GROUPS DEFINABLE IN ORDERED VECTOR SPACES OVER ORDERED DIVISION RINGS

PANTELIS E. ELEFTHERIOU AND SERGEI STARCHENKO

ABSTRACT. Let $\mathcal{M} = \langle M, +, <, 0, \{\lambda\}_{\lambda \in D} \rangle$ be an ordered vector space over an ordered division ring D, and $G = \langle G, \oplus, e_G \rangle$ an n-dimensional group definable in \mathcal{M} . We show that if G is definably compact and definably connected with respect to the *t*-topology, then it is definably isomorphic to a 'definable quotient group' U/L, for some convex \bigvee -definable subgroup U of $\langle M^n, + \rangle$ and a lattice L of rank n. As two consequences, we derive Pillay's conjecture for a saturated \mathcal{M} as above and we show that the o-minimal fundamental group of G is isomorphic to L.

1. INTRODUCTION

By [Pi1], we know that every group definable in an o-minimal structure can be equipped with a unique definable manifold topology that makes it into a topological group, called *t*-topology. We fix a sufficiently saturated ordered vector space $\mathcal{M} = \langle M, +, <, 0, \{\lambda\}_{\lambda \in D} \rangle$ over an ordered division ring $D = \langle D, +, \cdot, <, 0, 1 \rangle$. Definability is always meant in \mathcal{M} with parameters. By [vdD, Chapter 1, (7.6)], \mathcal{M} is o-minimal. In this paper we study definable groups and prove an 'o-minimal analogue' of the following classical result from the theory of topological groups (see [Pon, Theorem 42], for example):

Fact 1.1. Any compact connected commutative locally Euclidean group is (as a topological group) isomorphic to a direct product of copies of $\langle \mathbb{R}, + \rangle / \mathbb{Z}$.

A reasonable model theoretic analogue of this fact should have its assumptions weakened (to their definable versions), since in the non-archimedean extension \mathcal{M} of $\langle \mathbb{R}, + \rangle$ compactness and connectedness almost always fail. Also, caution is needed in order to state a *definable* version of the conclusion, since: i) \mathbb{Z} is not definable in any o-minimal structure and therefore M/\mathbb{Z} is not a priori a definable object, ii) no $[0, a), a \in M$, can serve as a fundamental domain for M/\mathbb{Z} , as it cannot contain a representative for the \mathbb{Z} -class of infinitely large elements, and iii) we cannot always expect G to be a direct product of 1-dimensional definable subgroups of it, known by examples in [Str] (see also [PeS]).

Let us start with some definitions. M is equipped with the order topology. $M^n = \langle M^n, + \rangle$ is the topological group whose group operation is defined pointwise, that has $\overline{0} = (0, \ldots, 0)$ as its unit element, and whose topology is the product topology. If L is a subgroup of M^n , we denote by E_L the equivalence relation on

Date: December 30, 2005 - Revised: January 24, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 03C64, 22C05, 46A40.

Key words and phrases. O-minimal structures, Definably compact groups, Quotient by lattice. The first author was partially supported by NSF Grant DMS-02-45167. The second author was partially supported by NSF Grant DMS-04-00163.

 M^n induced by L, namely, $xE_Ly \Leftrightarrow x-y \in L$. For $U \subseteq M^n$, we let $E_L^U := E_L \upharpoonright_{U \times U}$ and $U/L := U/E_L^U$. The elements of U/L are denoted by $[x]_L^U$, $x \in U$. If $U \leq M^n$ is a subgroup of M^n , then it is a topological group equipped with the subspace topology. If, moreover, $L \leq U$, then $U/L = \langle U/L, +_{U/L}, [\bar{0}]_L^U \rangle$ is the quotient topological group, whose topological and group structure are both induced by the canonical surjection $\pi: U \to U/L$. If $S \subseteq U$ is a complete set of representatives for E_L^U (that is, it contains exactly one representative for each equivalence class), then the bijection $U/L \ni [x]_L^U \mapsto x \in S$ induces on S a topological group structure $\langle S, +_S \rangle$:

(i) $x +_S y = z \Leftrightarrow [x]_L^U +_{U/L} [y]_L^U = [z]_L^U \Leftrightarrow x + y E_L^U z$, and (ii) $A \subseteq S$ is open in the quotient topology on S if and only if $\pi^{-1}(A)$ is open in U.

Definition 1.2. Let $U \subseteq M^n$ and $L \leq M^n$. Then U/L is said to be a definable quotient if there is a definable complete set $S \subseteq U$ of representatives for E_L^U . If, in addition, $L \leq U \leq M^n$ and for some S as above $+_S$ is definable, then the topological group U/L is called a definable quotient group.

Convention. We identify a definable quotient group U/L with $\langle S, +_S \rangle$, for some fixed, definable complete set of representatives S for E_L^U , via the bijection $U/L \ni$ $[x]_L^U \mapsto x \in S.$

That is, a definable quotient group U/L is a definable group and, thus, it can be equipped with the t-topology. As it is shown in Claim 2.7, the t-topology on U/L coincides with the quotient topology on it in the case where L is a 'lattice'. Let us define the notion of a lattice. The abelian subgroup of M^n generated by the elements $v_1, \ldots, v_m \in M^n$ is denoted by $\mathbb{Z}v_1 + \ldots + \mathbb{Z}v_m$. If v_1, \ldots, v_m are \mathbb{Z} -linearly independent, then the free abelian subgroup $\mathbb{Z}v_1 + \ldots + \mathbb{Z}v_m$ of M^n is called a lattice of rank m.

Moreover, it is shown in Claim 2.7 that if L is a lattice and U/L is a definable quotient, then U can be generated by some definable subset H of it, that is, it has form $U = \bigcup_{k < \omega} H^k$, where $H^k := \underbrace{H + \ldots + H}_{k-\text{times}}$. Such a group U is called

'V-definable' in [PeSt], 'locally definable' in [Ed2], and 'Ind-definable' in [HPP].

Definition 1.3 ([PeSt]). Let $\{X_k : k < \omega\}$ be a collection of definable subsets of M^n . Assume that $U = \bigcup_{k < \omega} X_k$ is equipped with a binary map \cdot so that $\langle U, \cdot \rangle$ is a group. U is called a \bigvee -definable group if, for all $i, j < \omega$, there is $k < \omega$, such that $X_i \cup X_j \subseteq X_k$ and the restriction of \cdot to $X_i \times X_j$ is a definable function into M^n .

The reader is referred to [PeSt] for a more detailed discussion of \bigvee -definable groups. The main fact about a \bigvee -definable group $U = \bigcup_{k < \omega} X_k$ that we use here is that every definable subset of U is contained in some X_k , $k < \omega$, by use of compactness.

Our main result is the following.

Theorem 1.4. Let $G = \langle G, \oplus, e_G \rangle$ be an n-dimensional group definable in \mathcal{M} , which is definably compact and definably connected with respect to the t-topology. Then G is definably isomorphic to a definable quotient group U/L, for some convex \bigvee -definable subgroup $U \leq M^n$ and a lattice $L \leq U$ of rank n.

For a definition of convexity see Definition 3.1(i).

Let us point out that in the case where \mathcal{M} is archimedean, Theorem 1.4 has independently been proved in [Ons].

Theorem 1.4 has two corollaries.

Proposition 5.1 (Pillay's conjecture). Let G be an n-dimensional group definable in \mathcal{M} , definably compact and definably connected with respect to the t-topology. Then, there is a smallest type-definable subgroup G^{00} of G of bounded index such that G/G^{00} , when equipped with the logic topology, is a compact Lie group of dimension n.

Proposition 6.13. Let G be as in Theorem 1.4. Then the o-minimal fundamental group of G is isomorphic to L.

Pillay's conjecture was raised in [Pi2] for definably compact groups definable in *any* o-minimal structure. For o-minimal expansions of (real closed) fields, a positive answer was obtained in [HPP]. Earlier, it was shown in [EdOt] that for a group G satisfying the assumptions of the conjecture and definable over an o-minimal expansion of a field, the following hold: (i) the o-minimal fundamental group of G is equal to \mathbb{Z}^n , and (ii) the k-torsion subgroup of G is equal to $(\mathbb{Z}/k\mathbb{Z})^n$. Theorem 1.4 and Proposition 6.13 show that (i) and (ii) are true in the present context as well.

Structure of the paper. In Section 2 we fix terminology and recall basic properties of groups definable in \mathcal{M} . We also include a discussion on definable quotients and \bigvee -definable groups.

In Section 3, we study definability in \mathcal{M} and prove several lemmas to be used in the proof of Theorem 1.4. Among others, we show that [PePi, Corollary 3.9] is true in our context as well, namely, the union of any two non-generic definable subsets of G is non-generic.

Section 4 contains the proof of Theorem 1.4. En route, we show that any mdimensional group definable in \mathcal{M} is locally isomorphic to M^m .

In Section 5, we apply our analysis to define G^{00} and prove Proposition 5.1.

In Section 6, we prove Proposition 6.13.

On notation. English letters denote elements or tuples from M. The Greek letters λ, μ, ν, ξ denote elements or matrices over D. The rest of Greek letters are used to denote paths. The letter ε is also used to denote 'small' elements or tuples from M.

Acknowledgements. The authors wish to thank the model theory group at Mc-Master University, Canada, for their hospitality during Fall 2004. The first author also thanks Benjamin Jones for various discussions on topological groups.

2. Preliminaries

We assume throughout some familiarity with the basics of o-minimality. (For a standard reference see [vdD].) Definability is always meant in \mathcal{M} with parameters.

For the beginning of this section \mathcal{M} could be any saturated o-minimal structure. A group $G = \langle G, \oplus, e_G \rangle$ is said to be definable if both its domain G and the graph of its group operation are definable subsets of M^n and M^{3n} , for some n, respectively. A topological group is a group equipped with a topology in a way that makes its addition and inverse operation continuous. An isomorphism between two topological groups G and G' is at the same time a group isomorphism and a topological homeomorphism between G and G'.

For the rest of this section, let $G = \langle G, \oplus, e_G \rangle$ be a definable group with $G \subseteq M^n$ and $\dim(G) = m \leq n$.

A definable manifold topology on G is a topology on G satisfying the following: there is a finite set $\mathcal{A} = \{ \langle S_i, \phi_i \rangle : i \in J \}$ such that

(i) for each $i \in J$, S_i is a definable open subset of G and $\phi : S_i \to M^m$ is a definable homeomorphism between S_i and $K_i := \phi(S_i) \subseteq M^m$,

(ii) $G = \bigcup_{i \in J} S_i$, and

(iii) for all $i, j \in J$, if $S_i \cap S_j \neq \emptyset$, then $S_{ij} := \phi_i(S_i \cap S_j)$ is a definable open subset of G and $\phi_j \circ \phi_i^{-1} \upharpoonright_{S_{ij}}$ is a definable homeomorphism onto its image.

We fix our notation for a definable manifold topology on G as above. Moreover, we refer to each ϕ_i as a chart map, to each $\langle S_i, \phi_i \rangle$ as a definable chart on G, and to \mathcal{A} as a definable atlas on G. If all of S_i and ϕ_i , $i \in J$, are A-definable, for some $A \subseteq M$, we say that G admits an A-definable manifold structure.

The main result in [Pi1] is the following.

Fact 2.1. There is a unique definable manifold topology that makes G into a topological group. We refer to this topology as the t-topology (on G).

Remark 2.2. (i) Whenever $f: K \to K'$ is a definable bijection between two definable subsets of cartesian powers of M, and $K = \langle K, \star, e \rangle$ is a definable group, f induces on K' a definable group structure $\langle K', \circ, f(e) \rangle$, where \circ is defined as follows: $x \circ y = f(f^{-1}(x) \star f^{-1}(y))$. Clearly, f is a definable group isomorphism between K and K'. Moreover, if K is a topological group, f induces on K' a group topology that makes f a definable isomorphism between topological groups.

(ii) By uniqueness of the *t*-topology, a definable group isomorphism between two definable groups also preserves their associated *t*-topologies, and thus it is a definable isomorphism between the corresponding topological groups.

We omit bars from tuples in M^n . Let $X \subseteq M^n$ be an A-definable set, for some set of parameters $A \subseteq M$. Then $a \in X$ is called a *dim-generic element of* X over A if $\dim(a/A) = \dim(X)$. If $A = \emptyset$, a is called a *dim-generic element of* X. A definable set $V \subseteq X$ is called *large in* X if $\dim(X \setminus V) < \dim(X)$. Equivalently, Vcontains all dim-generic elements of X over A, for any A over which X and V are defined. We freely use any properties of dim-generic elements of definable groups from [Pi1].

For the rest of this section \mathcal{M} could be any saturated o-minimal expansion of an ordered group. We make a few comments about the existence of the two topologies on G, the *t*-topology on the one hand, and the subspace topology induced by M^n , henceforth called \mathcal{M} -topology, on the other. First, \oplus is continuous with respect to the *t*-topology, and $+ \upharpoonright_A$ with respect to the \mathcal{M} -topology, for $A = \{(x, y) \in G \times G : x + y \in G\}$. Moreover, by [Pi1], the two topologies coincide on a large open subset W^G of G. For $a \in M^n$ and r > 0 in \mathcal{M} , we denote by $\mathcal{B}^n_a(r)$ the open *n*-box centered at a of size r,

$$\mathcal{B}_a^n(r) := a + (-r, r)^n = \{a + \varepsilon : \varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \in M^n, \, \varepsilon_i \in (-r, r)\},\$$

whereas for $a \in G$, by a *t*-neighborhood V_a of a (in G) we mean a definable open neighborhood of a in G with respect to the *t*-topology. We omit the index 'n' from $\mathcal{B}_a^n(r)$ when it is clear that $a \in M^n$. Note that if $\dim(G) = n$ and $a \in W^G$, then for sufficiently small r, $\mathcal{B}_a(r)$ is also a *t*-neighborhood of a in G.

In general, we distinguish between topological notions when taken with respect to the product topology of M^n and when taken with respect to the t-topology on G, by adding an index 't' in the latter case. For example, we write \overline{A}^t , $\operatorname{Int}(A)^t$, $\mathrm{bd}(A)^t = \overline{A}^t \setminus \mathrm{Int}(A)^t$ to denote, respectively, the closure, interior and boundary of a set $A \subseteq G$ with respect to the t-topology. Similarly, $A \subseteq G$ is called 't-open', 't-closed', or 't-connected', if it is definable and, respectively, open, closed, or definably connected with respect to the t-topology. We call a function $f: M^n \to G$ *t-continuous* if it is continuous with respect to the *t*-topology in the range. Accordingly, $\lim_{x\to x_0}^{t} f(x)$ denotes the limit of f with respect to the t-topology in the range. Definable compactness of a definable group G is always meant with respect to the t-topology, that is ([PeS]): for every definable t-continuous embedding σ : $(a,b) \subseteq M \to G, -\infty \leq a < b \leq \infty$, there are $c,d \in G$ such that $\lim_{x\to a^+}^t \sigma(x) = c$ and $\lim_{x\to b^-}^t \sigma(x) = d$. By a *t*-path we mean a definable *t*-continuous function $\gamma: [p,q] \to G, p,q \in M, p \leq q$, and by a path (in M^n), just a definable continuous function $\gamma: [p,q] \to M^n, p,q \in M, p \leq q$. A (t-)loop is then a (t-)path γ with $\gamma(p) = \gamma(q)$. A concatenation of two (t-)paths $\gamma: [p,q] \to M^n$ (G) and $\delta: [r,s] \to M^n$ (G) with $\gamma(q) = \delta(r)$ is a (t-)path $\gamma \lor \delta: [p,q+s-r] \to M^n$ (G) with:

$$(\gamma \lor \delta)(t) = \begin{cases} \gamma(t) & \text{if } t \in [p,q], \\ \delta(t-q+r) & \text{if } t \in [q,q+s-r]. \end{cases}$$

We often let the domain of a (t-)path have the form [0,p], for $0 \leq p \in M$. Since a (t-)path $\gamma : [p,q] \to M^n$ can be reparametrized as $\delta : [0,q-p] \to M^n$, where $\forall t \in [0,q-p], \delta(t) = \gamma(t+p)$, this convention is at no loss of generality. The image of a (t-)path γ is denoted by Im(γ). Finally, a definable subset of M^n (G) is called (t-)path-connected if any two points of it can be connected by a (t-)path.

Notice the systematic omittance of the words 'definable' or 'definably' in our terminology.

Remark 2.3. If G is t-connected, then it is t-path-connected. In o-minimal expansions of ordered groups, definable connectedness is equivalent to definable path-connectedness. Recall, G can be covered by finitely many t-open sets S_i , that can be taken to be t-connected, each of which is homeomorphic to a definably connected and, thus, path-connected subset of M^m . The homeomorphisms imply that the S_i 's are t-path-connected, and thus so is G.

Of course, G, as a definable subset of M^n , has finitely many path-connected components.

The following sets are going to be important in our proof of Theorem 1.4.

Definition 2.4. Let W^G be a fixed definable large *t*-open subset of *G* on which the \mathcal{M} - and *t*- topologies coincide. Let

 $V^G := \{a \in G : \text{there is a } t\text{-neighborhood } V_a \text{ of } a \text{ in } G,$

such that $\forall x, y \in V_a, x \ominus a \oplus y = x - a + y \} \cap W^G$.

Lemma 2.5. (i) V^G is definable.

(ii) V^G is t-open, and thus also open in the \mathcal{M} -topology of G.

