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1 Introduction

In 1927 and 1928 Alfred Tarski was in charge of the seminar on problems in logic at the Uni-
versity of Warsaw. He used this seminar to pursue a development of the method of quanti�er
elimination. A theory is said to admit quanti�er elimination if every formula is equivalent, in all
models of the theory, to a formula without any quanti�ers. The term itself is due to Tarski as
well as the following statement about it:

�It seems to us that the elimination of quanti�ers, whenever it is applicable to a
theory, provides us with direct and clear insight into both the syntactical structure
and the semantical content of that theory�indeed, a more direct and clearer insight
than the modern more powerful methods [. . . ]. � [DoMoTa]

Indeed, quanti�er elimination is a powerful method for a model theoretic investigation of
algebraic structures. It helps not only in the questions of completeness and decidability but also
for a better understanding of de�nable sets and the algebraic structure itself, since these studies
are often made rather complicated by quanti�ers.

Under his guidance, Tarski and his students at the Warsaw seminar achieved signi�cant re-
sults. Tarski suggested to one of his students�his name was Mojzesz Presburger�to develop an
elimination-of-quanti�ers procedure for the additive theory of the integer numbers. The student
succeded and submitted the result as his thesis for a master's degree. The theory became known
as Presburger Arithmetic and will be subject in this present thesis as well.

Tarksi was able to apply the method of quanti�er elimination to the ordered �eld of real
numbers. In both of these cases, the method yielded a decision algorithm, that is an algorithm
which decides whether a given sentence is true or false.

There are some equivalent formulations of quanti�er elimination as well as many su�cient
conditions that imply quanti�er elimination. Such conditions are called quanti�er elimination
tests. One of the two general aims of this thesis at hand is to prove a few well-known tests and
apply them afterwards to some theories. The second aim is to provide a proof of a particular
quanti�er elimination test that was introduced in 1985 by Lou van den Dries, but so far, no clear
proof has been published. Lou van den Dries is a Dutch mathematician who has successfully
been applying model theoretical methods to the �eld of real numbers, highly improving the
understanding of the reals. He also laid the foundation to the concept of o-minimality which has
since become a recognized branch within model theory. Information concerning his work can be
found in [UoI]. We will meet the concept of o-minimality again in Theorem 7.10. In most of the
tests that we are going to discuss in this thesis, one needs to show the existence of some speci�ed
element. The quanti�er elimination test that van den Dries gave in [vdD] di�ers from other tests
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2 Introduction

as one is rather free in the choice of a particular element. This will become clear once we apply
the test to the theory of the �eld of reals with a predicate for the powers of two.

This shall be enough of history and on the signi�cance of quanti�er elimination. Let us give
a brief outline of the present thesis.

In the following Chapter 2 we will review some basic notation from mathematical logic and
recall some fundamental model theory which is going to be used in later chapters. At the end of
Chapter 2 we will give a formal de�nition of quanti�er elimination.

In Chapter 3 we will provide a simple, yet useful quanti�er elimination test which we will then
apply to the theory of algebraically closed �elds and to the theory of real closed �elds. For the
latter we �rst develop some theory on real closed �elds, whereas for algebraically closed �elds we
assume the reader to be already familiar with the topic.

Chapter 4 starts with the notion of algebraically prime models and simple closedness. The
quanti�er elimination test in this chapter follows very quickly. As already promised, we will then
deal with Presburger Arithmetic. All results on this theory given here are due to Presburger,
although the speci�c proof of quanti�er elimination given in Section 4.2 is due to van den Dries.

In Chapter 5 we introduce types and saturated models. This is a large realm of model theory
itself. We only provide the theory that we need for another quanti�er elimination test. It follows
some background on di�erential �elds. Di�erential algebra is the study of algebraic structures
equipped with a derivation. Model theory has proven quite useful in this area as the de�nition of
di�erential closure is surprisingly more complex than the analogous notions of algebraic closure
or real closure, see [Sac72a]. Once we have set the necessary background, we will prove quanti�er
elimination for di�erentially closed �elds.

