
GROUPS DEFINABLE IN O-MINIMAL STRUCTURES

PANTELIS E. ELEFTHERIOU

Abstract. In this series of lectures, we will a) introduce the basics of o-
minimality, b) describe the manifold topology of groups definable in o-minimal
structures, and c) present a structure theorem for the special case of semi-linear
groups, exemplifying their relation with real Lie groups.

The structure of these lectures is as follows:
(1) Basics of o-minimality: definition, Cell Decomposition Theorem, dimension

of definable sets. The standard reference is [vdD]. A recent survey is [Pet].
(2) Definable groups: definable manifold topology, uniqueness, questions about

(a) affine embedding and (b) resemblance with real Lie groups (Pillay’s
Conjecture). The standard reference is [Pi1], and a recent survey is [Ot].

(3) Semi-linear groups: Structure Theorem and answers to the above questions
for semi-linear groups. Reference: [El].

1. Basics of o-minimality

Let L be a first-order language, and M an L-structure. Then X ⊆ Mn is called
definable (in M over ā) if for some formula φ ∈ L,

X = {b̄ ∈ Mn : M |= φ(b̄, ā)}.
For example, the unit circle on the real plane {(x, y) ∈ R2 : x2+y2 = 1} is definable
in 〈R, +, ·〉 but not in 〈R,+〉.

A function f : A ⊆ Mm → Mn is called definable if its graph Γ(f) ⊆ Mm×Mn

is definable. A group G = 〈G,⊕, eG〉 is called definable if G ⊆ Mn and ⊕ : M2n →
Mn are definable. For example, the following group is definable in 〈R, <, +〉: let
S1 = 〈[0, 1),⊕, 0〉, with

x⊕ y =

{
x + y if x + y < 1,

x + y − 1 if x + y ≥ 1.

The study of definability has been a powerful tool in stability theory. Indeed,
Shelah’s classification of models of a given theory up to isomorphism turned out
to be intimately related to the classification of definable sets in the models of the
theory. On the other hand, the definition of an o-minimal structure was given in
terms of the definable sets in the structure. The creation of o-minimality can be
viewed as an attempt of developing model theory for structures that do not fall
under the scope of Shelah’s classification theory.

Definition 1.1 (Knight-Pillay-Steinhorn, [KPS, PiS], 1986). A structure M =
〈M, <, . . . 〉 is called o-minimal if
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(i) 〈M,<〉 is a dense linear order without endpoints, and
(ii) every definable subset of the universe M is a finite union of open intervals

(a, b), a, b ∈M∪ {±∞} and points.

Remark.
• (ii) is equivalent to: every definable subset of the universe M can be defined

in 〈M, <〉.
• There is an analogy with strongly minimal structures. A structure M =
〈M, . . . 〉 is called strongly minimal if every definable subset of the universe
(of any N ≡ M) is finite or co-finite; equivalently, it can be defined just
using =.

• An o-minimal structure is not stable.
Primary examples.

• O-minimal structure: 〈R, <, +, ·, 0, 1〉. The definable sets are the semi-
algebraic sets.

• Strongly minimal: an algebraically closed field of characteristic p. The
definable sets are the constructible sets.

Examples - Trichotomy.
• 〈M, <〉, “trivial”: dense linear order without endpoints.
• 〈M, <,+, 0, {d}d∈D〉, “linear”: ordered vector space over an ordered divi-

sion ring D.
• 〈M, <,+, ·, 0, 1, . . . 〉, o-minimal expansion of a real closed field.

Trichotomy Theorem [Peterzil-Starchenko, [PeS], 1998](roughly): The above
three cases are what an o-minimal structure can locally look like (where “locally”
refers to the product topology of Mn described below).

Groups definable in o-minimal expansions of real closed fields have been studied
by a number of people including Berarducci, Edmundo, Hrushovski, Otero, Peterzil,
Pillay. Groups definable in a linear o-minimal structure are called semi-linear
groups, they were studied in [El], and they are the topic of the last part of these
lectures.

