , an}). Let ϕ(x, ȳ) be an L(A)-formula witnessing this

fact. Recall from Remark 5.3 that the L(A)-formula Sϕā (x, ȳ) is satisfied by ā and

for every b′ ∈ Mn−1, Sϕā (M, b′) is short. By Lemma 4.2(ii), Sϕā (Mn) has long
dimension < n.

(⇒) We prove the statement by induction on n. For n = 1, it is clear. Suppose
it is proved for n. Let ā = (a1, . . . , an+1) be a tuple of rank, over A, equal to n+1
and assume, for a contradiction, that X is an A-definable set containing a with
lgdim(X) < n+1. By cell decomposition, we may assume that X is an A-definable
cell. If X is the graph of a function, then an+1 is in dcl(A∪{a1, . . . , an}) and hence
in scl(A∪{a1, . . . , an}), a contradiction. Now assume that X is a cylinder. By the
Refined Structure Theorem, we may assume that X = (f, g)π(X) is a cylinder whose
domain is an A-definable long cone such that f and g are almost linear with respect
to it. Since rank(ā/A) = n+ 1, g(a1, . . . , an)− f(a1, . . . , an) must be long. But by
Inductive Hypothesis, lgdim(π(X)) = n. Hence, by Lemma 2.17, lgdim(X) = n+1,
a contradiction. �

Corollary 5.10. For every definable X ⊆Mn,

lgdim(X) = scl-dim(X).
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Proof. It is easy to see that every A-definable k-long cone X contains a tuple a with
rank(a/A) = k. On the other hand, by Lemmas 2.13 and 5.9, X cannot contain a
tuple a with rank(a/A) > k. �

5.1. Long-generics. For a treatment of the classical notion of generic elements,
corresponding to the algebraic closure acl, see [Pi2]. Here we introduce the corre-
sponding notion for scl.

Definition 5.11. Let X ⊆Mn be an A-definable set, and let ā ∈ X. We say that
ā is a long-generic element of X over A if it does not belong to any A-definable set
of long dimension < lgdim(X). If A = ∅, we call ā a long-generic element of X.

In a sufficiently saturated o-minimal structure, long-generic elements always ex-
ist. More precisely, every A-definable set X contains a long-generic element over
A. Indeed, by Compactness and Lemma 3.6(v), the collection of all formulas which
express that x belongs to X but not to any A-definable set of long dimension
< lgdim(X) is consistent.

A definable subset V of a definable set X is called long-large in X if lgdim(X \
V ) < lgdim(X). In a sufficiently saturated o-minimal structure, V is long-large in
X if and only if for every A over which V and X are defined, V contains every
long-generic element a in X over A.

Two long-generics are called independent if one (each) of them is long-generic
over the other.

Let G be a definable abelian group. Let us recall the notion of a left generic
set (not to be confused with the notion of a generic element). A subset X ⊆ G is
called left n-generic if n left translates of X cover G. It is called left generic if it
is left n-generic for some n. We recall from [ElSt, Lemma 3.10] (see [PeS] for the
notion of definable compactness):

Fact 5.12 (Generic Lemma). Assume G is definably compact. Then, for every
definable subset X ⊆ G, either X or G \X is left generic.

The facts that (M, scl) is a pregeometry and that the scl-dim agrees with lgdim
imply:

Claim 5.13. Let G = ⟨G, ·⟩ be a definable group with lgdim(G) = n. Then

(1) If X ⊆ G long-large in G, then X is left (n+ 1)-generic in G.
(2) If a and g ∈ G are independent long-generics, then so are a and a · g.

Proof. The proof is standard. (1) is word-by-word the same with that of [Pet2,
Fact 5.2] after replacing: a) the notion of a ‘large’ set by that of a ‘long-large’ set,
b) the ‘dimension’ of a definable set by ‘long dimension’, and c) the ‘dimension’ of
a tuple by ‘rank’. (2) is straightforward using the Exchange property. �

Note that none of the notions ‘generic element’ and ‘long-generic element’ implies
the other.