The main work for this thesis was Chapter 6. This is based on van den Dries' paper [vdD], in
which the author only stated the quanti�er elimination test without giving a proof. By �nding
some useful properties of extensions of partial embeddings, we succeded in proving the test. In
the subsequent section we present a detailed proof of quanti�er elimination for the ordered �eld
of real numbers with a predicate for the powers of two.

Finally, in Chapter 7 we conclude this thesis by giving some applications of quanti�er elim-
ination. We hereby focus on completeness and decidability as well as on the understanding of
de�nable sets. We will give one geometric consequence, namely the Di�erential Nullstellensatz,
which is the analogue of Hilbert's Nullstellensatz for algebraically closed �elds in di�erential
algebra.



2 Model Theoretical Background

This chapter will give a brief introduction to model theoretic preliminaries which are necessary
for the following chapters. It pursues the goal of explaining terminology and repeating some
theory that we are going to use several times throughout this thesis. We will assume that the
reader is already familiar with basic notions of mathematical logic. We follow the introductory
chapters of [Mar02], [Pre86] and [Pre98].

Because in mathematical logic the formal language itself becomes an object of our investigation,
one always needs to deal with two languages: On the one hand there is the formal language which
is the object of our study, and on the other hand we have the metalanguage in which we talk
about this formal language. The latter is the mathematical colloquial language. The former,
however, the object language, depends on the subject being considered at the time and needs to
be carefully de�ned.

Let I, J and K be arbitrary (possibly empty) index sets and µ : I → N and λ : J → N
two functions. For every i ∈ I let fi be a µ(i)-ary function symbol, for every j ∈ J let Rj be
a λ(j)-ary relation symbol, and for every k ∈ K let ck be a constant symbol. The function
µ assigns to each i ∈ I the �arity � (i.e. number of arguments) µ(i) of the function symbol fi,
whereas the function λ assigns to each j ∈ J the arity λ(j) of the relation symbol Rj . Then,

L = 〈(fi)i∈I ; (Rj)j∈J ; (ck)k∈K〉

is called a language. For a �xed language L, an L-structure

M =
(
M ; (fMi )i∈I ; (RMj )j∈J ; (cMk )k∈K

)
consists of a nonempty set M , called the universe of M, a µ(i)-ary function fMi : Mµ(i) → M
for each i ∈ I, a λ(j)-ary relation RMj ⊆ Mλ(j), and a �xed element cMk ∈ M for each k ∈ K.
The superscript �M � denotes the interpretation of the symbols in M . We will usually name
structures by calligraphic letters and their universe by the corresponding Latin letters, i.e. if
M,N ,A,B are L-strucutres, then we will refer to their underlying universes byM,N,A, and B,
respectively.

Additionally to the symbols in a language L we use the following symbols: variable symbols
v, w, v1, v2, . . ., the Boolean connectives ∧,∨, and ¬, the quanti�ers ∃ and ∀, parentheses (,
), and the equality symbol =̇ . This list of variables is non-exhaustive, but the context will
make the identi�cation of variables clear. To distinguish the formal object language from the
metalanguage, we will usually use =̇ as an equality symbol in the formal language, whereas
we write the usual equality sign = in the metalanguage. If a language contains the function
symbols +, ·, or < we usually write a+ b, a · b, and a < b instead of +(a, b), ·(a, b), and < (a, b),
respectively, for the sake of a better reading. Let for the rest of this introductory chapter L be
a �xed language.
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4 Model Theoretical Background

The set of L-terms is the smallest set which contains all variables and all constant symbols,
and for each i ∈ I, it contains fi(t1, . . . , tµ(i)) whenever it contains t1, . . . , tµ(i).
We say that φ is an atomic L-formula if it is either of the form t1 =̇ t2 for two L-terms t1

and t2, or it is of the form Rj(t1, . . . , tλ(j)), where Rj is a relation symbol and t1, . . . , tλ(j) are
L-terms.