For the rest of this section, let M = 〈<, . . . 〉 be an o-minimal structure.

O-minimal structures are “nice” topological structures. Topological because:
• M is equipped with the order <-topology: the topology whose basic open

sets are the open intervals.
• Mn is equipped with the product topology.

They are “nice” because of the following two theorems:

Monotonicity Theorem. For every definable function f : (a, b) → M , a, b ∈
M∪ {±∞}, there are points a = a0 < a1 < · · · < ak < ak+1 = b such that on each
subinterval (aj , aj+1), j = 0, . . . , k, the function f is either constant, or strictly
monotone and continuous.

Definition 1.2. The collection of cells is the least collection of sets that contains:
(A) Cells in M : points, open intervals,

and is closed under the following two constructions.
(B) If X is cell in Mn, then the following are cells in Mn+1:
(1) Γ(f) and
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(2) (f, g) = {(x̄, y) ∈ X ×M : f(x̄) < y < g(x̄)},
where f, g are definable continuous functions defined on X.

Cell Decomposition Theorem (CDT). For every definable function f : X ⊆
Mn → M , there is a partition of X = X1 ∪ · · · ∪ Xk into finitely many cells Xi,
such that each f ¹Xi

is continuous.

In fact, a more refined version of CDT can be proved, which guarantees that each
projection of the partition of X onto Mm, m ≤ n, is a partition of the projection
of X into cells.

The proof of the CDT is given by induction on n, and it is carried out simulta-
neously with the following statement:

Uniform Finiteness. Let S ⊆ Mn+1 be a definable set, and for each b̄ ∈ Mn,
denote Sb̄ := {y ∈ M : (b̄, y) ∈ Mn+1}. Then there is N ∈ N, such that for every
b̄ ∈ Mn,

|Sb̄| is finite ⇒ |Sb̄| < N.

Corollary 1.3. If M is o-minimal and N ≡M, then N is o-minimal.

Proof. Let φ(x, ȳ) be an L-formula. We show that for every b̄ ∈ Mn, φ(M, b̄) is a
finite union of points and open intervals. Let

ψ(z, ȳ) : x is in the boundary of φ(x, ȳ).

Then there is N ∈ N, such that M |= ∀ȳ (|ψ(M, ȳ)| < N
)
. Therefore,

N |= ∀ȳ (|ψ(N , ȳ)| < N
)
.

¤

Definition 1.4 (Dimension). If X ⊆ Mn is a cell, we define the dimension of X
as follows:

dim X = the number of times we apply (f, g) in its construction.

(The dimension of an open interval is 1).
If X ⊆ Mn is a definable set, we define the dimension of X as follows:

dim X = max{dim Xi : X = X1 ∪ · · · ∪Xk, Xi cell from CDT}.
Remark.

(i) if X ⊆ Mn is a cell, then

dim X = max{m ∈ N : the projection of X onto some m coordinates is open}.
(ii) The definition of dim(X) does not depend on the cell decomposition of X.

Observe, by (i):
• If X ⊆ Mn is a cell, then dim(X) = n ⇔ X is open.

• If X ⊆ Mn is a definable set, then dim(X) = n ⇔ X has non-empty interior.

Lemma 1.5 (Properties of dimension). (i) For any definable sets X,Y and defin-
able bijection f : X → Y ,

dim X = dim f(X).
(ii)For any definable sets X1, . . . , Xk,

dim(X1 ∪ · · · ∪Xk) = max{dim(Xi) : i = 1, . . . , k}.
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Definition 1.6. Let X ⊆ Mn be an A-definable set, and let ā ∈ X. We say that
ā is a generic element of X over A if it does not belong to any A-definable set of
dimension < dim(X).

In a sufficiently saturated o-minimal structure, generic elements always exist.
Indeed, by Compactness and Lemma 1.5(ii), given an A-definable set X, the type
consisting of all formulas that express that x belongs to X but not to any A-
definable set of dimension < dim(X) is consistent.