Lemma 5.14. Let X,W be definable subsets of a definable group G. Assume that
X is a long-large subset of W and that W is left generic in G. Then X is left
generic in G.

Proof. This is similar to the proof of [PePi, Lemma 3.4(ii)]. Since W is left generic
we can write G = g1W ∪ · · · ∪ gmW . Let Y = W \X. Then Z = g1Y ∪ · · · ∪ gmY
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has long dimension < lgdim(G). So, by Claim 5.13, finitely many left translates of
G \ Z cover G. It follows then that finitely many left translates of X cover G. �

We record one more lemma, which however will not be used in this paper:

Lemma 5.15. Let G be a definable group and X a definable subset of G. If X is
left generic in G then lgdim(X) = lgdim(G).

Proof. Since the group conjugation is a definable bijection, the statement follows
from Lemma 3.6(v) and Corollary 3.11. �

6. The local structure of semi-bounded groups

In this section, we assume that M is sufficiently saturated, and we fix
a ∅-definable group G = ⟨G,⊕, eG⟩, with G ⊆Mn and long dimension k.

By [Pi2], we know that every group definable in an o-minimal structure can be
equipped with a unique definable manifold topology that makes it into a topological
group, called the t-topology. We refer the reader elsewhere for the basic facts about
the t-topology (which we will not make any essential use of, anyway).

Remark 6.1. By the Refined Structure Theorem, Lemma 3.7 and Corollary 5.10,
for any two independent long-generic elements a and b of G and any ∅-definable
function f : G ×G → G, there are k-long cones Ca and Cb in G containing a and
b, respectively, such that for all x ∈ Ca and y ∈ Cb,

f(x, y) = λx+ µy + d,

for some fixed λ, µ ∈ M(n,Λ) and d ∈ Mn. In the case that f(x, y) = x ⊕ y is
the group operation of G, the λ and µ have to be moreover invertible matrices
(for example, setting y = b, x ⊕ b = λx + µb + d is invertible, showing that λ is
invertible).

Lemma 6.2. For every two independent long-generics a, b ∈ G, there is a k-long
cone Ca containing a, invertible λ, λ′ ∈ M(n,Λ) and c, c′ ∈ Mn, such that for all
x ∈ Ca,

x⊖ a⊕ b = λx+ c and ⊖ a⊕ b⊕ x = λ′x+ c′.

Proof. By Claim 5.13, since a and b are independent long-generics of G, a and
⊖a⊕ b are independent long-generics of G as well. Therefore, by Remark 6.1, there
are long cones Ca of a and C⊖a⊕b of ⊖a⊕b in G, as well as invertible λ, µ ∈ M(n,D)
and d ∈Mn, such that ∀x ∈ Ca, ∀y ∈ C⊖a⊕b,

x⊕ y = λx+ µy + d.

In particular, for all x ∈ Ca, x⊖a⊕b = λx+µ(⊖a⊕b)+d. Letting c = µ(⊖a⊕b)+d
shows the first equality. The second equality can be shown similarly. �

We are now ready to prove the local theorem for semi-bounded groups.

Theorem 6.3. Let a be a long-generic element of G. Then there is a k-long cone
Ca ⊆ G containing a, such that for every x, y ∈ Ca,

x⊖ a⊕ y = x− a+ y.
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Proof. We first prove:

Claim. There is a k-long cone Ca ⊆ G containing a, and λ, µ ∈ M(n,Λ) and
d ∈Mn, such that for all x, y ∈ Ca,

x⊖ a⊕ y = λx+ µy + d.

Proof of the Claim. Let a1 be a long-generic element of G independent from a.
Then a2 = a ⊖ a1 is also a long-generic element of G independent from a. By
Lemma 6.2, we can find k-long cones C and C ′ in G containing a, as well as
λ1, λ2 ∈ M(n,Λ) and c1, c2 ∈Mn, such that ∀x ∈ C, ∀y ∈ C ′:

(9) x⊖ a2 = λ1x+ c1 and ⊖a1 ⊕ y = λ2y + c2.