The set of L-formulas is the smallest set consisting of all atomic L-formulas, and that contains
¬φ, (φ∧ ψ), (φ∨ ψ), ∃v φ, and ∀v φ for any variable v, whenever it contains φ and ψ. There are
two abbreviating notations that we will use: φ→ ψ stands for ¬(φ ∨ ψ) and φ↔ ψ is short for
(φ → ψ) ∧ (ψ → φ). We will also use the abbreviations

∧n
i=1 φi and

∨n
i=1 φi for φ1 ∧ . . . ∧ φn

and φ1 ∨ . . . ∨ φn, respectively. The two quanti�ers can be de�ned in terms of each other: ∀v φ
holds if and only if ¬∃v ¬φ is ful�lled. Hence, in arguments on the complexity of L-formulas it
is unnecessary to consider both.

We often write φ(v1, . . . , vn) to make explicit the free variables in φ. Whenever we write
�a ∈ A �, we mean that we take a tuple (a1, . . . , an) with components a1, . . . , an from A. Since
in most cases the number n of components does not play an important role and is only meant to
suit the corresponding amount of free variables in some L-formula, we avoid naming the number
and just write �a � instead. Another natural abuse of notation is that, given an L-formula
φ(v1, . . . , vn), a tuple a ∈ A, and some function f : A → B, instead of �φ(f(a1), . . . , f(an)) �
we simply write �φ(f(a)) �. And lastly, if a = (a1, . . . , an), then by ca we mean the tuple
(ca1 , . . . , can).

If an L-formula has no free variables, we call it an L-sentence. A quanti�er-free L-formula is
an L-formula without quanti�ers. An L-formula φ of the form

N∧
i=1

ni∨
j=1

φij or
N∨
i=1

ni∧
j=1

φij ,

where each φij is an atomic L-formula or the negation of one, is said to be in conjunctive normal
form or in disjunctive normal form, respectively. Using the distributive law and De Morgan's
laws, every quanti�er-free L-formula φ can be written in both disjunctive normal form and in
conjunctive normal form, with the same free variables.

Next we will de�ne what it means for a formula of a formal language to be satis�ed or to
hold in a certain structure and what it means for a structure to be a model of a particular
set of sentences, so that we can, for instance, state that a structure in the language of rings
is in fact a ring. For an L-formula φ(v1, . . . , vn) with free variables from v = (v1, . . . , vn) and
a = (a1, . . . , an) ∈Mn we de�ne recursivelyM |= φ(a) as follows:

If φ is t1 =̇ t2, thenM |= φ(a), i� tM1 (a) = tM2 (a);

if φ is Rj(t1, . . . tλ(j)), thenM |= φ(a), i� (tM1 (a), . . . , tMλ(j)(a)) ∈ RMj ;

if φ is ¬ψ, thenM |= φ(a), i�M |= ψ(a) does not hold;

if φ is (ψ ∧ θ), thenM |= φ(a), i�M |= ψ(a) andM |= θ(a);

if φ is (ψ ∨ θ), thenM |= φ(a), i�M |= ψ(a) orM |= θ(a);

if φ is ∃w ψ(v, w), thenM |= φ(a), i� there is b ∈M such thatM |= ψ(a, b);

if φ is ∀w ψ(v, w), thenM |= φ(a), i�M |= ψ(a, b) for all b ∈M.
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An L-theory T is a set of L-sentences, that means a set of L-formulas without any free variables.
We say thatM is a model of T and writeM |= T ifM |= φ for all L-sentences φ ∈ T . Moreover,
we write T |= φ if for every modelM |= T it holdsM |= φ. An L-theory that satis�es T |= φ or
T |= ¬φ for each L-sentence φ is called complete. Occasionally it may be useful to consider the
full theory Th(M) of an L-structure M which consists of all L-sentences φ such that M |= φ.
The full theory Th(M) is in fact a complete L-theory.
Sometimes it is possible to give a set of L-sentences that form axioms for a theory. We will

call a set of L-sentences Σ an axiom system for an L-theory T if

{φ : φ is an L-sentence and T |= φ} = {φ : φ is an L-sentence and Σ |= φ}.