A definable subset V of a definable set X is called large in X if dim(X \ V ) <
dim(X). In a sufficiently saturated o-minimal structure, V is large in X if and only
if for every A over which V and X are defined, V contains every generic element a
in X over A.

We extend the definition of a large set to possibly not definable subsets of X: a
subset V ⊆ X is called large in X if for every A over which X is defined, V contains
every generic element a in X over A.

Note: The notions of dimension and genericity can alternatively be defined
through the ‘algebraic closure operator’ acl, which in o-minimal structures as well
as, strongly minimal structures, defines a pregeometry (see [El2]). On the one
hand, this alternative way yields the same notion of dimension, and on the other,
it indicates that there is an implicit ‘geometry’ going on in o-minimality.

2. Definable groups

In this section, M denotes an o-minimal structure, and ‘definable’ means ‘defin-
able in M over some parameters’.

Definition 2.1. Let G ⊆ Mm be a definable group of dimension n. A definable
manifold topology on G is a topology on G satisfying the following: there is a finite
set A = {〈Gi, φi〉 : i ∈ I} such that

(i) ∀i ∈ I, Gi is a definable open subset of G (in the manifold topology),
(iii) G = ∪i∈IGi,
(ii) ∀i ∈ I, φi : Gi → φi(Gi) ⊆ Mn is a definable homeomorphism,
(iv) for all i, j ∈ I, if Gi ∩ Gj 6= ∅, then Gij := φi(Gi ∩ Gj) is a definable open

set and φj ◦ φ−1
i ¹Gij : φi(Gi ∩Gj) → φj(Gi ∩Gj) is a definable homeomorphism.

We fix our notation as above and refer to each φi as a chart map, to each 〈Gi, φi〉
as a chart on G, and to A as a definable atlas on G.

A topological group is a group equipped with some topology in a way that makes
its multiplication and inverse operations continuous.

Theorem 2.2 (Pillay, [Pi1], 1988). Every definable group G = 〈G,⊕, eG〉 can be
equipped with a unique definable manifold topology that makes it into a topological
group. Call it G-topology.

This theorem as well as its proof are in analogy with the theorem by L. van den
Dries and E. Hrushovski that every definable group in an algebraically closed field
is algebraic. We only provide the proof of the uniqueness of the G-topology below.

Let us call a subset of G G-open if it is open with respect to the G-topology. By
the definition of the G-topology, it follows that:

(v) X ⊆ G is G-open if and only if ∀i ∈ I, φi(X ∩Gi) is open.

Questions:
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(1) Affine embedding. There are two topologies on G: the G-topology and
the subspace topology induced by Mm. Below we will show that the G-
topology coincides with the subspace topology on a large subset of G. When
does it coincide on the whole of G (up to definable isomorphism)?

(2) Pillay’s Conjecture (roughly). Every definable group is a topological
group. What is the relation between definable groups and real Lie groups
(such as the definable groups in 〈R, <, +, ·, 0, 1〉)? For example, given a
definable group G, is there a canonical group homomorphism from G onto
a real Lie group?

(3) Assume that M = 〈M, <,+, . . . 〉 is an o-minimal expansion of an ordered
group. How do ⊕ and + relate?

Example 2.3. Let M = 〈R, <, +〉, and S1 = 〈[0, 1),⊕, 0〉 as in Section 1, that is:

x⊕ y = z ⇔ x + y − z ∈ Z.

• Two definable charts: G1 = (0, 1), G2 =
(

1
2 , 1

) ∪ (
0, 1

2

)
, with

φ1 : (0, 1) → (0, 1), φ1(x) = x, and
φ2 :

(
1
2 , 1

) ∪ [
0, 1

2

) → (0, 1),

φ2(x) =

{
x− 1

2 if 1
2 < x < 1,

x + 1
2 if 0 ≤ x < 1

2 .