Proof. (i) Recall that G admits a definable atlas $\mathcal{A} = \{\langle S_i, \phi_i \rangle : i \in J\}$. Thus, for every element $a \in S_i \subseteq G$, the existence of a *t*-neighborhood V_a of a in G amounts to the existence of some $r \in M$ such that the image of a under $\phi_i : S_i \to K_i$ belongs to the open m-box $\mathcal{B}_{\phi_i(a)}(r) \subseteq K_i$ in M^m .

(ii) Let $v \in V^G$ and a *t*-neighborhood $V_v \subseteq G$ contain v such that $\forall x, y \in V_v$, $x \ominus v \oplus y = x - v + y$. By the definable manifold structure of G and Remark 2.2, we can assume that $V_v = \mathcal{B}_v^m(r)$ for some r > 0 in M. We claim that $\forall u \in \mathcal{B}_v^m(r)$, $u \in V^G$. To see that, let $u \in \mathcal{B}_v^m(r)$ and pick $\delta > 0$ in M such that $\mathcal{B}_u^m(\delta) \subseteq \mathcal{B}_v^m(r)$. Let $x, y \in \mathcal{B}_u^m(\delta)$. Then, $v + x - u \in \mathcal{B}_v^m(r)$ and

 $(v+x-u) \ominus v \oplus u = v+x-u-v+u = x.$

Therefore, $x \ominus u = (v + x - u) \ominus v$. It follows that

$$x \ominus u \oplus y = (v + x - u) \ominus v \oplus y = v + x - u - v + y = x - u + y.$$

2.1. Definable quotients and \bigvee -definable groups. First, a general statement about quotient topological groups:

Lemma 2.6. Let $L \leq U \leq M^n$, and $S \subseteq U$ a complete set of representatives for E_L^U . Let $R \subseteq S$ be open in U. Then, for any $D \subseteq R$, D is open in U if and only if D is open in the quotient topology on S.

Proof. First, we claim that every $A \subseteq S$ open in U is open in the quotient topology on S. Let $A \subseteq S$ be open in U. We need to show that $\pi^{-1}(A)$ is open in U. But $\pi^{-1}(A) = \bigcup_{x \in L} (x + A)$. Since $\langle U, +, 0 \rangle$ is a topological group, we have that for all $x \in L, x + A$ is open in U. Thus, $\bigcup_{x \in L} (x + A)$ is open in U.

Now let $R \subseteq S$ be open in U, and $D \subseteq R$. The left-to-right direction is given by the previous paragraph. For the right-to-left one, assume D is open in the quotient topology on S, that is, $\pi^{-1}(D) = \bigcup_{x \in L} (x + D)$ is open in U. Since R is also open in U, it suffices to show

 $D = \pi^{-1}(D) \cap R.$

 $D \subseteq \pi^{-1}(D) \cap R$ is clear. Now, let $a \in \pi^{-1}(D) \cap R$. We have a = x + d = r, for some $x \in L$, $d \in D$ and $r \in R$. Thus, $d - r \in L$. Since S is a complete set of representatives for E_L^U , and $d, r \in S$, we have d = r. Thus, x = 0 and $a = d \in D$.

Claim 2.7. Let $L \leq U \leq M^n$, with L a lattice of rank $m \leq n$. Suppose U/L is a definable quotient, and let $S \subseteq U$ be a definable complete set of representatives for E_L^U . Then:

(i) U is a \bigvee -definable group,

(ii) U/L is a definable quotient group, and

(iii) the quotient topology on S coincides with the t-topology on S.

Proof. (i) We have, $\forall x \in U, \exists y \in S, x - y \in L$. Let $L = \mathbb{Z}v_1 + \ldots + \mathbb{Z}v_n$, and for each $k < \omega$,

$$L_k := \{ l_1 v_1 + \ldots + l_n v_n \in L : -k \le l_i \le k \}$$

and

$$U_k := \{ x \in M^n : \exists y \in S, \, x - y \in L_k \} = S + L_k.$$

Clearly, all L_k and U_k are definable. Moreover, $U = \bigcup_{k < \omega} U_k$. Since $\forall k, U_k \subseteq U_{k+1}$, it is easy to see that U is \bigvee -definable.

(ii) Since $U = \bigcup_{k \leq \omega} U_k$ is \bigvee -definable and $S + S \subseteq U$, there must be some $K < \omega$ such that $S + S \subseteq U_K$. It follows that $+_S$ is definable, since $\forall x, y, z \in S$, $x +_S y = z \Leftrightarrow x + y E_L^{U_K} z \Leftrightarrow x + y - z \in L_K$.

(iii) Since $\langle S, +_S \rangle$ is a topological group with respect to the quotient topology as well as with respect to the *t*-topology, it suffices to show that the two topologies coincide on a large subset Y of S. Let W^S be as in Definition 2.4, that is, W^S is a large open subset of S where the *t*-topology coincides with the subspace topology induced by M^n (or by U).

Subclaim. There is a definable set $R \subseteq S$ which is open in U and large in S.

Proof of Subclaim. For a topological space A and a set $B \subseteq A$, let us denote by $\operatorname{Int}_A(B)$ the interior of B in A. For $k < \omega$, let $X_k := \operatorname{Int}_U(U_k)$. Since the topology on U is the subspace topology by M^n , each X_k is definable.

We first show that S is contained in some X_k . By compactness, it suffices to show that $U = \bigcup_{k < \omega} X_k$. To see that, first note $U = \operatorname{Int}_U(U)$. That is, for any $x \in U$, there is a definable open set $X \subseteq U$ containing x. But, for some $k < \omega$, $X \subseteq U_k$. Thus, $x \in \operatorname{Int}_U(U_k) = X_k$.

Now, let $k < \omega$ so that $S \subseteq X_k$. Since X_k is open in U, we have $\operatorname{Int}_{X_k}(S) = \operatorname{Int}_U(S)$. By [vdD, Chapter 4, Corollary (1.9)], dim $(S \setminus \operatorname{Int}_{X_k}(S)) < \dim(S)$, that is, $\operatorname{Int}_{X_k}(S)$ is large in S. Let $R := \operatorname{Int}_U(S) = \operatorname{Int}_{X_k}(S)$. Then R is definable, large in S and open in U.

Let R be as in Subclaim. Then $Y := R \cap W^S \subseteq M^n$ is a large subset of S. Let $D \subseteq Y$. We have: $D \subseteq R$ is open in the quotient topology on S if and only if (by Lemma 2.6) D is open in U if and only if $D \subseteq W^S$ is open in the *t*-topology on S.

3. Definability in \mathcal{M}

We discuss here some facts about the o-minimal theory $Th(\mathcal{M})$ of ordered vector spaces over ordered division rings, and set up the scene for the proof of Theorem 1.4 in the next section. Following [vdD, Chapter 1, §7], a *linear (affine) function* on $A \subseteq M^n$ is a function $f: A \to M$ of the form $f(x_1, \ldots, x_n) = \lambda_1 x_1 + \ldots + \lambda_n x_n + a$, for some fixed $\lambda_i \in D$ and $a \in M$.¹ A *basic semilinear set* in M^n is a set of the form $\{x \in M^n : f_1(x) = \ldots = f_p(x) = 0, g_1(x) > 0, \ldots, g_q(x) > 0\}$, where f_i and g_j are linear functions on M^n . Then, (7.6), (7.8) and (7.10) of the above reference say that:

(1) $Th(\mathcal{M})$ admits quantifier elimination and, in particular, the definable subsets of M^n are the *semilinear sets* in M^n , that is, finite unions of basic semilinear sets in M^n .

(2) Every definable function $f : A \subseteq M^n \to M$ is *piecewise linear*, that is, there is a finite partition of A into basic semilinear sets A_i $(i \in \{1, \ldots, k\})$, such that $f \upharpoonright_{A_i}$ is linear, for each $i \in \{1, \ldots, k\}$.

In fact, the above can be subsumed in a refinement of the classical Cell Decomposition Theorem (henceforth CDT, see [vdD, Chapter 3, (2.11)]) stated below.

 $^{^{1}}$ We keep the term 'linear' and mean it in the 'affine' sense, conforming to the literature such as [Hud] or [LP].

First, the notion of a 'linear cell' can be defined similarly to the one of a usual cell ([vdD, Chapter 3, (2.2)-(2.4)]) by using linear functions in place of definable continuous ones. Namely, for a definable set $X \subseteq M^n$, we let

$$L(X) := \{ f : X \to M : f \text{ is linear} \}.$$

If $f \in L(X)$, we denote by $\Gamma(f)$ the graph of f. If $f, g \in L(X) \cup \{\pm \infty\}$ with f(x) < g(x) for all $x \in X$, we write f < g and denote by $(f, g)_X$ the 'generalized cylinder' $(f,g)_X = \{(x,y) \in X \times M : f(x) < y < g(x)\}$ between f and g. Then,

- a linear cell in M is either a singleton subset of M, or an open interval with endpoinds in $M \cup \{\pm \infty\}$,
- a linear cell in M^{n+1} is a set of the form $\Gamma(f)$, for some $f \in L(X)$, or $(f,g)_X$, for some $f,g \in L(X) \cup \{\pm \infty\}$, f < g, where X is a linear cell in M^n .

One can then adapt the classical proof of CDT and inductively show:

Linear CDT. Let $A \subseteq M^n$ and $f : A \to M$ be definable. Then there is a decomposition of M^n that partitions A into finitely many linear cells A_i , such that each $f \upharpoonright_{A_i}$ is linear. (See [vdD, Chapter 3, (2.10)] for a definition of decomposition of M^n .)

 $D = \langle D, +, \cdot, <, 0, 1 \rangle$ is a division ring and $\langle \mathbb{Q}, +, \cdot, <, 0, 1 \rangle$ naturally embeds into D. If $a \in M$ and $m \in \mathbb{N}$, we write $\frac{a}{m}$ for $\frac{1}{m}a$, which is also the unique $b \in M$ such that $a = mb = \underbrace{b + \ldots + b}_{d}$, since \mathcal{M} is divisible.

We write $0 := (0, \ldots, 0)$. If $\lambda \in D$, $x = (x_1, \ldots, x_n) \in M^n$ and $X \subseteq M^n$, then $\lambda x := (\lambda x_1, \dots, \lambda x_n)$ and $\lambda X := \{\lambda x : x \in X\}$, whereas if $\lambda = (\lambda_1, \dots, \lambda_n) \in D^n$ and $x \in M$, $\lambda x := (\lambda_1 x, \dots, \lambda_n x)$. If $\lambda \in \mathbb{M}(n, D)$ is an $n \times n$ matrix over D and $x \in M^n$, then λx denotes the resulting *n*-tuple of the matrix multiplication of λ with x. The unit element of $\mathbb{M}(n,D)$ is denoted by \mathbb{I}_n . Again, if $a \in M^n$ and $m \in \mathbb{N}$, then $\frac{a}{m} := \frac{1}{m}a$.

Let $m, n \in \mathbb{N}$. The elements $a_1, \ldots, a_m \in M^n$ are called *linearly independent* over \mathbb{Z} or just \mathbb{Z} -independent if for all $\lambda_1, \ldots, \lambda_m$ in $\mathbb{Z}, \lambda_1 a_1 + \ldots + \lambda_m a_m = 0$ implies $\lambda_1 = \ldots = \lambda_m = 0$. The elements $\lambda_1, \ldots, \lambda_m \in D^n$ are called *M*-independent if for all $t_1, \ldots, t_m \in M$, $\lambda_1 t_1 + \ldots + \lambda_m t_m = 0$ implies $t_1 = \ldots = t_m = 0$. If $\lambda = (\lambda_1, \ldots, \lambda_n) \in D^n$, then $\lambda^{-1} := (\lambda_1^{-1}, \ldots, \lambda_n^{-1}) \in D^n$.

For $\lambda \in D$, $|\lambda| := \max\{-\lambda, \lambda\}$. For $x \in M$, $|x| := \max\{-x, x\}$, and for x = $(x_1, \ldots, x_n) \in M^n, |x| := |x_1| + \ldots + |x_n|.$

Definition 3.1. Let $A \subseteq M^n$.

- (i) A is called *convex* if $\forall x, y \in A, \forall q \in \mathbb{Q} \cap [0, 1], qa + (1 q)b \in A$.
- (ii) A is called *bounded* if $\exists r \in M, \forall x \in A, |x| \leq r$, that is, $\exists r' \in M, A \subseteq \mathcal{B}_0(r')$.

For example, a linear cell is a convex basic semilinear set, and it is bounded if no endpoints or functions involved in its construction are equal to $\pm \infty$. Below we define a special kind of bounded definable convex sets, the 'parallelograms' (Definition 3.5), and make explicit their relation to bounded linear cells (Lemma 3.6).

We consider throughout definable functions $f = (f_1, \ldots, f_n) : M^m \to M^n$, $m, n \in \mathbb{N}$. All definitions apply to f through its components, for example, f is called linear on M^m if every f_i is linear on M^m . Moreover, the Linear CDT holds for definable functions of this form. In fact, a linear function $f: M^n \times M^n \to M^n$ can be written in the usual form, $f(x_1, x_2) = \lambda_1 x_1 + \lambda_2 x_2 + a$, for some fixed $\lambda_i \in \mathbb{M}(n, D)$ and $a \in M^n$.

Definition 3.2. Let $a \in M^n$. We say a has definable slope if there are $\lambda \in D^n$ and e > 0 in M, such that $a = \lambda e$. In this case, and if $x \in M^n$, we call

$$[0,e] \ni t \mapsto x + \lambda t \in M^{*}$$

a linear path from x to x + a.

Remark 3.3. (i) Any two linear paths from x to x + a must have the same image. Indeed, if $a = \lambda_1 e_1 = \lambda_2 e_2$ and $t_1 \in [0, e_1]$, then for $t_2 = \lambda_2^{-1} \lambda_1 t_1 \in [0, e_2]$, we have $\lambda_2 t_2 = \lambda_1 t_1$.

(ii) By Linear CDT, every definable path is, piecewise, a linear path, that is, it is the concatenation of finitely many linear paths.

Lemma 3.4. Let $A \subseteq M^n$ be definable and convex, and $x, y \in A$. If γ is a linear path from x to y, then $\text{Im}(\gamma) \subseteq A$.

Proof. Let $\gamma(t) : [0, e] \ni t \mapsto x + \lambda t \in M^n$. Assume, towards a contradiction, that $P := \{t \in [0, e] : x + \lambda t \notin A\} \neq \emptyset$. By o-minimality, P is a finite union of points and open intervals. If it is a finite union of points and t_0 is one of them, then there must be some small z > 0 in M such that $t_0 - z, t_0 + z \in [0, e] \setminus P$. But since A is convex, $x + \lambda t_0 = \frac{x + \lambda(t_0 - z) + x + \lambda(t_0 + z)}{2}$ has to be in A, a contradiction. Similarly, if P contains some intervals, it is possible to find one such with endpoints $t_1 < t_2$, and some $z_1, z_2 \ge 0$ in M, such that $t_1 - z_1, t_2 + z_2 \in [0, e] \setminus P$ and $t_1 < \frac{t_1 - z_1 + t_2 + z_2}{2} < t_2$. Then $x + \lambda \frac{t_1 - z_1 + t_2 + z_2}{2} = \frac{x + \lambda(t_1 - z_1) + x + \lambda(t_2 + z_2)}{2} \in A$, again a contradiction. \Box

Definition 3.5. Let $a_1, \ldots, a_m \in M^n$, $0 < m \le n$, have definable slopes, and $a \in M^n$. Then, the closed *m*-parallelogram anchored at *a* and generated by a_1, \ldots, a_m , denoted by $\overline{P}_a(a_1, \ldots, a_m)$, is the closed definable set

$$a + \{\lambda_1 t_1 + \ldots + \lambda_m t_m : t_i \in [0, e_i]\},\$$

where $a_i = \lambda_i e_i$, $e_i > 0$, $1 \le i \le m$. The open *m*-parallelogram anchored at *a* and generated by a_1, \ldots, a_m , denoted by $P_a(a_1, \ldots, a_m)$, is the definable set

$$a + \{\lambda_1 t_1 + \ldots + \lambda_m t_m : t_i \in (0, e_i)\}.$$

We just say open (or closed) *m*-parallelogram if a and a_1, \ldots, a_m are not specified. The 2^m elements $a + \lambda_1 t_1 + \ldots + \lambda_m t_m$, $t_i = 0, e_i$, are called the corners of $\overline{P}_a(a_1, \ldots, a_m)$ and $P_a(a_1, \ldots, a_m)$; the element $\frac{1}{2^m} \sum_{t_i=0, e_i} (a + \lambda_1 t_1 + \ldots + \lambda_m t_m) =$

 $a + \frac{1}{2} \sum_{i=1}^{m} a_i$ is called their *center*.

Remark 3.3(i) guarantees that the definition of $\overline{P}_a(a_1, \ldots, a_m)$ and $P_a(a_1, \ldots, a_m)$ does not depend on the choice of λ_i and e_i , $1 \leq i \leq m$.

Clearly, an open or closed *m*-parallelogram is a definable bounded convex set.

Lemma 3.6. The closure of every bounded n-dimensional linear cell $Y \subset M^n$, n > 0, is a finite union of closed n-parallelograms.

Proof. By induction on n.

 $\mathbf{n} = \mathbf{1}$. $Y = (a, b) \subset M$, $a, b \in M$. Then $\overline{Y} = \overline{P}_a(b-a)$.