The L-sentences in Σ are then called axioms. If T already contains each L-sentence φ with
T |= φ, we say that T is deductively closed. In this case the L-theory consists exactly of the
L-sentences that can be deduced from the axioms and no more. We will later on see a couple of
examples for such axiom systems.

Of course, as usual in mathematics, we will also consider maps between L-structures. Here we
wish that those maps preserve the interpretation of the symbols in the language L. Hence, we
de�ne:

2.1 De�nition. LetM and N be two L-structures with universes M and N , respectively. An
L-embedding ι :M→ N is an injective map between the universes ι : M → N which preserves
the interpretation of all function, relation, and constant symbols of L. To be more precise, this
means:

(i) ι(fM(a)) = fN (ι(a)) for all function symbols f and a ∈M .
(ii) a ∈ RM if and only if ι(a) ∈ RN for all relation symbols R and a ∈M .
(iii) ι(cM) = cN for all constant symbols c.

If there exists an L-embedding from M into N , we say that M is a substructure of N . A
bijective L-embedding is called an L-isomorphism. Sometimes, however, ι(M) is identi�ed with
M, hence ifM is a substructure of N we writeM⊆ N .

The following lemma indicates that L-embeddings preserve quanti�er-free formulas that only
use parameters from the universe of the substructure. It is therefore known as the Substructure
Lemma.

2.2 Lemma (Substructure Lemma). Let M be a substructure of N , a ∈ M , and let φ(v) be a
quanti�er-free formula. Then,M |= φ(a) if and only if N |= φ(a).

Proof. For the proof see for example [Mar02, Proposition 1.1.8].

There are maps that preserve quanti�er-free formulas with parameters from a subset of the
domain. They will become very useful later on in Chapter 5.

2.3 De�nition. LetM andN be two L-structures and A a subset ofM , whereM is the universe
of M. Then the map η : A → N is called a partial embedding if it preserves all quanti�er-free
formulas. That means, for all quanti�er-free φ(v) and a ∈ A it holds that

M |= φ(a) ⇔ N |= φ(η(a)).
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Note that we write a partial embedding η : A→ N technically from a subset into a structure,
to point out that the interpretation of the speci�ed formulas is being preserved. However A is
only a subset, thus denoted by a Latin letter.

2.4 De�nition. We say that a collection Σ(v) of L-formulas in n free variables is satis�able if
there exists an L-structure A with universe A and a tuple a ∈ A, such that A |= φ(a) for every
φ(v) ∈ Σ(v). In particular, an L-theory is called satis�able if it has a model.

By his Completeness Theorem (see [Pre86, Theorem 1.5.2]), Kurt Gödel showed that the
syntactic notion of provability completely coincides with what we semantically call true. The
Completeness Theorem says that a proposition is true in every model of a theory if and only if
it is provable from the theory. A very important consequence of the Completeness Theorem is
the so called Compactness Theorem. It is the cornerstone of model theory. Until about 50 years
ago, all applications of model theory to algebra were corollaries of the Compactness Theorem,
cf. [Sac72a]. Throughout this thesis we will use it several times.

2.5 Theorem (Compactness Theorem). Let T be an L-theory. Then T is satis�able if and only
if every �nite subset of T is satis�able.

Proof. This follows from Gödel's Completeness Theorem and the fact that any formal proof only
requires �nitely many assumptions from the theory T . The proof can for example be found in
[Mar02, Theorem 2.1.4].

2.6 De�nition. An L-embedding η :M→N is called an elementary embedding if

M |= φ(a) ⇔ N |= φ(η(a))

for all L-formulas φ(v) and all a ∈M . In this case we say thatM is an elementary substructure
of N and writeM� N .