• On (0, 1), the G-topology coincides with the subspace topology.
• S1 admits an affine embedding by ‘bending’ [0, 1) into a square, gluing the

two endpoints.

For the rest of this section we assume that
(1) M is sufficiently saturated.
(2) G is ∅-definable, and by a ‘generic element of G’ we mean a generic element

of G over ∅.
(3) G ⊆ Mn, where n = dim(G).

The last assumption is not legitimate, but we make it in order to simplify the
arguments. Without that assumption all statements still go through, but one needs
to work out their proofs by ‘projecting’ G onto some n coordinates.

Claim 2.4. For every generic element g ∈ G, there is an open subset U ⊆ G
containing g such that ∀X ⊆ U ,

X is open ⇔ X is G-open.

Proof. For every i ∈ I, such that g ∈ Gi, we show that there is an open neighbor-
hood Ui of g in Gi, such that φi¹Ui

: Ui → φi(U) is a homeomorphism with respect
to the subspace topology in the domain. Indeed, by the CDT, Gi = X1 ∪ · · · ∪Xk,
where each Xj is a cell, on which φi is continuous. Since g is generic, g ∈ Xj , for
some cell Xj that has dimension n and hence is open. Thus φi¹Xj

: Xj → φi(Xj)
is a continuous bijection. By a similar argument for φ−1

i (since φi(g) is a generic
element of φi(Xj)), we can reduce the domain of φi further into a definable open
set Ui on which φi is a homeomorphism.

Now, let U =
⋂

g∈Gi
Ui. Let X ⊆ U . We have:

X is open ⇔ ∀i ∈ I,X ∩ Ui is open ⇔ ∀i ∈ I, φi(X ∩Gi) is open ⇔ X is G-open,

where the third equivalence is by the definition of G-topology. ¤
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Corollary 2.5. The G-topology is unique.

Proof. In a topological group 〈K, +〉, the topology is determined by the topology
in an open neighborhood U of any point a ∈ K. Indeed, let T = {X ⊆ U : X 3
a,X is open in K}. Let V ⊆ K. Then V is open in K if and only if ∀g ∈ V , there
is X ∈ T , g − a + X ⊆ V .

So any two group topologies on G are determined by the corresponding topologies
in an open neighborhood of some generic element. But the latter ones coincide;
namely, they are both equal to the subspace topology by Claim 2.4. ¤

Corollary 2.6. The G-topology and the subspace topology coincide on a large subset
V of G.

Proof. We show that they coincide on the set V of all generics of G. Let Y ⊆ V ,
and g ∈ Y . We want to show that there is an open neighborhood X ⊆ Y containing
g if and only if there is a G-open neighborhood X ′ ⊆ Y containing g. But this is
trivially true within the open subset U ⊆ G containing g of Y provided by Claim
2.4. Indeed, a subset X ⊆ V ∩ U is open in V if and only if it is G-open in V . ¤

Remark 2.7. The proof in [Pi1] actually yields a definable large subset V of G on
which the two topologies coincide.

The following ‘finiteness’ property holds for groups definable in o-minimal struc-
tures. It is known as the Descending Chain Condition, and it will be proved in
[El2].

Fact 2.8 (DCC). Let G be a definable group. Then there is no infinite proper
descending chain of definable subgroups of G:

G = G0 	 G1 	 G2 	 . . .

3. Semi-linear groups

In this section, we let 〈M, <,+, 0, {d}d∈D〉 be a sufficiently saturated ordered
vector space over an ordered division ring D. A definable set in M is called semi-
linear, and a definable group is called a semi-linear group.

Goal: For every semi-linear group G, define a canonical group homomorphism
from G onto some real Lie group. (Rough Pillay’s Conjecture for semi-linear
groups.)

Example 3.1. Let M be an elementary extension of 〈R, <, +, 0〉, and (S1)M be
the interpretation of S1 in M. Then there is a standard part map st : (S1)M → S1,

st(x) = y if ∀n ∈ N, |x− y| < 1
n

,

where | · | denotes distance in the embedded group.