 $\mathbf{n} > \mathbf{1}$. A bounded *n*-dimensional linear cell Y must have the form $Y = (f, g)_X$, for some (n-1)-dimensional linear cell X in M^{n-1} and $f < g \in L(X)$. By Inductive

Hypothesis, \overline{X} is a finite union of closed (n-1)-parallelograms, and thus it suffices to show that for any closed (n-1)-parallelogram $Q \subset M^{n-1}$ and $f < g \in L(Q)$, $\overline{(f,g)_Q}$ is a finite union of closed *n*-parallelograms. Let $Q = \overline{P}_{q_0}(q_1,\ldots,q_{n-1})$ in $M^{n-1}, a_0 = (q_0, f(q_0)), b_0 = (q_0, g(q_0)), \text{ and } \forall i \in \{0,\ldots,n-1\},$

$$a_i = (q_0 + q_i, f(q_0 + q_i)) - a_0 = (q_i, f(q_0 + q_i) - f(q_0)) \in M^n$$

and

$$b_i = (q_0 + q_i, g(q_0 + q_i)) - b_0 = (q_i, g(q_0 + q_i) - g(q_0)) \in M^n.$$

Then, $\Gamma(f) = \overline{P}_{a_0}(a_1, \ldots, a_{n-1})$ and $\Gamma(g) = \overline{P}_{b_0}(b_1, \ldots, b_{n-1})$. Indeed, it is not very hard to see that for $0 < i \leq n-1$, if $[0, e_i] \ni t_i \mapsto q_i(t_i) \in M^{n-1}$ is a linear path from 0 to q_i , then

$$[0, e_i] \ni t_i \mapsto a_i(t_i) := \left(q_i(t_i), f(q_0 + q_i(t_i)) - f(q_0) \right) \in M^n$$

is a linear path from 0 to a_i , and

$$[0,e_i] \ni t_i \mapsto b_i(t_i) := \left(q_i(t_i), g\left(q_0 + q_i(t_i)\right) - g(q_0)\right) \in M^n$$

is a linear path from 0 to b_i . Moreover, for any $x = q_0 + \sum_{i=1}^{n-1} q_i(t_i) \in Q$, we have $f(x) = \sum_{i=1}^{n-1} f(q_0 + q_i(t_i)) - (n-2)f(q_0)$, since by linearity of f, for any $j \in \{2, \ldots, n-1\}$, $f(q_0 + \sum_{i=1}^{j} q_i(t_i)) - f(q_0 + \sum_{i=1}^{j-1} q_i(t_i)) = f(q_0 + q_j(t_j)) - f(q_0)$. Thus,

$$a_{0} + \sum_{i=1}^{n-1} a_{i}(t_{i}) = (q_{0}, f(q_{0})) + \sum_{i=1}^{n-1} (q_{i}(t_{i}), f(q_{0} + q_{i}(t_{i})) - f(q_{0}))$$
$$= \left(q_{0} + \sum_{i=1}^{n-1} q_{i}(t_{i}), \sum_{i=1}^{n-1} f(q_{0} + q_{i}(t_{i})) - (n-2)f(q_{0})\right) = (x, f(x)).$$

It follows that $\Gamma(f) = \overline{P}_{a_0}(a_1, \ldots, a_{n-1})$. Similarly, $\Gamma(g) = \overline{P}_{b_0}(b_1, \ldots, b_{n-1})$.

Now, if $\exists c \in M^n$, $\forall i \in \{0, \ldots, n-1\}$, $b_i - a_i = c$, then for all i > 0, $a_i - a_0 = b_i - b_0$ and $\overline{(f,g)_Q}$ is the closed *n*-parallelogram $\overline{P}_{a_0}(a_1, \ldots, a_{n-1}, b_0 - a_0)$. Indeed, one first can see that $\forall x \in Q$, $g(x) - f(x) = b_0 - a_0 = c$, and thus $\overline{(f,g)_Q} = \{(x,y) \in$ $M^{n-1} \times M : x \in Q, y \in f(x) + [0, (b_0)_n - (a_0)_n]\}$. On the other hand, consider the linear path $[0, b_0 - a_0] \ni t \mapsto (b_0 - a_0)(t) := (0, t) \in M^{n-1} \times M$ from 0 to $(0, b_0 - a_0)$ in M^n . Then, every element in $\overline{P}_{a_0}(a_1, \ldots, a_{n-1}, b_0 - a_0)$ has the form $a_0 + \sum_{i=1}^{n-1} a_i(t_i) + (b_0 - a_0)(t) = (x, f(x)) + (0, t) = (x, f(x) + t)$, for $x \in Q$ and $t \in [0, (b_0)_n - (a_0)_n]$.

Otherwise, we may assume that $\overline{(f,g)_Q}$ is such that for some $i \in \{0,\ldots,n-1\}$, $a_i = b_i$. Indeed, let $C = \{|b_i - a_i| : 0 \le i \le n-1\}$, and let $j \in \{0,\ldots,n-1\}$ be such that $|b_j - a_j| = (b_j)_n - (\underline{a_j})_n$ is minimum in C. If, say, j = 0, and $a_0 \ne b_0$, it is easy to see as before that $\overline{(f,g)_Q} = \overline{(f,f')_Q} \cup \overline{P}_{a_0}(b_1,\ldots,b_{n-1},b_0-a_0)$, where $\forall x \in Q, f'(x) = g(x) - (b_0 - a_0)$, that is, $\overline{(f,g)_Q}$ is the union of the closure of a cell of the desired form and a closed *n*-parallelogram.

We can further assume that all corners of $\Gamma(f)$ and $\Gamma(g)$ but one coincide. For, if $\Gamma(f) = \overline{P}_{a_0}(\underline{a_1}, \ldots, \underline{a_{n-1}})$ and $\Gamma(\underline{g}) = \overline{P}_{a_0}(b_1, \ldots, b_{n-1})$, with say $a_1 \neq b_1$ and $a_2 \neq b_2$, then $(f,g)_Q = (f,f')_Q \cup (f',g)_Q$, where $f' \in L(Q)$ such that $\Gamma(f') = \overline{P}_{a_0}(b_1, a_2, \ldots, a_{n-1})$. Clearly, the corners of $\Gamma(f)$ and $\Gamma(f')$ differ by one, and the corners of $\Gamma(f')$ and $\Gamma(g)$ differ by one less than those of $\Gamma(f)$ and $\Gamma(g)$. Thus, repeating this process, we see that $\overline{(f,g)_Q}$ is a union of closures of cells of the desired form.

Now let $\Gamma(f) = \overline{P}_{a_0}(a_1, a_2, \dots, a_{n-1})$ and $\Gamma(g) = \overline{P}_{a_0}(b_1, a_2, \dots, a_{n-1})$. Let $\overline{a} := (a_2, \dots, a_{n-1})$. Then, $\overline{(f, g)_Q} = P_1 \cup P_2 \cup P_3$, where

$$\begin{split} P_1 &= \overline{P}_{a_0} \left(\frac{a_1}{2}, \frac{b_1}{2}, \bar{a} \right), \\ P_2 &= \overline{P}_{a_0 + \frac{a_1}{2}} \left(\frac{a_1}{2}, \frac{b_1 - a_1}{2}, \bar{a} \right), \text{ and } \\ P_3 &= \overline{P}_{a_0 + \frac{b_1}{2}} \left(\frac{b_1}{2}, \frac{a_1 - b_1}{2}, \bar{a} \right). \end{split}$$

Indeed, let $x = q_0 + \sum_{i=1}^{n-1} q_i(t_i) \in Q$, and $(x, f(x)+t) \in \overline{(f,g)_Q}, t \in [0,g(x)-f(x)]$. Then the following are easy to check. If $t_1 \leq \frac{e_1}{2}$, then $(x, f(x) + t) \in P_1$. If $t_1 \geq \frac{e_1}{2}$, then if $t \leq \frac{(b_1)_n - (a_1)_n}{2}$, $(x, f(x) + t) \in P_2$, whereas if $t \geq \frac{(b_1)_n - (a_1)_n}{2}$, $(x, f(x) + t) \in P_3$.

For the rest of this section, let $G = \langle G, \oplus, e_G \rangle$ be a definable group with $G \subseteq M^n$ and $\dim(G) = m \leq n$.

Note that if a definable set $A \subseteq M^n$ is unbounded, then there is a definable continuous embedding $\gamma : [0, \infty) \to A$.

Lemma 3.7. If G is definably compact, then G is definably bijective to a bounded subset of M^m . Thus, in this case, we can assume m = n (see Remark 2.2).

Proof. Recall, G admits a finite t-open covering $\{S_i\}_{i \in J}$, such that each S_i is definably homeomorphic to an open subset K_i of M^m via $\phi_i : S_i \to K_i$. It is not hard to see that it suffices to show that each K_i is bounded in M^m . If, say, K_1 is not, there must be a definable continuous embedding $\gamma : [0, \infty) \to K_1$. Since G is definably compact, there is some $g \in G$ with $\lim_{x\to\infty}^t \phi_1^{-1}(\gamma(x)) = g$. If $g \in S_l$, $l \in J$, take a bounded open subset B of K_l in M^m containing $\phi_l(g)$. Then the restriction of the map $\phi_l \circ \phi_1^{-1} \circ \gamma$ on some $[a, \infty)$ such that $\phi_l \circ \phi_1^{-1} \circ \gamma([a, \infty)) \subseteq B$ is a piecewise linear bijection between a bounded and an unbounded set in M^m , a contradiction.

Definition 3.8. Assume G is abelian. Let $X \subseteq G \subseteq M^n$. A \oplus -translate of X is a set of the form $a \oplus X$, for $a \in G$. We say that X is generic (in G) if finitely many \oplus -translates of X cover G.

Fact 3.9. Assume G is abelian. Then,

(i) Every large definable subset of G is generic.

Assume, further, that X is a definable subset of G. Then,

- (ii) If $X \subseteq G$ is generic, then $\dim(X) = \dim(G)$.
- (iii) $X \subseteq G$ is generic if and only if \overline{X}^t is generic.

Proof. (i) is by [Pi1], whereas (ii) and (iii) constitute [PePi, Lemma 3.4].

Let us note here that, although in [PePi] the authors work over an o-minimal expansion \mathcal{M} of a real closed field, their proofs of several facts about generic sets, such as [PePi, Lemma 3.4], that is, Fact 3.9 above, go through in the present context as well. More significantly, their Corollary 3.9 holds. To spell out a few more details, their use of the field structure of \mathcal{M} is to ensure that G is affine ([vdD, Chapter 10, (1.8)]), and, therefore, that a definably compact subset X of G is closed and bounded ([PeS]). Theorem 2.1 from [PePi] (which is extracted from Dolich's work, and is shown in their Appendix to be true if \mathcal{M} expands an ordered group),

then applies and shows their Lemma 3.6 and, following, Corollary 3.9. Although in our context G may not be affine, [PePi, Theorem 2.1] can be restated for any $X \subseteq G$, which is definably compact, instead of closed and bounded, assuming Gis definably compact, as below. The rest of the proof of [PePi, Corollary 3.9] then works identically.

Lemma 3.10. Let both G and $X \subseteq G$ be definably compact, and \mathcal{M}_0 a small elementary substructure of \mathcal{M} (that is, $|\mathcal{M}_0| < |\mathcal{M}|$), such that the manifold structure of G is \mathcal{M}_0 -definable. Then the following are equivalent:

(i) The set of \mathcal{M}_0 -conjugates of X is finitely consistent.

(ii) X has a point in \mathcal{M}_0 .

Therefore ([PePi, Corollary 3.9]), if G is abelian, the union of any two nongeneric definable subsets of G is also non-generic.

Proof. First, G is Hausdorff, since M^m is and G is locally homeomorphic to M^m . One can then show that there are \mathcal{M}_0 -definable t-open subsets $O_i \subseteq G$, $i \in J$, such that $G = \bigcup_{i \in J} O_i$ and $\overline{O_i}^t \subset S_i$ (see [BO1, Lemmas 10.4, 10.5], for example, where the authors work over a real closed field but their arguments go word-byword through in the present context, as well). Now, for the non-trivial direction $(i) \Rightarrow (ii)$, let $X \subseteq G$, $X = \bigcup_{i \in J} X_i$, with $X_i := X \cap \overline{O_i}^t$, and assume that the set of \mathcal{M}_0 -conjugates of X is finitely consistent. Since O_i and the chart maps $\phi_i : S_i \to M^m$ are \mathcal{M}_0 -definable, if $f \in \operatorname{Aut}_{\mathcal{M}_0}(M)$, then $f(X_i) \subseteq \overline{O_i}^t$, and thus the set $\{\bigcup_{i \in J} \phi_i(f(X_i))\}_{f \in \operatorname{Aut}_{\mathcal{M}_0}(M)}$ is finitely consistent. Moreover, it is not hard to see that $f(\bigcup_{i \in J} \phi_i(X_i)) = \bigcup_{i \in J} \phi_i(f(X_i))$, which gives that the set of \mathcal{M}_0 -conjugates of $\bigcup_{i \in J} \phi_i(X_i)$ is finitely consistent. Since each X_i is definably compact, $\bigcup_{i \in J} \phi_i(X_i)$ is closed and bounded in M^m . By [PePi, Theorem 2.1], $\bigcup_{i \in J} \phi_i(X_i)$ has a point in \mathcal{M}_0 , say $a \in \phi_1(X_1)$, and thus X_1 has a point b in \mathcal{M}_0 (since $\mathcal{M}_0 \prec \mathcal{M} \models \exists y \in X_1 \phi_1(y) = a$).

Remark 3.11. The proof (and the result) of Lemma 3.10 are valid in any o-minimal expansion \mathcal{M} of an ordered group. Moreover, the proof of Lemma 3.10 shows that Lemma 3.7 is also valid in any o-minimal expansion \mathcal{M} of an ordered group. Indeed, with the above notation, each $\overline{O_i}^t$ is definably compact (as a *t*-closed subset of the definably compact G), hence $\phi_i(\overline{O_i}^t) \subseteq M^m$ is definably compact in M^m and thus (closed and) bounded.

4. The proof of Theorem 1.4

Outline. We split our proof into three steps. We let $G = \langle G, \oplus, e_G \rangle$ be a \emptyset -definable group with $G \subseteq M^n$.

In Step I, we begin with a local analysis on G and show that the set V^G (from Definition 2.4) is large in G. We then let G be *n*-dimensional, definably compact and *t*-connected, and, based on the set V^G , we compare the two group operations \oplus and +. A key notion is that of a 'jump' of a *t*-path (Definition 4.16), and the main results of this first step are Lemma 4.23 and Proposition 4.24.

In Step II, we invoke [PePi, Corollary 3.9] (see Lemma 3.10 here) in order to establish the existence of a generic open *n*-parallelogram H in G, which is used to generate a subgroup $U \leq M^n$. Using Lemma 4.23(i) from Step I, we can define a group homomorphism ϕ from U onto G, and let $L := \ker(\phi)$.

In Step III, we use Proposition 4.24 to prove that L is a lattice generated by some elements of M^n recovered in Step I, namely, by some \mathbb{Z} -linear combinations of 'jump vectors'. Then we use H to obtain a 'standard part' map from U to \mathbb{R}^n . This allows us to compute the rank of L and finish the proof.

STEP I. Comparing \oplus with +. We let $G = \langle G, \oplus, e_G \rangle$ be a \emptyset -definable group with $G \subseteq M^n$ and dim $(G) = m \leq n$. (We do not yet assume that G is definably compact or t-connected.) Our first goal is to show that V^G is a large subset of G, which among other things implies that G is locally isomorphic to $M^m = \langle M^m, +, 0 \rangle$.

A consequence of the Linear CDT is that for any two independent dim-generic elements a and b of G, there are t-neighborhoods V_a of a and V_b of b in G, such that for all $x \in V_a$ and $y \in V_b$, $x \oplus y = \lambda x + \mu y + d$, for some fixed $\lambda, \mu \in \mathbb{M}(n, D)$, and $d \in M^n$. Moreover, λ and μ have to be invertible matrices (for example, setting $y = b, x \oplus b = \lambda x + \mu b + d$ is invertible, showing that λ is invertible).

Proposition 4.1. For every dim-generic element a of G, there exists a t-neighborhood V_a of a in G, such that for all $x, y \in V_a$,

$$x \ominus a \oplus y = x - a + y.$$

Proof. We proceed through several lemmas.

Lemma 4.2. For every two independent dim-generics $a, b \in G$, there exist tneighborhoods V_a of a and V_b of b in G, invertible $\lambda, \lambda' \in \mathbb{M}(n, D)$, and $c = b - \lambda a, c' = b - \lambda' a \in M^n$, such that for all $x \in V_a$,

 $x \ominus a \oplus b = \lambda x + c \in V_b$ and $\ominus a \oplus b \oplus x = \lambda' x + c' \in V_b$.