We let Va1 be the image of C under the map x 7→ x ⊖ a2, and Va2 the image of
C ′ under y 7→ ⊖a1 ⊕ y. Then Va1 and Va2 are open neighborhoods of a1 and a2 in
G, respectively. Also, since a is long-generic, it must be contained in a k-long cone
Ca ⊆ C ∩ C ′, on which, of course, every x and y satisfy equations (9).

Now, by Remark 6.1 and since a1 and a2 = a⊖a1 are independent long-generics of
G, there are k-long cones Ca1 and Ca2 containing a1 and a2, respectively, such that
for some fixed ν, ξ ∈ M(n,Λ) and ε ∈ Mn, we have: ∀x ∈ Ca1 , ∀y ∈ Ca2 , x ⊕ y =
νx+ξy+ε. By continuity of ⊕, we could choose Ca, Va1 , Va2 so that Va1 ⊆ Ca1 and
Va2 ⊆ Ca2 , and still every x, y ∈ Ca satisfy equations (9). Then for all x, y ∈ Ca,
we have:

x⊖ a⊕ y = x⊖ a⊕ a1 ⊖ a1 ⊕ y

= (x⊖ a2)⊕ (⊖a1 ⊕ y)

= ν(λ1x+ c1) + ξ(λ2y + c2) + ε

= νλ1x+ ξλ2y + νc1 + ξc2 + ε

Setting λ = νλ1, µ = ξλ2, and d = νc1 + ξc2 + o finishes the proof of the claim. �

By the Claim, for all x, y ∈ Ca,

y = a⊖ a⊕ y = λa+ µy + d

x = x⊖ a⊕ a = λx+ µa+ d

a = a⊖ a⊕ a = λa+ µa+ d.

Hence, x− a+ y = λx+ µy + d = x⊖ a⊕ y. �

We conclude with a stronger version of the local theorem that we expect to be
useful in a future global analysis for semi-bounded groups. By [Pi2], we know that
the t-topology of G coincides with the subspace topology on a large open definable
subsetWG. The proof of the following proposition involves all machinery developed
so far.

Proposition 6.4. Assume G is definably compact. There is a left generic k-long
cone C contained in G, on which the t-topology agrees with the subspace topology,
and for every a ∈ C, there is a relatively open subset Va of a + ⟨C⟩ containing a,
such that ∀x, y ∈ Va,

(10) x⊖ a⊕ y = x− a+ y.
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Proof. By the Refined Structure Theorem, WG is the union of finitely many long
cones C1, . . . , Cl. Let v̄j = (vj1, . . . , vjkj ) be the direction of each Cj . By the
Generic Lemma, one of the Cj ’s, say C1, is a left generic k-long cone.

Claim. Every long-generic element a of WG is contained in some k-long cone
contained in G with direction some v̄j on which (10) holds.

Proof of Claim. Since a is long-generic, Theorem 6.3 implies that a is contained in
some k-long cone D on which (10) holds. Since a is in WG, it is contained in some
Cj . By Corollary 3.5, it is not hard to see that some k-long cone with direction v̄j
must be contained in D and contain a. �

Consider now the following property, for an element a ∈ C1:
(*) there is a relatively open subset Va of a + ⟨C1⟩ containing a, such that

∀x, y ∈ Va, (10) holds.
The set X of elements of C1 that satisfy (*) is clearly definable. We claim that

it is also long-large in C1.
Clearly, it suffices to prove that every long-generic element of C1 satisfies (*).