We are in fact going to show a definable analogue of the following classical result
from the theory of Lie groups. (see, for example, [Pon, Theorem 42]).

Fact 3.2. Every compact, connected, abelian Lie group G is isomorphic to a real
torus, that is, to a direct product of copies of the circle topological group S1.
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Note: The ‘algebraic content’ of this fact was proved for groups definable in
o-minimal expansions of fields in [EdOt]. That is, it was shown there that the
k-torsion subgroup G[k] of G is isomorphic to (Z/kZ)n, where n = dim(G).

The definable versions of the notions of compactness and connectedness are given
as follows.

Definition 3.3. Let G be a definable group. Then:
• G is called definably compact [Peterzil-Steinhorn (1999)] if for every defin-

able G-continuous σ : (a, b) ⊆ M → G the limit limt
x→aσ(x) exists (in

G).
• G is definably connected if it is not the disjoint union of two G-open defin-

able proper subsets.

The definable version of the notion of a torus is more subtle. We proceed with
examples of definable groups, which we would like to include in our definition of a
‘definable quotient group’.

Example 3.4. Let M = 〈R, <, +, 0〉.
1) S1 ∼= 〈R,+〉/Z ∼= 〈[0, 1),⊕, 0〉, where

x⊕ y = z ⇔ x + y − z ∈ Z.

2) G2 = S1 × S1 ∼= 〈R2,+〉/Z2 ∼= 〈[0, 1)× [0, 1),⊕, 0〉, where

x⊕ y = z ⇔ x + y − z ∈ Z× Z.

3) G3 = 〈R2,+〉/Z2 ∼= 〈[0, 1)× [0, π) ,⊕, 0〉 6∼=definably S1 × S1, where

x⊕ y = z ⇔ x + y − z ∈ Z(1, 0) + Z
(

1
2
, π

)
.

4) Let M1 ÂM be saturated.
G4 = S1(M1) = 〈[0, 1)M1 ,⊕M1 , 0〉 ∼= 〈Fin(M1),+〉/Z.

Note: the presentation of the above groups as 〈S,⊕, 0〉 is definable.

Definition 3.5. Let U ⊆ Mn be a group, and L 6 U a subgroup. Then U/L is
said to be a definable quotient group if there is a definable complete set S ⊆ U of
representatives for U/L, such that the induced group structure 〈S,+S〉 is definable.
In this case, we identify U/L with 〈S, +S〉.
Definition 3.6. The abelian subgroup of Mn generated by the elements v1, . . . , vm ∈
Mn is denoted by Zv1 + · · ·+ Zvm. If v1, . . . , vm are Z-linearly independent, then
the free abelian subgroup Zv1 + · · ·+ Zvm of Mn is called a lattice of rank m.

Let {Xk : k < ω} be a collection of definable subsets of Mn. Assume that
U =

⋃
k<ω Xk is equipped with a binary map · so that 〈U, ·〉 is a group. U is called

a
∨

-definable group if, for all i, j < ω, there is k < ω, such that Xi ∪Xj ⊆ Xk and
the restriction of · to Xi ×Xj is a definable function into Mn.

A subset A ⊆ Mn is called convex if ∀x, y ∈ A, ∀q ∈ Q∩ [0, 1], qx+(1− q)y ∈ A.

Theorem 3.7 (Structure Theorem, [ElSt]). Let G = 〈G,⊕, eG〉 be a definably
compact definably connected group definable in M, with dim(G) = n. Then G is
definably isomorphic to a definable quotient group U/L, for some convex

∨
-definable

subgroup U 6 〈Mn,+〉, and a lattice L 6 U of rank n.
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The main ingredients of the proof the Structure Theorem. We start with recalling
basic facts for definability in the linear o-minimal structure M. A linear function
f : X ⊆ Mn → M has form

f(x1, . . . , xn) = λ1x1 + · · ·+ λnxn + a, for fixed λi ∈ D and a ∈ M .