Proof. Since a and b are independent dim-generics of G, a and $\ominus a \oplus b$ are independent dim-generics of G as well. Therefore, there are t-neighborhoods V_a of a and $V_{\ominus a \oplus b}$ of $\ominus a \oplus b$ in G, as well as invertible $\lambda, \mu \in \mathbb{M}(n, D)$ and $d \in M^n$, such that $\forall x \in V_a, \forall y \in V_{\ominus a \oplus b}, x \oplus y = \lambda x + \mu y + d$. In particular, for all $x \in V_a, x \ominus a \oplus b = \lambda x + \mu(\ominus a \oplus b) + d$. Letting $c = \mu(\ominus a \oplus b) + d$ and $V_b = \{x \ominus a \oplus b : x \in V_a\}$ shows the first equality. That $c = b - \lambda a$, it can be verified by setting x = a. The second equality can be shown similarly. \Box

Lemma 4.3. Let a be a dim-generic element of G. Then there exist a t-neighborhood V_a of a in G, $\lambda, \mu \in \mathbb{M}(n, D)$ and $d \in M^n$, such that for all $x, y \in V_a$,

$$x \ominus a \oplus y = \lambda x + \mu y + d.$$

Proof. Take a dim-generic element a_1 of G independent from a. Then $a_2 = a \ominus a_1$ is also a dim-generic element of G independent from a. By Lemma 4.2, we can find t-neighborhoods V_{a_1}, V_{a_2}, V_a of a_1, a_2, a , respectively, in G, as well as $\lambda_1, \lambda_2 \in \mathbb{M}(n, D)$ and $c_1, c_2 \in M^n$, such that $\forall x \in V_a, x \ominus a \oplus a_1 = \lambda_1 x + c_1 \in V_{a_1}$ and for all $y \in V_a, \ominus a \oplus a_2 \oplus y = \lambda_2 y + c_2 \in V_{a_2}$. Moreover, since a_1 and $a_2 = a \ominus a_1$ are independent dim-generics of G, we could choose V_{a_1}, V_{a_2} and V_a be such that for some fixed $\nu, \xi \in \mathbb{M}(n, D)$ and $o \in M^n$, we have: $\forall x \in V_{a_1}, \forall y \in V_{a_2}, x \oplus y = \nu x + \xi y + \varepsilon$. Now for all $x, y \in V_a$, we have:

$$\begin{aligned} x \ominus a \oplus y &= x \ominus a \oplus a_1 \ominus a_1 \oplus y \\ &= (x \ominus a \oplus a_1) \oplus (\ominus a \oplus a_2 \oplus y) \\ &= \nu(\lambda_1 x + c_1) + \xi(\lambda_2 y + c_2) + o \\ &= \nu\lambda_1 x + \xi\lambda_2 y + \nu c_1 + \xi c_2 + o \end{aligned}$$

Setting $\lambda = \nu \lambda_1, \mu = \xi \lambda_2$, and $d = \nu c_1 + \xi c_2 + o$ finishes the proof of the lemma. \Box

We can now finish the proof of Proposition 4.1. By Lemma 4.3, there exists a *t*-neighborhood V_a of a in G, $\lambda, \mu \in \mathbb{M}(n, D)$ and $d \in M^n$, such that for all $x, y \in V_a, x \ominus a \oplus y = \lambda x + \mu y + d$. In particular, for all $x, y \in V_a$,

$$y = a \ominus a \oplus y = \lambda a + \mu y + d$$
$$x = x \ominus a \oplus a = \lambda x + \mu a + d$$

and, therefore, $x + y = (\lambda x + \mu y + d) + (\lambda a + \mu a + d)$. But, $\lambda x + \mu y + d = x \ominus a \oplus y$, and

$$a = a \ominus a \oplus a = \lambda a + \mu a + d.$$

Hence, $x + y = (x \ominus a \oplus y) + a$, or, $x \ominus a \oplus y = x - a + y$.

Corollary 4.4. G is 'definably locally isomorphic' to M^m . That is, there is a definable homeomorphism f from some t-neighborhood V_{e_G} of e_G in G to a definable open neighborhood W_0 of 0 in M^m , such that:

(i) for all $x, y \in V_{e_G}$, if $x \oplus y \in V_{e_G}$, then $f(x \oplus y) = f(x) + f(y)$, and

(ii) for all $x, y \in W_0$, if $x + y \in W_0$, then $f^{-1}(x + y) = f^{-1}(x) \oplus f^{-1}(y)$. (See [Pon, Definition 30] for more on this definition of a local isomorphism.)

Proof. Let a be a dim-generic element of G. The function $G \ni x \mapsto x \oplus a \in G$ witnesses that the topological group (G, \oplus, e_G) is definably isomorphic to (G, *, a), where $x * y = x \oplus a \oplus y$ (Remark 2.2). Now, since a is dim-generic, some tneighborhood V_a of a in G can be projected homeomorphically onto an open subset W_a of M^m , inducing on W_a the group structure from V_a . We can thus assume that $V_a \subseteq M^m$. By Proposition 4.1, the definable function $f: G \ni x \mapsto x - a \in$ M^m witnesses, easily, that (G, *, a) is definably locally isomorphic to M^m . Thus, (G, \oplus, e_G) is (definably isomorphic to a group which is) definably locally isomorphic to M^m .

The following corollary is already known; for example, see [Ed1, Corollary 6.3] or [PeSt, Corollary 5.1]. It can also be extracted from [LP].

Corollary 4.5. G is abelian-by-finite.

Proof. Let V_{e_G} be as in Corollary 4.4. Since \oplus is *t*-continuous, there is a *t*-open $U' \subseteq G$ with $\forall x, y \in U', x \oplus y \in V_{e_G}$. Thus, if we let $U := U' \cap V_{e_G}$, then $\forall x, y \in U, x \oplus y = f^{-1}(f(x) + f(y)) = f^{-1}(f(y) + f(x)) = y \oplus x$.

Now let G^0 be the *t*-connected component of e_G in G. Then for every element $a \in U$, its centralizer $C(a) = \{x \in G : a \oplus x = x \oplus a\}$ contains the *t*-open (*m*-dimensional) subset $U \subseteq G$, and thus $G^0 \subseteq C(a)$. It follows that the center $Z(G^0) = \{x \in G^0 : \forall y \in G^0, x \oplus y = y \oplus x\}$ of G^0 contains U, thus $Z(G^0)$ must have dimension m and be equal to G^0 . That is, G^0 is abelian.

We fix for the rest of the paper a definable group $G = \langle G, \oplus, e_G \rangle$, definably compact and *t*-connected, with $G \subseteq M^n$. By Lemma 3.7, we assume $\dim(G) = n$. By Corollary 4.5, G is abelian.

Proposition 4.1 says that the set V^G is large in G. We omit the index 'G' and write just V. Then, V is *t*-open as well as open, and, by cell decomposition, it is the disjoint union of finitely many open definably connected components V_0, \ldots, V_N , that is, $V = \bigsqcup_{i \in I} V_i$, for a fixed index set $I := \{0, \ldots, N\}$.

Next goal is to show that the property

$$(u+\varepsilon)\ominus u=(v+\varepsilon)\ominus v$$

can be assumed to be true for any $u, v \in V$ and 'small' $\varepsilon \in M^n$ (Corollary 4.12). In what follows, whenever we write a property that includes an expression of the form ' $x \oplus y$ ', it is meant that $x, y \in G$ (and the property holds).

Corollary 4.6. For all $u \in V$, there is r > 0 in M, such that for all $v \in \mathcal{B}_u(r)$ and $\varepsilon \in (-r, r)^n$,

$$(u+\varepsilon)\ominus u=(v+\varepsilon)\ominus v.$$

Proof. By definition of V, there is r > 0 in M, such that for all $v \in \mathcal{B}_u(r)$ and $\varepsilon \in (-r, r)^n$,

$$(u+\varepsilon)\ominus u\oplus v=u+\varepsilon-u+v=v+\varepsilon.$$

Lemma 4.7. For all u, v in the same definably connected component of V, there is r > 0 in M, such that for all $\varepsilon \in (-r, +r)^n$,

$$(u+\varepsilon)\ominus u=(v+\varepsilon)\ominus v.$$

Proof. Let V_i be a definably connected component of V and u some element in V_i . We show that the set

$$\Gamma = \{ v \in V_i : \exists r > 0 \in M \,\forall \varepsilon \in (-r, +r)^n \, [(u + \varepsilon) \ominus u = (v + \varepsilon) \ominus v] \}$$

is a nonempty clopen subset of V_i . First, Γ is nonempty since it contains u. To show that Γ is open, consider an element $v \in \Gamma$. Let $r_v \in M$ be such that $\forall \varepsilon \in (-r_v, r_v)^n$, $(u + \varepsilon) \ominus u = (v + \varepsilon) \ominus v$. By Corollary 4.6, there is $s_v > 0$ in M such that for all $v' \in \mathcal{B}_v(s_v)$ and $\varepsilon \in (-s_v, s_v)^n$, $(v+\varepsilon) \ominus v = (v'+\varepsilon) \ominus v'$. By letting $r := \min\{r_v, s_v\}$, we obtain that for all $v' \in \mathcal{B}_v(r)$, for all $\varepsilon \in (-r, r)^n$,

$$(v' + \varepsilon) \ominus v' = (v + \varepsilon) \ominus v = (u + \varepsilon) \ominus u,$$

that is, $\mathcal{B}_r(v) \subseteq \Gamma$, and therefore Γ is open.

To show that Γ is closed in V_i , pick some v in $V_i \setminus \Gamma$. It should satisfy

(1)
$$\forall r > 0 \,\exists \varepsilon_v \in (-r, r)^n \left[(u + \varepsilon) \ominus u \neq (v + \varepsilon) \ominus v \right]$$

Now, let as before $s_v > 0$ be so that for all $v' \in \mathcal{B}_v(s_v)$ and $\varepsilon \in (-s_v, s_v)^n$, $(v + \varepsilon) \ominus v = (v' + \varepsilon) \ominus v'$. We want to show $v' \in V \setminus \Gamma$, that is, $\forall r_{v'} > 0$,

(2)
$$\exists \varepsilon_{v'} \in (-r_{v'}, r_{v'})^n [(u + \varepsilon_{v'}) \ominus u \neq (v' + \varepsilon_{v'}) \ominus v'].$$

It suffices to show (2) for all $r_{v'}$ with $\mathcal{B}_{v'}(r_{v'}) \subseteq \mathcal{B}_v(s_v)$. Let $r_{v'}$ be one such. Apply (1) for $r_{v'}$ to get an $\varepsilon_{v'} \in (-r_{v'}, r_{v'})^n \subseteq (-s_v, s_v)^n$ satisfying $(u + \varepsilon_{v'}) \ominus u \neq (v + \varepsilon_{v'}) \ominus v$. But since $\varepsilon_{v'} \in (-s_v, s_v)^n$, we also have $(v + \varepsilon_{v'}) \ominus v = (v' + \varepsilon_{v'}) \ominus v'$. It follows that $(u + \varepsilon_{v'}) \ominus u \neq (v' + \varepsilon_{v'}) \ominus v'$.

More generally, the following is true.

Lemma 4.8. There are invertible $\lambda_0, \ldots, \lambda_N \in \mathbb{M}(n, D)$ such that for any $i, j \in I = \{0, \ldots, N\}$, $u \in V_i$ and $v \in V_j$, there is r > 0 in M, such that for all $\varepsilon \in (-r, r)^n$,

$$(u+\lambda_i\varepsilon)\ominus u=(v+\lambda_i\varepsilon)\ominus v.$$

In particular, $\lambda_0 = \mathbb{I}_n$.

Proof. By Lemma 4.2, for any two independent dim-generics $u \in V_0$ and $v \in V_j$, $j \in I$, there is invertible $\lambda_j \in \mathbb{M}(n, D)$ such that for all x in some small t-neighborhood of u in G, $x \ominus u \oplus v = \lambda_j x + v - \lambda_j u$, or, equivalently, for sufficiently small ε , $(u+\varepsilon) \ominus u \oplus v = \lambda_j (u+\varepsilon) + v - \lambda_j u = v + \lambda_j \varepsilon$, that is, $(u+\varepsilon) \ominus u = (v+\lambda_j \varepsilon) \ominus v$. By Lemma 4.7, the last equation holds for any $u \in V_0$ and $v \in V_j$, perhaps for some smaller epsilon's. Clearly, $\lambda_0 = \mathbb{I}_n$. Now, pick any $i, j \in I$, and any $v_0 \in V_0$, $u \in V_i$, $v \in V_j$. We derive that for sufficiently small ε :

$$(u + \lambda_i \varepsilon) \ominus u = (v_0 + \varepsilon) \ominus v_0 = (v + \lambda_j \varepsilon) \ominus v.$$

We next show (Lemma 4.11) that all λ_i 's in Lemma 4.8 can be assumed to be equal to \mathbb{I}_n . First, let us notice it is harmless to assume $0 = e_G \in V$, which in particular means that in a *t*-neighborhood of 0 the \mathcal{M} - and *t*- topologies coincide.

Lemma 4.9. (G, \oplus, e_G) is definably isomorphic to a topological group $(G', +_1, 0)$ with $0 \in V^{G'}$.

Proof. Pick a dim-generic point $b \in G$. Consider the definable bijection

$$f: G \ni x \mapsto (x \oplus b) - b \in f(G) \subseteq M^n.$$

Let G' := f(G) and let $\langle G', +_1, 0 = f(e_G) \rangle$ be the induced topological group structure on G' by f. Then f is a definable isomorphism between $\langle G, \oplus, e_G \rangle$ and $\langle G', +_1, 0 = f(e_G) \rangle$ (Remark 2.2). We show that

$$V^{G'} = V - b,$$

and, therefore, since $b \in V$, we have $0 \in V^{G'}$.

For all $x, y, c \in G'$, we have that $x + b, y + b, c + b \in G$ and the following holds:

$$\begin{aligned} x - 1 c + 1 y &= f\left(f^{-1}(x) \ominus f^{-1}(c) \oplus f^{-1}(y)\right) \\ &= \left(\left[(x + b) \ominus b \ominus (c + b) \oplus b \oplus (y + b) \ominus b\right] \oplus b\right) - b \\ &= \left[(x + b) \ominus (c + b) \oplus (y + b)\right] - b. \end{aligned}$$

Now, assume that $c+b \in V$. We claim that $c \in V^G$. Indeed, if x, y are sufficiently close to c, then x + b, y + b will be close to $c + b \in V$, hence

 $[(x+b)\ominus(c+b)\oplus(y+b)]-b=x+b-c-b+y+b-b=x-c+y.$

This shows $V^{G'} \subseteq V - b$ (which is what we need). The inverse inclusion can be shown similarly. \Box

Remark 4.10. The above proof can be split into two parts: (i) for every element b in G, the definable bijection $f_1: G \ni x \mapsto x \oplus b \in G$ preserves V, and (ii) for every element b in G, the definable bijection $f_2: G \ni x \mapsto x - b \in G'$ maps V to $V^{G'}$, that is, $V^{G'} = V - b$. Later, we use the property that a bijection such as f_2 maps m-parallelograms to m-parallelograms.

We let V_0 be the component of V that contains $0 = e_G$.

Lemma 4.11. G is definably isomorphic to a group $G' = \langle G', +_1, 0 \rangle$ whose corresponding $\lambda_i^{G'}$'s (as in Lemma 4.8) are all equal to \mathbb{I}_n .

Proof. For any $i \in I$, let a_i be some element in V_i . Consider the definable function $f: G \to M^n$, such that

$$f(x) = \begin{cases} \lambda_i^{-1}(x - a_i) + a_i & \text{if } x \in V_i, \\ x & \text{if } x \in G \setminus V. \end{cases}$$

We can assume that f is one-to-one, by definably moving the definably connected components of G sufficiently 'far away' from each other if needed, which is possible, by Lemma 3.7. We show that in the induced group $G' = \langle f(G) = G', +_1, f(0) = 0 \rangle$ the corresponding set $V^{G'}$ is exactly the set $f(V) = f(V_0) \bigsqcup \dots \bigsqcup f(V_N)$, with $f(V_0), \ldots, f(V_N)$ as its definably connected components. First, notice that for $x \in V_i \subseteq G$ and ε 'small', $\lambda_i \varepsilon$ is also small, and $f(x + \lambda_i \varepsilon) = \lambda_i^{-1}(x + \lambda_i \varepsilon - a_i) + a_i = \lambda_i^{-1}(x - a_i) + a_i + \varepsilon = f(x) + \varepsilon$. Thus, for all $x, y, c \in G'$, with x, yclose to $c, f^{-1}(x), f^{-1}(y)$ must be close to $f^{-1}(c)$. Moreover, if $f^{-1}(c) \in V_i$, then $x, y, c \in f(V_i)$ and:

$$\begin{aligned} x - c + y &= f\left(f^{-1}(x) \ominus f^{-1}(c) \oplus f^{-1}(y)\right) = f\left(f^{-1}(x) - f^{-1}(c) + f^{-1}(y)\right) \\ &= \lambda_i^{-1}\left(\left[\left(\lambda_i(x - a_i) + a_i\right) - \left(\lambda_i(c - a_i) + a_i\right) + \left(\lambda_i(y - a_i) + a_i\right)\right] - a_i\right) + a_i \\ &= x - c + y, \end{aligned}$$

This shows that $f(V_i) \subseteq V_i^{G'}$. Similarly for the inverse inclusion.

It then suffices to show that for any $i \in \{0, ..., N\}$, for all $u = f(u) \in V_0^{G'} = V_0$, $f(v) \in V_i^{G'}$, and sufficiently small ε ,

$$(u+\varepsilon) - u = (f(v) + \varepsilon) - f(v).$$

We have,

$$(f(v)+\varepsilon) - {}_1 f(v) = f(v+\lambda_i \varepsilon) - {}_1 f(v) = f((v+\lambda_i \varepsilon) \ominus v) = f((u+\varepsilon) \ominus u) = (u+\varepsilon) - {}_1 u,$$

by Lemma 4.8 and since f is the identity on V_0 .