For a subset B ⊆M , we say that η : B → N is a partial elementary map if

M |= φ(b) ⇔ N |= φ(η(b))

for all L-formulas φ(v) and all b ∈ B.
Two modelsM,N |= T of an L-theory T are called elementarily equivalent if

M |= φ ⇔ N |= φ

for every L-sentence φ.

Elementary equivalence is strongly related to completeness:

2.7 Proposition. An L-theory T is complete if and only if any two models M,N |= T are
elementarily equivalent.

Proof. Let T be a complete L-theory withM |= T andM |= φ for some L-sentence φ. Assume
that T |= ¬φ. ThenM |= ¬φ, a contradiction. By completeness, T |= φ and, hence, N |= φ for
any other model N |= T .
Suppose otherwise that any two models of T are elementarily equivalent. Let φ be some L-

sentence. IfM |= φ, then for every model N |= T we obtain N |= φ. Hence T |= φ. If on the
other handM 6|= φ, thenM |= ¬φ, and therefore, T |= ¬φ.
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2.8 De�nition. Let M be an L-structure. By LM we denote the language which consists of
the symbols in L and, additionally, a constant symbol cm for each element m ∈ M . Then M
expands in a natural way to an LM -structure by interpreting the new symbols in the obvious
way cMm = m. The atomic diagram ofM is the set

Diag(M) := {φ(cm) : m ∈M , φ(v) is an atomic L-formula or

the negation of one, andM |= φ(cm)},

where cm stands for (cm1 , . . . , cmn) whenever m = (m1, . . . ,mn). In a similar way we de�ne the
elementary diagram ofM to be

Diagel(M) := {φ(cm) : m ∈M , φ(v) is an L-formula andM |= φ(cm)}.

The atomic and the elementary diagram are an e�ective instrument to prove the existence of
L-embeddings. The reason is the next lemma:

2.9 Lemma. LetM be an L-structure and N an LM -structure.

(a) If N |= Diag(M), then, viewing N as an L-structure, there is an L-embedding ofM into N .
(b) If N |= Diagel(M), then there is an elementary embedding ofM into N .

Proof. (a) Let j be the interpretation of the constant symbols of LM in N , i.e. j : M → N
with j(m) = cNm . If m1 and m2 are two distinct elements in M , then ¬cm1 =̇ cm2 is a formula in
Diag(M), and hence, since N |= Diag(M), we obtain j(m1) 6= j(m2). Thus, j is an embedding
of sets, i.e. injective. It remains to show that j is an L-embedding:
Let f be a function symbol of L, and fM(m1, . . . ,mn) = mn+1. Then f(cm1 , . . . , cmn) =̇ cmn+1

is a formula in Diag(M) and fN (j(m1), . . . , j(mn)) = j(mn+1).

For a relation symbol R of L and m ∈ RM we obtain R(cm1 , . . . , cmn) ∈ Diag(M) and, thus,
(j(m1), . . . , j(mn)) ∈ RN . Hence, j is an L-embedding.
(b) We will show that if N |= Diagel(M), then the map j from above is elementary. Note

that Diagel(M) is a complete theory: either a sentence is in the set or its negation is. Suppose
M |= φ(ca) for some a ∈ M , i.e. φ(ca) ∈ Diagel(M). Since Diagel(M) is complete, this is
equivalent to the fact that N |= φ(j(a)). Thus, j is an elementary L-embedding.

For the sake of simplicity, we will often write φ(a) where φ is an L-formula and a ∈ A a tuple,
even if a1, . . . , an are not constant symbols in the language, whenever this does not result in
ambiguity. We then mean φ(ca) after adding a1, . . . , an to the constant symbols and interpreting
them in the natural way, as in LA.
In general, the union of models of a certain theory is not even necessarily a well-de�ned

structure. But for elementary extensions we have a very useful property:

2.10 De�nition. We say that (Mi : i ∈ I) is a chain of L-structures, if each Mi is an L-
structure andMi ⊆ Mj for every i < j. If additionallyMi � Mj for every i < j, we say that
(Mi : i ∈ I) is an elementary chain.