Linear Cell Decomposition Theorem (v.d. Dries) = Cell Decomposition The-
orem + replace definable continuous functions by linear ones.

A set X ⊆ G is generic if finitely many ⊕-translates of X cover G. Using the
definable compactness of G, we can show:

Generic Lemma. For all definable X ⊆ G, either X or G \X is generic.

For ~λ = (λ1, . . . , λn) ∈ Dn, t ∈ M , denote ~λt := (λ1t, . . . , λnt). Then:
• G contains a generic parallelogram (up to translation):

H := {~λ1t1 + · · ·+ ~λntn : −ei < ti < ei},
where e1, . . . , en ∈ M are positive, and ~λ1, . . . , ~λn ∈ Dn.

We define:
U :=< H >=

⋃

k<ω

H + · · ·+ H︸ ︷︷ ︸
k−times

6 Mn,

and
φ : U 3 x1 + · · ·+ xk 7→ x1 ⊕ · · · ⊕ xk ∈ G,

where xi ∈ H (and eG = 0). In order to finish the proof of the Structure Theorem,
one would have to show that:

(1) φ : U → G is a well-defined surjective group homomorphism.
(2) L := ker(φ) has rank n = dim(G). We have U/L ∼= G.
(3) There is a definable complete set S ⊆ U of representatives for U/L.

¤

Sketch of the proof of rough Pillay’s Conjecture. Since H is generic in G, by Lemma
1.5, dim(H) = n. It is then not hard to see that every u ∈ U has a unique form

u = ~λ1u1 + · · ·+ ~λnun, ui ∈ M, |ui| < qei, some q ∈ Q.

Let
st(u) =

(
st1(u1), . . . , stn(un)

) ∈ Rn,

where
sti(ui) = sup{q ∈ Q : qei < ui} ∈ R.

One can then prove that st : U → Rn is a surjective group homomorphism. How-
ever, we are aiming to define a standard part map from G (and not U) onto some
real Lie group.

Let stG be the unique map that makes the following diagram commute:

U Rn

G = U/L Rn/st(L)
?

φ

-st

?

q

p p p p p p p-
stG
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One can prove that:
• st(L) ⊆ Rn is a lattice of rank n. Thus Rn/st(L) ∼= (S1)n.
• stG : G → (S1)n is a surjective group homomorphism.

¤
An important property that one can show about stG is:

A ⊆ Rn/st(L) is closed ⇔ st−1
G (A) is type-definable.(1)

The map stG : G → (S1)n induces a group isomorphism f : G/ ker(stG) → (S1)n:

G (S1)n

G/ ker(stG)
?

π

-stG

p p p
p p p

p p p
p pµ

f

By (1), f is an isomorphism between topological groups if the quotient G/ ker(stG)
is equipped with the ‘logic topology’ (Lascar-Pillay 2001):

A ⊆ G/ ker(stG) is closed in the logic topology if π−1(A) is type-definable.

We conclude with the complete statement of Pillay’s Conjecture. The above
argument implies its solution for semi-linear groups. The solution of the conjecture
for groups definable in o-minimal expansions of fields can be found in [Pi2] and
[HPP], respectively.

Theorem 3.8 (Pillay’s Conjecture). Let M be a sufficiently saturated o-minimal
structure. Let G = 〈G,⊕, eG〉 be a definably compact definably connected group,
with dim(G) = n. Then

(1) G contains a smallest type-definable normal subgroup G00 of bounded index,
(2) G/G00, equipped with the logic topology, is a compact connected Lie group,
(3) dimLie

(
G/G00

)
= n.

(Type-definable: with < |M | many formulas.)
(G00 bounded index:

∣∣G/G00
∣∣ < |M |.)

In the above analysis of semi-linear groups, G00 is exactly ker(stG).
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