By Proposition, we can assume that for any $i \in I = \{0, ..., N\}, \lambda_i = \mathbb{I}_n$. Therefore, Lemma 4.8 becomes:

Corollary 4.12. For all $u, v \in V$, there is r > 0 in M, such that for all $\varepsilon \in (-r, r)^n$,

$$(u+\varepsilon)\ominus u=(v+\varepsilon)\ominus v.$$

Corollary 4.13. For all $u \in V$, $v \in G$, such that $u \oplus v \in V$, there is r > 0 in M, such that for all $\varepsilon \in (-r, r)^n$,

(3)
$$(u+\varepsilon)\oplus v = (u\oplus v)+\varepsilon.$$

Proof. By Corollary 4.12, there is r > 0 in M, such that $\forall \varepsilon \in (-r, r)^n$,

$$(u+\varepsilon)\ominus u=[(u\oplus v)+\varepsilon]\ominus (u\oplus v).$$

17

The final goal in this first step (Lemma 4.23 and Proposition 4.24) is to obtain suitable versions of the equation (3), where i) u, v and $u \oplus v$ are in G, and ii) ε is arbitrary in M^n . **Definition 4.14.** We let \sim_G be the following definable equivalence relation on \overline{G} :

$$a \sim_G b \Leftrightarrow \forall t > 0 \text{ in } M, \exists a_t, b_t \in G, \text{ such that}$$

 $a_t \in \mathcal{B}_a(t), b_t \in \mathcal{B}_b(t) \text{ and } a_t \ominus b_t \in \mathcal{B}_0(t).$

Clearly, $\forall a, b \in G, a \sim_G b \Leftrightarrow a = b$. We can assume that $G \subseteq \overline{V}$:

Lemma 4.15. G is definably isomorphic to a group G' with $G' \subseteq \overline{V^{G'}}$.

Proof. Since V is large in G, it is everywhere dense, so $G \subseteq \overline{V}^t$. This implies that $\forall a \in G, \exists b \in \overline{V}$, such that $a \sim_G b$. Indeed, for any $a \in G$ and any t > 0 in M, there is $b_t \in V$, so that $a \ominus b_t \in \mathcal{B}_0(t)$. Since $V \subseteq G$ is bounded (Remark 3.7), \overline{V} is closed and bounded. Thus $b := \lim_{t \to 0} b_t \in \overline{V}$, by [PeS]. We have $a \sim_G b$. Now, by definable choice, there is a definable subset Y of \overline{V} of representatives for \sim_G (by considering the restriction of \sim_G on $\overline{V} \times \overline{V}$). Since each class can contain only one element of G, the definable function:

 $f: G \ni x \mapsto$ the unique element a with $x \sim_G a \in Y \subseteq \overline{V}$,

is a definable bijection between G and Y. We can let G' be the topological group with domain Y and structure the one induced by f, according to Remark 2.2. \Box

Note that now $\operatorname{bd}(V) = \operatorname{bd}(G)$. Indeed, since $V \subseteq G \subseteq \overline{V}$, we have $\overline{V} \subseteq \overline{G} \subseteq \overline{V}$ and $\operatorname{Int}(V) \subseteq \operatorname{Int}(G) \subseteq \operatorname{Int}(\overline{V}) = \operatorname{Int}(V)$, that is, $\overline{G} = \overline{V}$ and $\operatorname{Int}(G) = \operatorname{Int}(V)$.

Definition 4.16. Let $\gamma : [p,q] \subseteq M \to G$ be a *t*-path. An element $w \in M^n$, $w \neq 0$, is said to be a *jump (vector) of* γ if there is some $t_0 \in [p,q]$ such that

(4)
$$w = \gamma(t_0) - \lim_{t \to t_0^-} \gamma(t) \text{ or } w = \lim_{t \to t_0^+} \gamma(t) - \gamma(t_0)$$

We say that γ jumps at t_0 .

An element $w \in M^n$ is called a *jump vector (for G)* if it is the jump of some *t*-path.

Remark 4.17. (i) One can see that: w is a jump of some t-path $\Leftrightarrow \exists$ distinct $a, b \in bd(V)$, such that $a \sim_G b$ and w = b - a. Thus, the set of all jump vectors is a definable subset of M^n .

(ii) Since γ is a *t*-path, $\lim_{t \to t_0^-} \gamma(t) = \gamma(t_0) = \lim_{t \to t_0^+} \gamma(t)$, contrasting (4). The last equation is equivalent to $\lim_{z \to 0} \left[\gamma(t_0 - z) \ominus \gamma(t_0 + z) \right] = 0.$

(iii) In case $\gamma : [0, p] \to G$ is a *t*-path with no jumps, then it is a path in M^n as well and it has the form $u + \varepsilon(t)$, where $u = \gamma(0)$, and $\varepsilon(t) = \gamma(t) - u$ is a path in M^n with $\varepsilon(0) = 0$. Conversely, if a *t*-path has the form $u + \varepsilon(t)$ for some path $\varepsilon(t)$ in M^n , then it has no jumps. For example, every *t*-path in *V* is of this form, as the \mathcal{M} - and *t*- topologies coincide on *V*.

Lemma 4.18. Let $u, v \in V$ such that $u \oplus v \in V$, and $u + \varepsilon(t) : [0, p] \to V$, $\varepsilon(0) = 0$, a t-path. Then, $\exists t_0 \in (0, p]$, such that $\forall t \in [0, t_0]$,

$$(u + \varepsilon(t)) \oplus v = (u \oplus v) + \varepsilon(t).$$

Proof. Let r > 0 be as in Corollary 4.13 and choose $t_0 \in (0, p]$ such that $\forall t \in [0, t_0]$, $u + \varepsilon(t) \in \mathcal{B}_u(r)$.

19

Lemma 4.19. Let $\gamma(t) = u + \varepsilon(t) : [0, p] \to V$, $\varepsilon(0) = 0$, be a t-path, such that $\forall t \in [0, p], \varepsilon(t) \in V$. Then:

$$(u + \varepsilon(p)) \ominus u = \varepsilon(p).$$

Proof. Consider the function $f: G \ni x \mapsto x - (x \ominus u) \in M^n$. By Lemma 4.18, f is locally constant on $\operatorname{Im}(\gamma)$. Indeed, first observe that $\forall s \in [0, p], \exists z > 0$, such that $\forall t \in [s - z, s + z] \cap [0, p]$,

$$(u+\varepsilon(t))\ominus u = (u+\varepsilon(s)+\varepsilon(t)-\varepsilon(s))\ominus u = [(u+\varepsilon(s))\ominus u] + \varepsilon(t) - \varepsilon(s).$$

Then, $\forall t \in [s-z, s+z], f(u+\varepsilon(t)) = u+\varepsilon(t) - [(u+\varepsilon(t)) \ominus u] = u+\varepsilon(s) - [(u+\varepsilon(s)) \ominus u] = f(u+\varepsilon(s)).$

It follows that f is constant on $\operatorname{Im}(\gamma)$ and equal to $u - (u \ominus u) = u$. Thus, $\forall t \in [0, p], u + \varepsilon(t) - [(u + \varepsilon(t)) \ominus u] = u$, that is, $(u + \varepsilon(t)) \ominus u = \varepsilon(t)$. \Box

Lemma 4.20. Let $u + \varepsilon(t) : [0, p] \to G$, $\varepsilon(0) = 0$, be a t-path that does not jump at t = 0, such that $\forall t \in (0, p]$, $u + \varepsilon(t) \in V$, and $\forall s, t \in [0, p]$, $\varepsilon(s) - \varepsilon(t) \in V$. Then:

$$(u + \varepsilon(p)) \ominus u = \varepsilon(p)$$

Proof. By Lemma 4.19, we have $\forall t \in (0, p]$, $(u + \varepsilon(t) + \varepsilon(p) - \varepsilon(t)) \ominus (u + \varepsilon(t)) = \varepsilon(p) - \varepsilon(t)$, that is,

$$(u + \varepsilon(p)) \ominus (u + \varepsilon(t)) = \varepsilon(p) - \varepsilon(t).$$

On the other hand, since for all (small) $t \in [0, p]$, $\varepsilon(p) - \varepsilon(t) \in V$, the limits of the above expression with respect to the t- and \mathcal{M} - topologies as $t \to 0$ must coincide and be equal to $\varepsilon(p)$:

$$\lim_{t\to 0} {}^t \left[\left(u + \varepsilon(p) \right) \ominus \left(u + \varepsilon(t) \right) \right] = \lim_{t\to 0} \left(\varepsilon(p) - \varepsilon(t) \right) = \varepsilon(p).$$

Since $u + \varepsilon(t) : [0, p] \to G$ does not jump at t = 0, we also have $\lim_{t \to 0}^{t} (u + \varepsilon(t)) = u$. It follows, $(u + \varepsilon(p)) \ominus u = \lim_{t \to 0}^{t} [(u + \varepsilon(p)) \ominus (u + \varepsilon(t))] = \varepsilon(p)$.

Lemma 4.21. Let $u + \varepsilon(t) : [0, p] \to G$, $\varepsilon(0) = 0$, be a t-path that does not jump at t = 0. Then: $\exists t_0 \in (0, p]$, such that $\forall t \in [0, t_0]$,

$$(u + \varepsilon(t)) \ominus u = \varepsilon(t)$$

Proof. By curve selection, since $G \subseteq \overline{V}$ and $u + \varepsilon(t)$ does not jump at t = 0, it is not hard to see that there is some $t_0 \in (0, p]$ and, for all $s \in [0, t_0]$, a *t*-path $u + \delta_s(t) : [0, s] \to G$ with no jumps such that:

(i) $\delta_s(0) = 0$, $\delta_s(s) = \varepsilon(s)$, and $\forall t \in (0, s)$, $u + \delta_s(t) \in V$, and

(ii) $\forall t_1, t_2 \in [0, s], \ \delta_s(t_1) - \delta_s(t_2) \in V.$

Now, by Lemma 4.20, $\forall s \in [0, t_0], \forall t \in [0, s),$

$$(u+\delta_s(t))\ominus u=\delta_s(t)\in V_0.$$

Since $u + \delta_s(t)$ does not jump at t = s,

$$(u+\delta_s(s))\ominus u=\lim_{t\to s}{}^t[(u+\delta_s(t))\ominus u]=\lim_{t\to s}{}^t\delta_s(t)=\delta_s(s).$$

We have shown: $\forall s \in [0, t_0], \ \varepsilon(s) = \delta_s(s) = (u + \delta_s(s)) \ominus u = (u + \varepsilon(s)) \ominus u.$

Lemma 4.22. Let $u, v \in G$ and $u + \varepsilon(t) : [0, p] \to G$, $\varepsilon(0) = 0$, a t-path that does not jump at t = 0, such that

(i) $(u \oplus v) + \varepsilon(t)$ is a t-path,

or

(ii) $(u + \varepsilon(t)) \oplus v$ is a t-path that does not jump at t = 0.

Then: $\exists t_0 \in (0, p]$, such that $\forall t \in [0, t_0]$,

$$(u + \varepsilon(t)) \oplus v = (u \oplus v) + \varepsilon(t).$$

Proof. (i) Notice, by Remark 4.17(iii), $(u \oplus v) + \varepsilon(t)$ does not jump at t = 0. Applying Lemma 4.21 both to $u + \varepsilon(t)$ and to $(u \oplus v) + \varepsilon(t)$, we obtain: $\exists t_0 \in (0, p] \forall t \in [0, t_0]$,

$$(u + \varepsilon(t)) \ominus u = \varepsilon(t) = [(u \oplus v) + \varepsilon(t)] \ominus (u \oplus v).$$

(ii). Since $(u + \varepsilon(t)) \oplus v$ does not jump at t = 0, there exists some $s \in (0, p]$, such that $\forall t \in [0, s]$, $(u + \varepsilon(t)) \oplus v = (u \oplus v) + d_{\varepsilon}(t)$ for some path $d_{\varepsilon}(t)$ in M^n , that is, $[(u \oplus v) + d_{\varepsilon}(t)] \oplus (u \oplus v) = (u + \varepsilon(t)) \oplus u$. On the other hand, by Lemma 4.21, there is $t_0 \in (0, s]$, such that $\forall t \in [0, t_0]$,

$$[(u\oplus v)+d_{arepsilon}(t)]\ominus (u\oplus v)=d_{arepsilon}(t) \ ext{ and } \ ig(u+arepsilon(t)ig)\ominus u=arepsilon(t).$$

It follows that $\forall t \in [0, t_0], d_{\varepsilon}(t) = \varepsilon(t).$

Lemma 4.23. Let $u, v \in G$, and $\gamma(t) = u + \varepsilon(t) : [0, p] \to G$, $\varepsilon(0) = 0$, be a t-path with no jumps, such that

(i) $(u \oplus v) + \varepsilon(t)$ is a t-path,

or

(ii) $(u + \varepsilon(t)) \oplus v$ is a t-path with no jumps. Then:

$$(u + \varepsilon(p)) \oplus v = (u \oplus v) + \varepsilon(p).$$

Proof. Notice, by Remark 4.17(iii), $(u \oplus v) + \varepsilon(t)$ has no jumps. Consider the function $f: G \ni x \mapsto x + v - (x \oplus v) \in G$. By Lemma 4.22, it follows that f is locally constant on $\operatorname{Im}(\gamma)$. Thus it is constant on $\operatorname{Im}(\gamma)$ and equal to $u + v - (u \oplus v)$. Hence for all $t \in [0, p], u + \varepsilon(t) + v - [(u + \varepsilon(t)) \oplus v] = u + v - (u \oplus v)$, that is, $(u + \varepsilon(t)) \oplus v = (u \oplus v) + \varepsilon(t)$.

By o-minimality, a t-path γ jumps at finitely many points t_1, \ldots, t_r of its domain at most. If w_1, \ldots, w_r are its jumps, their sum is denoted by

$$J_{\gamma} := \sum_{i=1}^{r} w_i.$$

Proposition 4.24. Let $u, v \in G$, and $\gamma(t) = u + \varepsilon(t) : [0, p] \to G$, $\varepsilon(0) = 0$, be a *t*-path with no jumps. Then:

$$(u + \varepsilon(p)) \oplus v = (u \oplus v) + \varepsilon(p) + J_{\gamma \oplus v}.$$

Proof. Assume that $\gamma(t) \oplus v$ has a jump w_i at t_i , for $1 \leq i \leq r$ and $0 = t_0 \leq t_1 \leq \ldots \leq t_r \leq t_{r+1} = 1$. Let $w_0, w_{r+1} := 0$, and for all $i \in \{0, \ldots, r+1\}$, $J_i := \sum_{k=0}^i w_k$, and $\gamma^i := \gamma \upharpoonright_{[0,t_i]}$. By induction on i, we show that for all $i \in \{0, \ldots, r+1\}$ the proposition is true for γ^i , that is,

(5)
$$\gamma(t_i) \oplus v = (u \oplus v) + \varepsilon(t_i) + J_{\gamma^i \oplus v}.$$

(5) is clearly true for i = 0. Now, assume that (5) holds for γ^i , for some $i \in \{0, \ldots, r\}$. We show that (5) holds for γ^{i+1} . If $t_i = t_{i+1}$ there is nothing to show, so assume $t_i < t_{i+1}$.

Claim. For all $s \in (t_i, t_{i+1})$,

(6)
$$\gamma(s) \oplus v = (u \oplus v) + \varepsilon(s) + J_i.$$

Proof of Claim. We first show

(7)
$$\lim_{t \to t_i^+} \left(\gamma(t) \oplus v \right) = (u \oplus v) + \varepsilon(t_i) + J_i.$$

Case 1: $w_i = (\gamma(t_i) \oplus v) - \lim_{t \to t_i^-} (\gamma(t) \oplus v)$. Then $\gamma(t_i) \oplus v = \lim_{t \to t_i^+} (\gamma(t) \oplus v)$, and $J_{\gamma^i \oplus v} = J_i$. By Inductive Hypothesis, (7) follows.

Case 2: $w_i = \lim_{t \to t_i^+} (\gamma(t) \oplus u) - (\gamma(t_i) \oplus v)$. Then, $J_{\gamma^i \oplus v} + w_i = J_i$, and by Inductive Hypothesis, (7) follows.

Now, for any t with $t_i < t < s$, Lemma 4.23(ii) gives $(u + \varepsilon(s)) \oplus v = (u + \varepsilon(s))$ $\varepsilon(t) + \varepsilon(s) - \varepsilon(t) \oplus v = [(u + \varepsilon(t)) \oplus v] + \varepsilon(s) - \varepsilon(t).$ Therefore, $(u + \varepsilon(s)) \oplus v = v$ $\lim_{t \to t_i^+} \left[\left(u + \varepsilon(s) \right) \oplus v \right] = \lim_{t \to t_i^+} \left[\left(u + \varepsilon(t) \right) \oplus v \right] + \varepsilon(s) - \varepsilon(t_i).$ By (7), we have $(u + \varepsilon(s)) \oplus v = (u \oplus v) + \varepsilon(s) + J_i$, that is, (6) holds. This proves the Claim. \Box

We now show that (5) is true for γ^{i+1} . Taking limits from the left of t_{i+1} in equation (6) we get:

(8)
$$\lim_{s \to t_{i+1}^-} (\gamma(s) \oplus v) = (u \oplus v) + \varepsilon(t_{i+1}) + J_i.$$

Case 1: $w_{i+1} = \lim_{t \to t_{i+1}^+} (\gamma(t) \oplus v) - (\gamma(t_{i+1}) \oplus v)$. Then $\gamma(t_{i+1}) \oplus v =$ $= \lim_{t \to t_{i+1}^-} (\gamma(t) \oplus v) \text{ and } J_{\gamma^{i+1} \oplus v} = J_i. \text{ By (8), equation (5) is true for } \gamma^{i+1}.$ Case 2: $w_{i+1} = (\gamma(t_{i+1}) \oplus v) - \lim_{t \to t_{i+1}^-} (\gamma(t) \oplus v). \text{ Then } J_{\gamma^{i+1} \oplus v} = J_i + w_{i+1},$

and by (8), again, (5) is true for γ^{i+1} .