Let a be a long-generic element of C1. If a belongs to a k-long cone of direction
v̄1 on which (10) holds, then we are done. Hence, by the Claim, it clearly suffices
to show that for every j ̸= 1, the set Aj of all elements of C1 that belong to a
k-long cone of direction v̄j but do not satisfy (*), is contained in a definable set
of long dimension < k. To see this, note that if a ∈ Aj , then by Corollaries 2.14
and 3.5, one of the vj1, . . . , vjkj , say vj1, must be so that for every positive t ∈M ,
vj1t ̸∈ ⟨C1⟩. Let κ be a tall element and Dj = {vj1t : t ∈ (0, κ)}. The set

Kj = (C1 +Dj) ∩G
has long dimension ≤ k, as a subset of G. Hence, by Lemma 4.3, and since each
Dj has long dimension 1, Aj is contained in a definable set of long dimension
≤ lgdim(Kj)− 1.

We have proved that X is long-large in C1. By Lemma 5.14, X is left generic. By
the Refined Structure Theorem, the Generic Lemma and the Lemma on Subcones,
there is a left generic k-long cone C contained in X with the desired property. �

7. Appendix

If we tried to prove Lemma 2.8 by induction on n, then in the inductive step we
would run into a system whose form is more general than that of the original one.
Thus, we prove the following, more general statement.

Lemma 7.1. Let w1, . . . , wn, wn+1, . . . , wn+k ∈ Λn beM -independent and λ1, . . . , λn ∈
Λn. Let t1, . . . , tn ∈ M be non-zero elements and, for every i = 1, . . . , n, let
r1i , . . . , r

k
i ∈M be such that:

w1t1 +

k∑
j=1

wn+jr
j
1 = λ1s

1
1 + · · ·+ λns

n
1

...

wntn +
k∑
j=1

wn+jr
j
n = λ1s

1
n + · · ·+ λns

n
n
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for some sji ∈ M . Then there are non-zero a1, . . . , an ∈ M and bji ∈ M , i =
1, . . . , n, j = 1, . . . , n+ k, such that:

λ1a1 = w1b
1
1 + · · ·+ wn+kb

n+k
1

...

λnan = w1b
1
n + · · ·+ wn+kb

n+k
n

Proof. By induction on n. For n = 1, it is trivial. Assume n > 1 and that we know
the statement for < n equations. Since w1, . . . , wn+k ∈ Λn are M -independent and

t1 ̸= 0, w1t1 +
∑k
j=1 wn+jr

j
1 ̸= 0. Hence there is some sj1, say s11, which is not

zero. By switching the equations, if necessary, we may also assume that s1i < s11,
for every i = 2, . . . , n. Since

(11) λ1s
1
1 = w1t1 +

k∑
j=1

wn+jr
j
1 − (λ2s

2
1 + · · ·+ λns

n
1 ),

Lemma 2.7 gives, for every i = 2, . . . , n,

λ1s
1
i = w1Ti +

k∑
j=1

wn+jR
j
i − (λ2S

2
i + · · ·+ λnS

n
i )

for some S2
i , . . . , S

n
i , Ti, R

1
i , . . . R

k
i ∈M . By substituting into the original system of

equations, we obtain:

w2t2 − w1T1 +
k∑
j=1

wn+j(r
j
2 −Rj2) = λ2(s

2
2 − S2

2) + · · ·+ λn(s
n
2 − Sn2 )

...

wntn − w1T1 +
k∑
j=1

wn+j(r
j
n −Rjn) = λ2(s

2
n − S2

n) + · · ·+ λn(s
n
n − Snn)

Now apply the Inductive Hypothesis to find a2, . . . , an such that

(12) each of λ2a2, . . . , λnan can be expressed in terms of w1, . . . , wn+k.

By Lemma 2.7, we can replace the elements ofM that appear in (11) by arbitrarily

small positive ones; that is, there are arbitrarily small a1, p1, q
j
1, u

j
1 ∈M such that

(13) λ1a
1
1 = w1p1 +

k∑
j=1

wn+jq
j
1 − (λ2u

2
1 + · · ·+ λnu

n
1 ).

In particular, we may choose 0 < uj1 < aj . Hence, by Lemma 2.7 again and (12),
we can express each of λ2u

2
1, . . . , λnu

n
1 in terms of w1, . . . , wn+k. Hence λ1a

1
1 is now

also expressed in terms of w1, . . . , wn+k, finishing the proof. �
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