STEP II. A generic open n-parallelogram of G. Since V is large in G, it is also generic, by Fact 3.9(i). By Linear CDT, V is a finite union of linear cells, and by Lemma 3.10, one of them, call it Y, must be generic. By Fact 3.9(ii), Y has dimension n, and by Lemma 3.7, it is bounded. Therefore, by Lemma 3.6, \overline{Y} is a finite union of closed *n*-parallelograms, say W_1, \ldots, W_l . For $i \in \{1, \ldots, l\}$, let $Y_i := Y \cap W_i$. Then $Y = Y_1 \cup \ldots \cup Y_l$. By Lemma 3.10 again, one of the Y_i 's must be generic, say Y_1 . Let $H := Int(Y_1)$. Since on V the \mathcal{M} - and t- topologies coincide, $H = \text{Int}(Y_1)^t$. By Fact 3.9(iii), H is generic. Since W_1 is a closed n-parallelogram and $\operatorname{Int}(W_1) = \operatorname{Int}(W_1 \cap \overline{Y}) = \operatorname{Int}(W_1 \cap Y) = \operatorname{Int}(Y_1) = H$, we have that H is an open *n*-parallelogram.

Let c be the center of H. By translation in M^n , we can assume that c = 0. Indeed, in Lemma 4.9 we could have let $f: G \ni x \mapsto (x \oplus c) - c \in M^n$. Since H is generic, $H \ominus c$ is generic, and thus $f(H \ominus c) = H - c$ is a generic open nparallelogram of f(G) centered at 0. To see that the \mathcal{M} - and t- topologies coincide on $H - c \subseteq f(G)$, consider the definable automorphism

$$f: M^n \ni x \mapsto x - c \in M^n,$$

and notice moreover that $\overline{f} \upharpoonright_G : G \to f(G)$ is in fact a homeomorphism, since for all $x \in G$, $\overline{f}(x) = f(x \ominus c)$.

Summarizing, we can assume that:

• H is a generic, t-open, open n-parallelogram, with center 0, on which the \mathcal{M} - and t- topologies coincide.

Since H is generic, it must have dimension n and, thus, the form:

$$H = \{\lambda_1 t_1 + \ldots + \lambda_n t_n : -e_i < t_i < e_i\},\$$

for some *M*-independent $\lambda_i \in D^n$ and positive $e_i \in M$.

Lemma 4.25. Let $a, b \in H$, such that $a + b \in H$. Then there is a path $\varepsilon(t)$ in H from 0 to a, such that the path $\varepsilon(t) + b$ lies entirely in H, as well.

Proof. We show it for any open m-parallelogram $H = \{\lambda_1 t_1 + \ldots + \lambda_m t_m : -e_i < 0\}$ $t_i < e_i \subset M^n, \ 0 < m \leq n$, for M-independent $\lambda_i \in D^n$ and positive $e_i \in M$, by induction on m.

 $\mathbf{m} = \mathbf{1}$. Let $H = \{\lambda_1 t_1 : -e_1 < t_1 < e_1\}$ containing a, b and a + b. Assume $a = \lambda_1 t_{a1}$, for some $t_{a1} \in (-e_1, e_1)$. It is then easy to see that the path $[0, t_{a1}] \ni$ $t \mapsto \varepsilon(t) := \lambda_1 t \in H$ satisfies the conclusion, by convexity of H and Lemma 3.4.

 $\mathbf{m} > \mathbf{1}$. Let $H = \{\lambda_1 t_1 + \ldots + \lambda_m t_m : -e_i < t_i < e_i\}$ containing a, b and a + b, and let $a = \lambda_1 t_{a1} + \ldots + \lambda_m t_{am}, b = \lambda_1 t_{b1} + \ldots + \lambda_m t_{bm}$, for some $t_{ai}, t_{bi} \in (-e_i, e_i)$. Consider the open (m-1)-parallelogram $H' = \{\lambda_2 t_2 + \ldots + \lambda_m t_m : -e_i < t_i < e_i\},\$ and let $a' := \lambda_2 t_{a2} + \ldots + \lambda_m t_{am}, b' := \lambda_2 t_{b2} + \ldots + \lambda_m t_{bm}$. By Inductive Hypothesis, there is a path ε' in H' from 0 to a', such that $b' + \varepsilon'(t)$ is a path in H' from b' to a' + b'. Let $\varepsilon(t)$ be the concatenation of ε' with the linear path $a' + \lambda_1 t, t \in [0, t_{a1}]$, from a' to a. It is then easy to check, using the convexity of H and Lemma 3.4, that both $\varepsilon(t)$ and $b + \varepsilon(t)$ lie entirely in H.

Since the two topologies coincide on H, the paths $\varepsilon(t)$ and $b + \varepsilon(t)$ from Lemma 4.25 are also *t*-paths.

Lemma 4.26. Let $x_1, \ldots, x_l \in H$ be such that for any subset σ of $\{1, \ldots, l\}$, $\sum_{j\in\sigma} x_j \in H$. Then, $x_1 + \ldots + x_l = x_1 \oplus \ldots \oplus x_l$.

Proof. By induction on l.

l = 2. Let $a = x_1$, $b = x_2$, and $\gamma(t) = \varepsilon(t)$ as in Lemma 4.25. Then, by Lemma 4.23(i), for u = 0 and $v = b = x_2$, we have: $x_1 \oplus x_2 = (0 \oplus x_2) + x_1 = x_1 + x_2$. l > 2. $x_1 + \ldots + x_l = x_1 + (x_2 + \ldots + x_l) = x_1 \oplus (x_2 \oplus \ldots \oplus x_l) = x_1 \oplus \ldots \oplus x_l$.

Lemma 4.27. For every $x_1, \ldots, x_l, y_1, \ldots, y_m \in H$, if $x_1 + \ldots + x_l = y_1 + \ldots + y_m$, then $x_1 \oplus \ldots \oplus x_l = y_1 \oplus \ldots \oplus y_m$.

Proof. Assume $x_1 + \ldots + x_l = y_1 + \ldots + y_m$, $x_i, y_i \in H$. We want to show $x_1 \oplus \ldots \oplus x_l = y_1 \oplus \ldots \oplus y_m$. Clearly, by convexity of H, for any subset σ of $\{1,\ldots,l\}, \sum_{i\in\sigma} \frac{x_i}{l} \in H, \text{ and therefore } \sum_{i\in\sigma} \frac{x_i}{lm} \in H. \text{ Similarly, for any subset } \tau \text{ of } \{1,\ldots,m\}, \sum_{j\in\tau} \frac{y_j}{m} \in H \text{ and } \sum_{j\in\tau} \frac{y_j}{lm} \in H. \text{ By Lemma 4.26, on the one hand we have } \frac{x_1}{lm} \oplus \ldots \oplus \frac{x_l}{lm} = \frac{x_1}{lm} + \ldots + \frac{x_l}{lm} = \frac{y_1}{lm} + \ldots + \frac{y_m}{lm} = \frac{y_1}{lm} \oplus \ldots \oplus \frac{y_m}{lm}, \text{ and, on the other, } \frac{x_i}{lm} \oplus \ldots \oplus \frac{x_l}{lm} = x_i \text{ and } \underbrace{\frac{y_j}{lm} \oplus \ldots \oplus \frac{y_j}{lm}}_{lm} = y_j, \text{ for every } i, j. \text{ Thus, } x_1 \oplus \ldots \oplus x_l = \frac{y_l}{lm} = 1 \text{ for } 1$

lm-times

$$\bigoplus_{1 \le i \le l} \left(\underbrace{\frac{x_i}{lm} \oplus \ldots \oplus \frac{x_i}{lm}}_{\substack{lm-\text{times}}} \right) = \bigoplus_{lm-\text{times}} \left(\frac{x_1}{lm} \oplus \ldots \oplus \frac{x_l}{lm} \right) = \bigoplus_{lm-\text{times}} \left(\underbrace{\frac{y_1}{lm} \oplus \ldots \oplus \frac{y_m}{lm}}_{\substack{lm-\text{times}}} \right) = y_1 \oplus \ldots \oplus y_m. \qquad \Box$$

Lemma 4.28. Let $H_1 := \frac{1}{2}H = \{\frac{1}{2}x : x \in H\}$. Then H_1 is generic.

Proof. We show that finitely many \oplus -translates of H_1 cover H. By Lemma 4.26, it suffices to find finitely many $a_i \in H$, such that $H = \bigcup_i (a_i + H_1)$. Let $H = \{\lambda_1 t_1 + \ldots + \lambda_n t_n : -e_i < t_i < e_i\}$. Then $H_1 = \{\lambda_1 t_1 + \ldots + \lambda_n t_n : -\frac{e_i}{2} < t_i < \frac{e_i}{2}\}$. It is a routine to check that $H = \bigcup_{i=1}^{2^n} (a_i + H_1)$, where the a_i 's are the corners of H_1 .

Lemma 4.29. There is $K \in \mathbb{N}$, such that $G = \underbrace{H \oplus \ldots \oplus H}_{K-times}$.

Proof. Let H_1 as in Lemma 4.28. Assume that for $K \in \mathbb{N}$, $\{a_i \oplus H_1\}_{\{1 \le i \le K\}}$ covers G. Since G is t-connected (and H_1 is t-open), for any $x \in G$, one can find $0 = x_0, x_1, \ldots, x_l = x \in G, \ l \le K$, such that $\forall i \in \{1, \ldots, l-1\}$, after perhaps reordering $\{a_i \oplus H_1\}_{\{1 \le i \le K\}}, \ x_i \in (a_i \oplus H_1) \cap (a_{i+1} \oplus H_1), \ 0 \in a_1 \oplus H_1$, and $x \in a_l \oplus H_1$. Then, for $h_i := x_i \ominus x_{i-1} \in H, \ 1 \le i \le l$, we have: $x = h_1 \oplus \ldots \oplus h_l$. \Box

Definition 4.30. Let U be the subgroup of M^n generated by H, that is,

$$U:=\bigcup_{k<\omega}H^k,$$

where $H^k := \underbrace{H + \ldots + H}_{k-\text{times}}$. By Lemma 4.27, the following function $\phi : U \to G$ is

well-defined. For all $x \in U$, if $x = x_1 + \ldots + x_k$, $x_i \in H$, then

$$\phi(x) = x_1 \oplus \ldots \oplus x_k.$$

 $U = \langle U, +_{\uparrow U}, 0 \rangle$ is a \bigvee -definable group. Easily, convexity of H implies convexity of U. Moreover:

Proposition 4.31. ϕ is a t-continuous group homomorphism from U onto G.

Proof. ϕ is a group homomorphism, because if $x = x_1 + \ldots + x_l$ and $y = y_1 + \ldots + y_m$, with $x_i, y_i \in H$, then $\phi(x + y) = \phi(x_1 + \ldots + x_l + y_1 + \ldots + y_m) = x_1 \oplus \ldots \oplus x_l \oplus y_1 \oplus \ldots \oplus y_m = \phi(x) \oplus \phi(y)$. It is onto, by Lemma 4.29. Since \oplus is *t*-continuous, so is ϕ .

Thus, if we let $L := \ker(\phi)$, we know that $U/L \cong G$ as abstract groups.

STEP III. *L* is a lattice of rank *n*. We show that *L* is a lattice generated by $n \mathbb{Z}$ -independent elements of M^n , namely, by some \mathbb{Z} -linear combinations of jump vectors for *G*. Recall that (Remark 4.17(i)) $w \in M^n$ is a jump vector if and only if there are distinct $a, b \in bd(V)$ such that $a \sim_G b$ and w = b - a. The following is a consequence of the local analysis from Step I.

Lemma 4.32. There are only finitely many jump vectors.

Proof. Since the set of all jump vectors is definable, if there were infinitely many jump vectors, by o-minimality, one of the following should be true:

(A) there exists a non-constant path γ on $\mathrm{bd}(V)$, such that all points in $\mathrm{Im}(\gamma)$ are \sim_G -equivalent,

(B) there exist two disjoint non-constant paths γ and δ on $\mathrm{bd}(V)$, such that every element a in $\mathrm{Im}(\gamma)$ is \sim_G -equivalent with a unique element b_a in $\mathrm{Im}(\delta)$, and vice versa, and all jump vectors $w_a = b_a - a$, $a \in \mathrm{Im}(\gamma)$, are distinct.

Assume (A) holds. By o-minimality again, we can assume that $\gamma(t) = a + \varepsilon(t)$: $[0, p] \to M^n$, for some path $\varepsilon(t)$ in H with $\varepsilon(0) = 0$ and $\varepsilon := \varepsilon(p) \neq 0$. Moreover, we can assume that there is a path $\rho(s) : [0, q] \to M^n$, with $\rho(0) = 0$, such that $\forall s > 0, a + \rho(s)$ and $a + \varepsilon + \rho(s)$ are in G, and $a + \rho(s) + \varepsilon(t) : [0, p] \to G$ is a t-path, with no jumps, from $a + \rho(s)$ to $a + \rho(s) + \varepsilon$. By Lemma 4.23(i), we have that for all $s \in (0, p]$,

$$(a + \rho(s) + \varepsilon) \ominus (a + \rho(s)) = \varepsilon.$$

Thus $\lim_{s\to 0} \left[\left(a + \rho(s) + \varepsilon \right) \ominus \left(a + \rho(s) \right) \right] = \varepsilon \neq 0$, contradicting the fact that $a \sim_G a + \varepsilon$.

Now assume (B) holds and, without loss of generality, let $\gamma(t) = a + \varepsilon(t) : [0, p_{\gamma}] \to M^n$, for some path $\varepsilon(t)$ in H with $\varepsilon(0) = 0$ and $\varepsilon := \varepsilon(p_{\gamma}) \neq 0$. Let also $\delta(t) = b + \zeta(t) : [0, p_{\delta}] \to M^n$, for $b \sim_G a$ and some path $\zeta(t)$ in H with $\zeta(0) = 0$ and $\zeta := \zeta(p_{\delta}) \neq 0$. As before, we can assume that there is a path $\rho(s) : [0, q] \to M^n$, with $\rho(0) = 0$, such that $\forall s > 0, a + \rho(s)$ and $a + \varepsilon + \rho(s)$ are in G, and $a + \rho(s) + \varepsilon(t) : [0, p_{\gamma}] \to G$ is a t-path, with no jumps, from $a + \rho(s)$ to $a + \rho(s) + \varepsilon$. Similarly, we can assume that there is a path $\sigma(s) : [0, q] \to M^n$, with $\sigma(s) = 0$, such that $\forall s > 0, b + \sigma(s)$ and $b + \zeta + \sigma(s)$ are in G, and $b + \sigma(s) + \zeta(t) : [0, p_{\delta}] \to G$ is a t-path, with no jumps, from $b + \sigma(s)$ to $b + \sigma(s) + \zeta$. We show that if $a + \varepsilon \sim_G b + \zeta$, then $\varepsilon = \zeta$, which contradicts the fact that all jump vectors from $\operatorname{Im}(\gamma)$ to $\operatorname{Im}(\delta)$ are distinct. As before, we have that for any $s \in (0, p_{\gamma}] \cap (0, p_{\delta}]$,

$$ig(a+
ho(s)+arepsilonig)\ominusig(a+
ho(s)ig)=arepsilon ext{ and }ig(b+\sigma(s)+\zetaig)\ominusig(b+\sigma(s)ig)=\zeta.$$

On the other hand, since $a \sim_G b$ and $a + \varepsilon \sim_G b + \zeta$,

$$\lim_{s \to 0} \left[\left(a + \rho(s) \right) \ominus \left(b + \sigma(s) \right) \right] = 0 \text{ and } \lim_{s \to 0} \left[\left(a + \varepsilon + \rho(s) \right) \ominus \left(b + \zeta + \sigma(s) \right) \right] = 0.$$

Since in a *t*-neighborhood of 0 the \mathcal{M} - and *t*- topologies coincide,

 $\lim_{s \to 0} {}^t \left[\left(a + \rho(s) \right) \ominus \left(b + \sigma(s) \right) \right] = 0 \text{ and } \lim_{s \to 0} {}^t \left[\left(a + \varepsilon + \rho(s) \right) \ominus \left(b + \zeta + \sigma(s) \right) \right] = 0,$

and, thus,

$$\begin{split} \varepsilon \ominus \zeta &= \lim_{s \to 0} {}^t (\varepsilon \ominus \zeta) \\ &= \lim_{s \to 0} {}^t \big[(a + \varepsilon + \rho(s)) \ominus (a + \rho(s)) \ominus (b + \zeta + \sigma(s)) \oplus (b + \sigma(s)) \big] \\ &= \lim_{s \to 0} {}^t \big[(a + \varepsilon + \rho(s)) \ominus (b + \zeta + \sigma(s)) \big] \ominus \lim_{s \to 0} {}^t \big[(a + \rho(s)) \ominus (b + \sigma(s)) \big] \\ &= 0, \end{split}$$

hence $\varepsilon = \zeta$.

Let $\{w_1, \ldots, w_l\}$ be the set of all jump vectors for G.

Lemma 4.33. $\ker(\phi) \subseteq \mathbb{Z}w_1 + \ldots + \mathbb{Z}w_l$.

Proof. Let $x = x_1 + \ldots + x_m \in \ker(\phi) \subseteq U$, with $x_i \in H$. For all $i \in \{1, \ldots, m\}$, let $x_i(t)$ be a path in H from 0 to x_i . By Proposition 4.24,

$$\phi(x) = x_1 \oplus \ldots \oplus x_m = x_1 + \ldots + x_m + J_{\gamma},$$

where γ is the t-loop $(x_1(t)) \lor (x_1 \oplus x_2(t)) \lor \ldots \lor (x_1 \oplus \ldots \oplus x_{m-1} \oplus x_m(t))$ from 0 to $x_1 \oplus \ldots \oplus x_m = \phi(x_1 + \ldots + x_m) = \phi(x) = 0$. We have: $x = -J_{\gamma} \in \mathbb{Z}w_1 + \ldots + \mathbb{Z}w_l$.

A subgroup of the torsion-free group M^n is torsion-free. Thus, $\mathbb{Z}w_1 + \ldots + \mathbb{Z}w_l$ is a finitely generated torsion-free abelian subgroup of M^n , and therefore it is free. Since $\ker(\phi) \leq \mathbb{Z}w_1 + \ldots + \mathbb{Z}w_l$, it follows that $\ker(\phi)$ is a free abelian subgroup of U generated by k \mathbb{Z} -independent elements, for some $k \leq l$. (The reader is referred to [Lang, Chapter I] for any of the above assertions.) In Claims 4.36 and 4.37 below we show that k = n.

Before that, we use H to obtain a 'standard part' map from U to \mathbb{R}^n . Recall, H is a generic open *n*-parallelogram of the form:

$$H = \{\lambda_1 t_1 + \ldots + \lambda_n t_n : -e_i < t_i < e_i\},\$$

for some *M*-independent $\lambda_i \in D^n$, and positive $e_i \in M$. The following map must then be one-to-one:

$$\Theta: M^n \ni (t_1, \dots, t_n) \mapsto \lambda_1 t_1 + \dots + \lambda_n t_n \in M^n$$

Let $u = h_1 + \ldots + h_m \in U$, with $h_j \in H$. For $j \in \{1, \ldots, m\}$, it must be $h_j = \lambda_1 t_1^j + \ldots + \lambda_n t_n^j \in H$, for some $t_i^j \in (-e_i, e_i)$. Thus, $u = \lambda_1 \left(\sum_{j=1}^m t_1^j \right) + \ldots + \lambda_n \left(\sum_{j=1}^m t_n^j \right)$ and $\Theta\left(\left(\sum_{j=1}^m t_1^j, \ldots, \sum_{j=1}^m t_n^j \right) \right) = u$, with $-me_i < \sum_{j=1}^m t_i^j < me_i$. This shows that $U \subseteq \Theta(M^n)$ and, in particular, that for every $u \in U$, $\Theta^{-1}(u) = (u_1, \ldots, u_n) \in M^n$ with $\forall i \exists q \in \mathbb{Z}, -qe_i < u_i < qe_i$. We define the *standard part* map from U to \mathbb{R}^n , as follows. We let

$$st(u) := (st(u_1), \dots, st(u_n)) \in \mathbb{R}^n,$$

where each $st_i(u_i)$ is defined by the Dedekind cut $\{q \in \mathbb{Q} : qe_i < u_i\}, \{q \in \mathbb{Q} : u_i \leq qe_i\}$, that is,

$$st(u_i) := \sup\{q \in \mathbb{Q} : qe_i < u_i\}.$$

Easily, st is a group homomorphism from $\langle U, +_{\uparrow U}, 0 \rangle$ onto $\langle \mathbb{R}^n, +, 0 \rangle$, where, henceforth, + denotes the usual real addition whenever it applies to real numbers.

We let

$$\forall x \in U, \ ||x|| := |st(x)|_{\mathbb{R}},$$

where $|\cdot|_{\mathbb{R}}$ is the Euclidean norm in \mathbb{R}^n . It is easy to check that $||\cdot||$ is a 'seminorm on U over \mathbb{Q} ', that is:

(i) $\forall x, y \in U, ||x+y|| \le ||x|| + ||y||$, and (ii) $\forall q \in \mathbb{Q}, \forall x \in U, ||qx|| = |q| ||x||$.

Lemma 4.34. For all $x \in U$ and $m \in \mathbb{N}$,

$$x \in H^m \Leftrightarrow ||x||_H < m\sqrt{n}.$$

Proof. Let $\Theta^{-1}(x) = (x_1, \dots, x_n) \in M^n$. Then, $x \in H^m \Leftrightarrow \forall i, -me_i < x_i < me_i \Leftrightarrow st(x) \in [-m, m]^n \subset \mathbb{R}^n \Leftrightarrow |st(x)|_{\mathbb{R}} < \sqrt{nm^2} = m\sqrt{n}$. \Box

Let us also collect two easy but helpful facts about $ker(\phi)$:

Lemma 4.35. (i) $\ker(\phi) \cap H = \{0\}.$

(ii) Let K be as in Lemma 4.29. Then $\forall x \in U, \exists y \in H^K, y - x \in \ker(\phi)$.

Proof. (i) For all $x \in H$, $\phi(x) = x$.

(ii) For $x \in U$, since $\phi(x) \in G$, there are $x_1, \ldots, x_K \in H$, such that $\phi(x) = x_1 \oplus \ldots \oplus x_K$. Clearly, if $y = x_1 + \ldots + x_K \in H^K$, then $\phi(x) = \phi(y)$.

We are now ready to compute the rank of $L = \ker(\phi)$. Fix a set $\{v_1, \ldots, v_k\}$ of generators for L.

Claim 4.36. $k \ge n$.

Proof. Assume, towards a contradiction, that k < n. For any $a \in U$, let $S_a := a + \mathbb{Z}v_1 + \ldots + \mathbb{Z}v_k$. Let K be as in Lemma 4.29.

Subclaim. There is $a \in U$, such that $S_a \cap H^K = \emptyset$.

Proof of Subclaim. By Lemma 4.34, it suffices to show that there is $a \in U$, such that $\forall l_1, \ldots, l_k \in \mathbb{N}, ||a + l_1v_1 + \ldots + l_kv_k|| \ge K\sqrt{n}$. But,

$$||a + l_1 v_1 + \ldots + l_k v_k|| = |st(a) + l_1 st(v_1) + \ldots + l_k st(v_k)|_{\mathbb{R}},$$

and, since k < n, there is $\bar{a} \in \mathbb{R}^n$ such that $\forall l_1, \ldots, l_k \in \mathbb{N}$,

$$|\bar{a} + l_1 st(v_1) + \ldots + l_k st(v_k)|_{\mathbb{R}} \ge K\sqrt{n}.$$

(This is true for any number $K\sqrt{n}$.) We can take a to be any element in $st^{-1}(\bar{a})$. \Box

This contradicts Lemma 4.35(ii).

Claim 4.37. $k \le n$.

Proof. Notice that st(L) is a lattice in \mathbb{R}^n contained in $\mathbb{Z}st(v_1) + \ldots + \mathbb{Z}st(v_k)$.

Subclaim. st(L) has rank k.

Proof of Subclaim. Clearly, st(L) has rank at most k. If st(L) has rank less than k, then for some $l_1, \ldots, l_k \in \mathbb{Z}$, not all zero, $l_1 st(v_1) + \ldots + l_k st(v_k) = 0$. Since $st: U \to \mathbb{R}^n$ is a group homomorphism, $st(l_1v_1 + \ldots + l_kv_k) = 0$. Thus, $l_1v_1 + \ldots + l_kv_k \in H$. On the other hand, $\phi(l_1v_1 + \ldots + l_kv_k) = 0$. Hence, by Lemma 4.35(i), we have $l_1v_1 + \ldots + l_kv_k = 0$, contradicting the fact that L has rank k.

Lemma 4.35(i) also gives us that st(L) is discrete: $st\left(\frac{1}{2}H\right)$ is an open neighborhood of 0 that contains no other elements from st(L). But it is a classical fact that every discrete subgroup of \mathbb{R}^n is generated by $\leq n$ elements (see [BD, Chapter I, Lemma 3.8], for example). Thus $k \leq n$.

Proof of Theorem 1.4. For convenience, we collect main definitions and facts. In Step II, Definition 4.30, we defined the convex \bigvee -definable subgroup $U = \langle U, +_{\uparrow U}, 0 \rangle$ of M^n , generated by a generic, t-open, open n-parallelogram $H \subseteq G$ centered at 0. We also let $\phi : U \to G$ be such that $(\forall k \in \mathbb{N})(\forall x = x_1 + \ldots + x_k, h_i \in H)[\phi(x) = x_1 \oplus \ldots \oplus x_k]$. We showed that ϕ is an onto homomorphism, Proposition 4.31, and in Step III, that $L := \ker(\phi) \leq U$ is a lattice of rank n, Claims 4.36 and 4.37. We have $U/L \cong G$ as abstract groups. Notice, ϕ restricted to a definable subset of U is a definable map.

Let $\Sigma := H^K$, where K is as in Lemma 4.29. Clearly, Σ is definable, and thus $\phi_{\uparrow\Sigma}$ is definable. Moreover, E_L^{Σ} is definable, since, for all $x, y \in \Sigma$, we have

 $xE_L^{\Sigma}y \Leftrightarrow x-y \in L \Leftrightarrow \phi_{\uparrow_{\Sigma}}(x) = \phi_{\uparrow_{\Sigma}}(y)$. By Lemma 4.35(ii), Σ contains a complete set S of representatives for E_L^U , and, by definable choice, there is a definable such set S. By Claim 2.7(ii), $U/L = \langle S, +_S \rangle$ is a definable quotient group. The restriction of ϕ on S is a definable group isomorphism between $\langle S, +_S \rangle$ and G. By Remark 2.2(ii), we are done. \square

The following is immediate.

Corollary 4.38. For every $k \in \mathbb{N}$, the k-torsion subgroup of G is isomorphic to $(\mathbb{Z}/k\mathbb{Z})^n$.

5. ON PILLAY'S CONJECTURE

In this section we show Pillay's conjecture in the present context, that is, for \mathcal{M} a saturated ordered vector space over an ordered division ring. The reader is referred to [Pi2] for any terminology.

Proposition 5.1 (Pillay's Conjecture). Let G be an n-dimensional, definably compact and t-connected group, definable in \mathcal{M} . Then, there is a smallest type-definable subgroup G^{00} of G of bounded index such that G/G^{00} , when equipped with the logic topology, is a compact Lie group of dimension n.

Proof. Recall that H is an open n-parallelogram with center 0. For $n \in \mathbb{N}$, we define H_n inductively as follows: $H_0 = H$, and $H_{n+1} = \frac{1}{2}H_n$. By Lemma 4.26, $B = \bigcap_{n < \omega} H_n$ is then a type-definable subgroup of G. As in the proof of Lemma 4.28, one can show that for all n, finitely many \oplus -translates of H_{n+1} cover H_n , and thus, inductively, finitely many \oplus -translates of H_{n+1} cover G. It follows that B has bounded index in G. Note also that B is torsion-free: if $m \in \mathbb{N}$ and $x \in B \setminus \{0\}$, then $x \in H_m$, and thus, by Lemma 4.26, $\underbrace{x \oplus \ldots \oplus x}_{m-\text{times}} = mx \neq 0.$

By [BOPP], there is a smallest type-definable subgroup G^{00} of bounded index, which is divisible, and G/G^{00} with the logic topology is a connected compact abelian Lie group. By [BOPP, Corollary 1.2], a torsion-free type-definable subgroup of Gof bounded index is equal to G^{00} , hence $B = G^{00}$. Since G^{00} is torsion-free and divisible, it follows that for all k, the k-torsion subgroup of G/G^{00} is isomorphic to the k-torsion subgroup of G, which is isomorphic to $(\mathbb{Z}/k\mathbb{Z})^n$, by Corollary 4.38. Thus, G/G^{00} is isomorphic to the real *n*-torus and has dimension *n*.

6. O-minimal fundamental group

The o-minimal fundamental group is defined as in the classical case (see [Hat], for example) except that all paths and homotopies are definable. The following is a restatement of the definition given in [BO2], where \mathcal{M} expanded an ordered field. A different definition of the o-minimal fundamental group was given in [Ed3] for a locally definable group in any o-minimal structure, using locally definable covering homomorphisms. In [EdEl], the two definitions are shown to be equivalent for a group definable in any o-minimal expansion of an ordered group.

The next two definitions run in parallel with respect to the product topology of M^n and the t-topology on G. Notice that until Lemma 6.8, \mathcal{M} can be any o-minimal expansion of an ordered group and G any group definable in \mathcal{M} .

Definition 6.1 ([vdD], Chapter 8, (3.1)). Let $f, g: M^m \supseteq X \to M^n$ (G) be two definable (t-)continuous maps in M^n (in G). A (t-)homotopy between f and g is a definable (t-)continuous map $F(t,s): X \times [0,q] \to M^n$ (G), for some q > 0 in M, such that $f = F_0$ and $g = F_q$, where $\forall s \in [0,q], F_s := F(\cdot,s)$. We call f and g (t-)homotopic, denoted by $f \sim g$ ($f \sim_t g$).

Definition 6.2. Two (t-)paths $\gamma : [0,p] \to M^n(G)$, $\delta : [0,q] \to M^n(G)$, with $\gamma(0) = \delta(0)$ and $\gamma(p) = \delta(q)$, are called (t-)homotopic if there is some $t_0 \in [0, \min\{p, q\}]$, and a (t-)homotopy $F(t, s) : [0, \max\{p, q\}] \times [0, r] \to M^n(G)$, for some r > 0 in M, between

 $\gamma_{\restriction [0,t_0]} \lor \mathbf{c} \lor \gamma_{\restriction [t_0,p]}$ and δ (if $p \leq q$), or

 $\delta_{\lfloor [0,t_0]} \vee \mathbf{d} \vee \delta_{\lfloor [t_0,q]} \text{ and } \gamma \text{ (if } q \leq p),$

where $\mathbf{c}(t) = \gamma(t_0)$ and $\mathbf{d}(t) = \delta(t_0)$ are the constant paths with domain [0, |p-q|].

If $\mathbb{L}(G)$ denotes the set of all *t*-loops that start and end at 0, then the restriction $\sim_t \upharpoonright_{\mathbb{L}(G) \times \mathbb{L}(G)}$ is an equivalence relation on $\mathbb{L}(G)$. Let $\pi_1(G) := \mathbb{L}(G) / \sim_t$ and $[\gamma] :=$ the class of $\gamma \in \mathbb{L}(G)$.

It is clear that any two constant (t-)loops with image $\{0\}$ (but perhaps different domains) are (t-)homotopic. We can thus write **0** for the constant (t-)loop at 0 without specifying its domain.

Proposition 6.3. $\langle \pi_1(G), \cdot, [\mathbf{0}] \rangle$ is a group, with $[\gamma] \cdot [\delta] := [\gamma \lor \delta]$.

Proof. Definition 6.2 provides that for all t-paths $\gamma, \gamma', \delta, \delta'$, if $\gamma \sim_t \gamma', \delta \sim_t \delta'$, then $(\gamma \lor \delta) \sim_t (\gamma' \lor \delta')$, and therefore \cdot is well-defined. Associativity is trivial since for all t-paths $\gamma, \delta, \sigma, (\gamma \lor \delta) \lor \sigma = \gamma \lor (\delta \lor \sigma)$. Clearly, **[0]** is a left and right unit element. Finally, for $\gamma : [0, p] \to G$ a t-path, the class of $\gamma^*(t) := \gamma(p-t)$ is the left and right inverse $[\gamma]^{-1}$ of $[\gamma]$. Indeed, $(\gamma \lor \gamma^*) \sim_t \mathbf{0} : [0, 2p] \to \{0\}$ is witnessed by the t-homotopy $F(t, s) : [0, 2p] \times [0, p] \to G$, $F_t = \gamma_t \lor \gamma_t^*$, where $\gamma_t(u) : [0, p] \to G$ is a t-path with

$$\gamma_t(u) = \begin{cases} \gamma(u) & \text{if } 0 \le u \le t, \\ \gamma(t) & \text{if } t \le u \le p. \end{cases}$$

Replacing γ by γ^* , we get also $(\gamma^* \lor \gamma) \sim_t \mathbf{0}$.

Definition 6.4 ([BO2]). We call $\pi_1(G) = \langle \pi_1(G), \cdot, [\mathbf{0}] \rangle$ the *o-minimal fundamental group of G*.

Note: We could instead define $\pi_1(G, v) := \mathbb{L}(G, v) / \sim_t$, for every $v \in G$, where $\mathbb{L}(G, v)$ is the set of all t-loops that start and end at v. As it turns out, this is not necessary, since G is t-connected and $\pi_1(G, v)$ is, up to definable isomorphism, independent of the choice of v (by identically applying the classical proof of the same fact, as in [Hat, Proposition 1.5], for example).

Definition 6.5 ([vdD], Chapter 8, (3.1)). Let $A \subseteq X \subseteq M^m$. We say that X deformation retracts to A if there is a homotopy $F(t,s) : X \times [0,r] \to X$ such that $F(X,0) = A, F_1 = \mathbf{1}_X$, and $\forall s \in [0,r], F(\cdot,s) \upharpoonright_A = \mathbf{1}_A$.

Lemma 6.6. For every $r \in M$, the n-box $\mathcal{B}_0^n(r) = (-r, r)^n \subset M^n$ deformation retracts to $\{0\}$.

Proof. Let $B_m := \mathcal{B}_0^m(r) = (-r, r)^m \subset M^m$, m > 0, and $B_0 = \{0\}$. By induction, it suffices to show that for m > 0, B_m deformation retracts to B_{m-1} . But this is witnessed by the following homotopy in M^m : $F(t, s) : B_m \times [0, r] \to B_m$, with

$$F((t_1, \dots, t_m), s) = \begin{cases} (t_1, \dots, t_m) & \text{if } |t_m| \le s, \\ (t_1, \dots, t_{m-1}, s) & \text{if } t_m > s, \\ (t_1, \dots, t_{m-1}, -s) & \text{if } t_m < -s. \end{cases}$$

29

Corollary 6.7. Let $\gamma : [0, p] \to M^n$ be a loop with $\gamma(0) = 0$. Then, $\gamma \sim \mathbf{0} : [0, p] \to \{0\}$.

Proof. Since $[0, p] \subset M$ is closed and bounded, $\operatorname{Im}(\gamma)$ is (closed and) bounded by [PeS, Corollary 2.4], and thus $\operatorname{Im}(\gamma) \subseteq \mathcal{B}_0(r) \subset M^n$, for some $r \in M$. By Lemma 6.6, there is a deformation retraction $F(t, s) : \mathcal{B}_0(r) \times [0, q] \to M^n$ of $\mathcal{B}_0(r)$ to $\{0\}$. It is then not hard to check that $G(t, s) := F(\gamma(t), s) : [0, p] \times [0, q] \to M^n$ is a homotopy between γ and $\mathbf{0} : [0, p] \to \{0\}$.

We now proceed to show that $\pi_1(G) \cong L = \ker(\phi)$. Let us first prove a useful lemma about paths and t-paths.

Lemma 6.8. (i) Let $\delta : [0, p] \to U$ be a path. Then there are some $h_1, \ldots, h_m \in H$ with definable slopes (Definition 3.2) and, $\forall i \in \{1, \ldots, m\}$, linear paths $h_i(t) \in H$ from 0 to h_i , such that $\delta(t) = (\delta(0) + h_1(t)) \lor (\delta(0) + h_1 + h_2(t)) \lor \ldots \lor (\delta(0) + h_1 + \ldots + h_{m-1} + h_m(t)).$

(ii) Let $\gamma : [0,p] \to G$ be a t-path starting at $c \in G$. Then there are some $h_1, \ldots, h_m \in H$ with definable slopes and, $\forall i \in \{1, \ldots, m\}$, linear paths $h_i(t) \in H$ from 0 to h_i , such that $\gamma(t) = (c \oplus h_1(t)) \lor (c \oplus h_1 \oplus h_2(t)) \lor \ldots \lor (c \oplus h_1 \oplus \ldots \oplus h_{m-1} \oplus h_m(t))$.

Proof. (i) By Remark 3.3(ii), it suffices to show the statement for δ being linear. Let $\delta(p) \in H^k$ for some $k \in \mathbb{N}$. Then, easily, $\frac{\delta(p)}{k} \in H$, and δ is the concatenation of k linear paths $\delta \upharpoonright [0, \frac{p}{k}]$.

(ii) Let $\gamma(t) : [0,p] \to G$ with $\gamma(0) = c \in G$ and $H_1 := \frac{1}{2}H$. By Lemma 4.28, finitely many \oplus -translates, $\{a_i \oplus H_1\}_{\{1 \le i \le m\}}, m \in \mathbb{N}$, of H_1 cover $\operatorname{Im}(\gamma)$. By ominimality, and since H_1 is t-open, we can assume that there are $0 = t_0, t_1, \ldots, t_m \in [0,p]$, such that $\forall i \in \{1, \ldots, m-1\}, \gamma(t_i) \in (a_i \oplus H_1) \cap (a_{i+1} \oplus H_1), \gamma(t_0) = c \in a_1 \oplus H_1, \gamma(p) \in a_m \oplus H_1$, and that for each $i \in \{0, \ldots, m-1\}$,

(a) $\gamma^{i+1} := \gamma \upharpoonright_{[t_i, t_{i+1}]}$ lies in $a_i \oplus H_1$,

(b) $\gamma^{i+1} \upharpoonright_{(t_i, t_{i+1})}$ is linear, and

(c) γ does not jump at any $t \in (t_i, t_{i+1})$.

By (b), for all $i \in \{0, \ldots, m-1\}$, there exists some linear path $h_{i+1} : [t_i, t_{i+1}] \to M^n$ such that $\forall t \in (t_i, t_{i+1}), \gamma^{i+1}(t) = \gamma(t_i) + h_{i+1}(t)$. We denote $h_{i+1} := h_{i+1}(t_{i+1}) \in M^n$.

We work by induction on *i*. Suppose that for some $i \in \{1, \ldots, m-1\}$, $\gamma(t_i) = c \oplus h_1 \oplus \ldots \oplus h_i$ and $h_1, \ldots, h_i \in H$. We show that $\forall t \in (t_i, t_{i+1}], \gamma(t) = c \oplus h_1 \oplus \ldots \oplus h_i \oplus h_{i+1}(t)$ and $h_{i+1} \in H$. Let us assume that γ^{i+1} does not jump at t_i . The other case can be handled similarly. By $(c), \gamma^{i+1}$ does not jump at any $t \in [t_i, t_{i+1}]$.

By $(a), \forall t \in (t_i, t_{i+1}), \gamma(t_i) + h_{i+1}(t) \in a_i \oplus H_1$. Since also $\gamma(t_i) \in a_i \oplus H_1$, we have $(\gamma(t_i) + h_{i+1}(t)) \oplus \gamma(t_i) \in (a_i \oplus H_1) \oplus (a_i \oplus H_1) \subseteq H$. By Lemma 4.23(ii), we

have $\forall t \in (t_i, t_{i+1}), (\gamma(t_i) + h_{i+1}(t)) \ominus \gamma(t_i) = (\gamma(t_i) \ominus \gamma(t_i)) + h_{i+1}(t) = h_{i+1}(t)$. This shows that

$$\forall t \in [t_i, t_{i+1}), \ \gamma(t) = \gamma(t_i) + h_{i+1}(t) = \gamma(t_i) \oplus h_{i+1}(t).$$

We thus have:

$$\gamma(t_{i+1}) = \lim_{t \to t_{i+1}^{-t}} \gamma(t) = \lim_{t \to t_{i+1}^{-t}} \gamma(t_i) \oplus h_{i+1}(t) = \gamma(t_i) \oplus h_{i+1}(t_{i+1}).$$

That $h_{i+1} \in H$ is then also clear, since $h_{i+1}(t_{i+1}) = \gamma(t_{i+1}) \ominus \gamma(t_i) \in (a_i \oplus H_1) \ominus (a_i \oplus H_1) \subseteq H$.

Lemma 6.9. $ker(\phi) = \{J_{\gamma} : \gamma \text{ is a } t\text{-loop}\}.$

Proof. \subseteq . This is just Lemma 4.33. For $x \in \ker(\phi)$ and γ as in that proof, we have $x = -J_{\gamma} = J_{\gamma^*}$.

 $\supseteq. \text{ Let } \gamma(t) \text{ be a } t\text{-loop starting and ending at } c \in G, \text{ and } h_1, \dots, h_m \in H \\ \text{ as in Lemma 6.8(ii). Since } \gamma \text{ is a } t\text{-loop, we have: } c \oplus h_1 \oplus \dots \oplus h_m = c, \text{ thus } \\ h_1 \oplus \dots \oplus h_m = 0. \text{ On the other hand, by Proposition 4.24, } c \oplus h_1 \oplus \dots \oplus h_m = \\ c + \sum_{i=0}^m h_i + J_{\gamma}, \text{ thus } J_{\gamma} = -\sum_{i=0}^m h_i. \text{ Therefore, } \phi(J_{\gamma}) = \phi\left(-\sum_{i=0}^m h_i\right) = \\ \ominus \phi\left(\sum_{i=0}^m h_i\right) = \ominus(h_1 \oplus \dots \oplus h_m) = 0.$

For a t-path $\gamma : [0, p] \to G$ starting at c, we fix some h_i and $[t_{i-1}, t_i] \ni t \mapsto h_i(t) \in H, i \in \{1, \ldots, m\}$, to be as in Lemma 6.8(ii).

Definition 6.10. Let $\gamma : [0, p] \to G$ be a *t*-path starting at $c \in G$. Let $d \in U$ such that $\phi(d) = c$. The *lifting of* γ *at* d is the following path $\hat{\gamma}_d : [0, p] \to U$,

 $\hat{\gamma}_d(t) = (d + h_1(t)) \lor (d + h_1 + h_2(t)) \lor \ldots \lor (d + h_1 + \ldots + h_{m-1} + h_m(t)).$

Let γ as above be in addition a *t*-loop. By Proposition 4.24, $c = c \oplus h_1 \oplus \ldots \oplus h_m = c + h_1 + \ldots + h_m + J_{\gamma}$. It follows that

 $J_{\gamma} = 0 \Leftrightarrow h_1 + \ldots + h_m = 0 \Leftrightarrow \hat{\gamma}_d$ is a loop in U.

Lemma 6.11. (i) For any t-path $\gamma : [0, p] \to G$ starting at c, and $d \in U$ such that $\phi(d) = c$, we have $\phi \circ \hat{\gamma} = \gamma$.

(ii) For any path $\delta : [0,p] \to U$, $J_{\phi\circ\delta} = \phi(\delta(p)) - \phi(\delta(0)) - (\delta(p) - \delta(0))$. In particular, for any loop δ in U, $J_{\phi\circ\delta} = 0$.

Proof. (i) Clear, since $\phi(d+h_1+\ldots+h_{i-1}+h_i(t)) = c \oplus h_1 \oplus \ldots \oplus h_{i-1} \oplus h_i(t)$. (ii) By Lemma 6.8(i), let $h_1, \ldots, h_m \in H$ have definable slopes and, $\forall i \in \{1,\ldots,m\}$, let $h_i(t) \in H$ be a linear path from 0 to h_i , such that $\delta(t) = (\delta(0) + h_1(t)) \vee (\delta(0) + h_1 + h_2(t)) \vee \ldots \vee (\delta(0) + h_1 + \ldots + h_{m-1} + h_m(t))$. It is then $\delta = \hat{\gamma}_{\delta(0)}$, where $\gamma(t) = (c \oplus h_1(t)) \vee (c \oplus h_1 \oplus h_2(t)) \vee \ldots \vee (c \oplus h_1 \oplus \ldots \oplus h_{m-1} \oplus h_m(t))$, with $c = \phi(\delta(0))$. By (i), $\phi \circ \delta = \gamma$, and thus Proposition 4.24 gives $c \oplus h_1 \oplus \ldots \oplus h_m = c + \sum_{i=0}^m h_i + J_{\phi \circ \delta}$. Therefore, $J_{\phi \circ \delta} = (c \oplus h_1 \oplus \ldots \oplus h_m) - c - \sum_{i=0}^m h_i = \phi(\delta(p)) - \phi(\delta(0)) - (\delta(p) - \delta(0))$.

Lemma 6.12. For every $\gamma \in \mathbb{L}(G)$, $\gamma \sim_t \mathbf{0} \Leftrightarrow J_{\gamma} = 0$.

Proof. (\Leftarrow). Let $\gamma \in \mathbb{L}(G)$ with $J_{\gamma} = 0$. Then $\hat{\gamma}_0$ is a loop in U, homotopic to **0** by Corollary 6.7. Since ϕ is *t*-continuous, the image of the homotopy under ϕ is a *t*-homotopy between γ and **0**.

 $\begin{array}{l} (\Rightarrow). \text{ Assume now } \gamma \sim_t \mathbf{0}, \text{ witnessed by } F(t,s) : [0,p] \times [0,r] \rightarrow G, \text{ say } \gamma(t) = \\ F_r(t) = F(t,r). \text{ Since } F(0,s) = 0 = F(p,s) \text{ for all } s, \text{ the paths } \widehat{F(0,s)}_0, \widehat{F(p,s)}_0 \text{ should equal } \mathbf{0}. \text{ This means that for all } s, \widehat{(F_s)}_0 \text{ is a loop in } U. \text{ By Lemma 6.11(i)}, \\ J_{\gamma} = J_{\phi \circ \widehat{\gamma}}, \text{ and by Lemma 6.11(ii)}, J_{\phi \circ (\widehat{F_r})_0} = 0. \text{ It follows, } J_{\gamma} = J_{\phi \circ \widehat{\gamma}} = J_{\phi \circ (\widehat{F_r})_0} = \\ 0. \end{array}$

Proposition 6.13. $\pi_1(G) \cong \ker(\phi) = L.$

Proof. By Lemma 6.9, we have to show that the map $j : \pi_1(G) \ni [\gamma] \mapsto J_{\gamma} \in \{J_{\gamma} : \gamma \text{ is a } t\text{-loop}\}$ is a group isomorphism. Note: $\forall \gamma, \delta \in \mathbb{L}(G), J_{\gamma \vee \delta} = J_{\gamma} + J_{\delta}$ and $J_{\gamma^*} = -J_{\gamma}$. Now, j is well-defined and one-to-one since for all $\gamma : [0, p] \to G$ and $\delta : [0, q] \to G$ in $\mathbb{L}(G)$,

$$[\gamma] = [\delta] \Leftrightarrow [\gamma] \cdot [\delta^*] = 0 \Leftrightarrow [\gamma \lor \delta^*] = 0 \Leftrightarrow J_{\gamma \lor \delta^*} = 0 \Leftrightarrow J_{\gamma} = J_{\delta},$$

where the third equivalence is by Lemma 6.12. Trivially, j is onto, and it is a group homomorphism by the above note.

Remark 6.14. The pair $\langle U, \phi \rangle$ can be considered as a universal covering space for G, in the sense that (i) there is a definable *t*-open covering $\{G_i\}$ of G such that every $\phi^{-1}(G_i)$ is a disjoint union of open sets in U, each of which is mapped by ϕ homeomorphically onto G_i , and (ii) U is 'definably' simply-connected. Indeed:

(i) Let $\{a_i \oplus H\}$ be a finite t-open covering of G by \oplus -translates of H. We show that for all $i, \phi^{-1}(a_i \oplus H) = \bigsqcup_{\phi(x)=a}(x+H)$ is a disjoint union of open sets in U. Let $x \neq y$ with $\phi(x) = \phi(y)$. We show $(x+H) \cap (y+H) = \emptyset$. If there were $h_1, h_2 \in H$ with $x + h_1 = y + h_2$, then $\phi(h_1 - h_2) = \phi(y - x) = 0$, and thus $\phi(h_1) = \phi(h_2)$. Since ϕ restricted to H is the identity, we have $h_1 = h_2$. Thus, x = y, a contradiction. It is also not hard to see that ϕ restricted to x + H is a homeomorphism onto $\phi(x) \oplus H$.

(ii) U is easily definably path-connected, and, by Corollary 6.7, simply-connected.

References

- [BO1] A. Berarducci and M. Otero, Intersection theory for o-minimal manifolds, Annals of Pure and Applied Logic 107 (2001), 87-119.
- [BO2] A. Berarducci and M. Otero, O-minimal fundamental group, homology and manifolds, J. London Math. Soc. (2) 65 (2002), 257-270.
- [BOPP] A. Berarducci, M. Otero, Y. Peterzil and A. Pillay, A descending chain condition for groups definable in o-minimal structures, Annals of Pure and Applied Logic 134 (2005), 303-313.
- [BD] T. Bröcker and T. tom Dieck, REPRESENTATIONS OF COMPACT LIE GROUPS, Springer-Verlag, New York, 1985.
- [vdD] L. van den Dries, TAME TOPOLOGY AND O-MINIMAL STRUCTURES, Cambridge University Press, Cambridge, 1998.
- [Ed1] M. Edmundo, Solvable groups definable in o-minimal structures, J. Pure Appl. Algebra 185 (2003) 103-145.
- [Ed2] M. Edmundo, Locally definable groups in o-minimal structures, J. Algebra 301 (2006), 194-223.
- [Ed3] M. Edmundo, Covers of groups definable in o-minimal structures, Illinois J. Math. 49 (2005), 99-120.
- [EdEl] M. Edmundo and P. Eleftheriou, The universal covering homomorphism in o-minimal expansions of groups. Preprint, October 2006.
- [EdOt] M. Edmundo and M. Otero, Definably compact abelian groups, J. of Math. Logic, 4 (2004), 163-180.
- [Hat] A. Hatcher, AGEBRAIC TOPOLOGY, Cambridge University Press, Cambridge, 2002.

- [HPP] E. Hrushovski, Y. Peterzil and A. Pillay, Groups, measures, and the NIP, to appear in J. Amer. Math. Soc.
- [Hud] J. F. P. Hudson, PIECEWISE LINEAR TOPOLOGY, W. A. Benjamin, Inc., New York, 1969.
- [Lang] S. Lang, ALGEBRA, Third Edition, Springer-Verlag, New York, 2002.
 [LP] J. Loveys and Y. Peterzil, *Linear o-minimal structures*, Israel Journal of Mathematics 81 (1993), 1-30.
- [Ons] A. Onshuus, Groups definable in $(\mathbb{Q}, +, <)$. Preprint 2005.
- [PePi] Y. Peterzil and A. Pillay, Generic sets in definably compact groups, to appear in Manuscripta Mathematicae.
- [PeSt] Y. Peterzil and S. Starchenko, Definable homomorphisms of abelian groups in o-minimal structures, Annals of Pure and Applied Logic 101 (2000), 1-27.
- [PeS] Y. Peterzil and C. Steinhorn, Definable compactness and definable subgroups of ominimal groups, J. London Math. Soc. (2) 69 (1999), 769-786.
- [Pi1] A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra 53 (1988), 239-255.
- [Pi2] A. Pillay, Type definability, compact Lie groups, and o-minimality, J. of Math. Logic, 4 (2004), 147-162.
- [Pon] L. Pontrjagin, TOPOLOGICAL GROUPS, Princeton University Press, Princeton, 1939.
- [Str] A. Strzebonski, Euler characteristic in semialgebraic and other o-minimal groups, J. Pure Appl. Algebra 96 (1994), 173-201.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, IN 46556, USA *E-mail address*: pelefthe@nd.edu

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA $E\text{-}mail\ address:\ \texttt{starchenko.1@nd.edu}$