As mentioned before, we will, in particular here, identify a structure with its image under
the embedding. This is, however, not a restriction in any sence, but rather a simpli�cation of
notation. The unionM =

⋃
i∈IMi of a chain of structures is de�ned as follows: The universe
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of M is M :=
⋃
i∈IMi. For a constant c of the language we have cMi = cMj for all i and

j. We set cM := cMi . If f is a function symbol of the language, then fMi(a) = fMj (a) for
any a ∈ Mi ∩Mj . Since every a ∈ M is already contained in some Mi, f

M :=
⋃
i∈I f

Mi is
well-de�ned. For a relation symbol R, we have a ∈ RMi if and only if a ∈ RMj . Thus, we set
RM :=

⋃
i∈I R

Mi . This implies that eachMi is a substructure ofM.

2.11 Proposition. Let (Mi : i ∈ I) be an elementary chain of L-structures, i.e.Mi �Mj for
i < j. Then its limit

M :=
⋃
i∈I
Mi

is an elementary extension of eachMi.

Proof. This proposition is due to Alfred Tarski and Robert Vaught and a proof can be found in
[Mar02, Proposition 2.3.11].

2.12 De�nition. An L-formula of the form ∀w1∀w2 . . . ∀wn φ(v, w), where φ(v, w) is quanti�er-
free, is called a universal L-formula. Similarly, an L-formula of the form ∃w1∃w2 . . . ∃wn φ(v, w)
with φ(v, w) quanti�er-free is called existential. For a theory T we denote by T∀ the set of all
the universal L-sentences φ such that T |= φ and call T∀ the universal theory of T .

It requires only a little thought to see that universal statements are preserved downwards in
inclusion, whereas existential formulas are preserved upwards in inclusion. The next lemma will
be very useful in section 6.1.

2.13 Lemma. For an L-theory T the following are equivalent:

(i) A |= T∀.
(ii) There is a modelM |= T with A ⊆M.

Proof. Universal statements are preserved downwards in inclusion. Therefore we only need to
deal with the implication (i) ⇒ (ii): Let A |= T∀. Consider the theory T ′ := T ∪Diag(A) in the
language LA. We will show by contradiction that T ′ is satis�able, which implies that there is a
modelM |= T ′, i.e. M |= T andM |= Diag(A). With the latter we obtain by Lemma 2.9 an
L-embedding of A intoM.

Hence, let us suppose that T ′ is not satis�able. Then, by the Compactness Theorem, already
some �nite subset ∆ ⊆ T ′ is not satis�able. By forming conjunctions we may assume that the
part of ∆ coming from Diag(A) consists only of one formula φ(a) for some a ∈ A, where φ(a)
is a conjunction of atomic formulas and the negation of atomic formulas. Thus, we will assume
that T ∪ {φ(a)} is not satis�able. In particular, φ(a) is quanti�er-free and, as Diag(A) |= φ(a),
we obtain A |= φ(a).

On the other hand, viewing T as an La -theory, and because T ∪ {φ(a)} is not satis�able, we
obtain T |= ¬φ(a). We will show that this implies T |= ∀v ¬φ(v): Let C be an L-structure
with C |= T . Let n be the number of components in a and c1, . . . , cn ∈ C be any tuple. Let C′
be the La -structure which expands C by the constant symbols a1, . . . , an, that we interpret as
c1, . . . , cn, respectively. Then C′ |= T and, hence C′ |= φ(c). As this follows for any tuple in C,
we get C |= ∀v ¬φ(v) and, thus, T |= ∀v ¬φ(v) as claimed.

Since T∀ consists exactly of the universal formulas which hold in all models of T , we obtain
T∀ |= ∀x ¬φ(x). Hence, also A |= ∀x ¬φ(x), which is a contradiction because we also had
A |= φ(a).
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Therefore, as desired, T ′ is indeed satis�able.

After this short introduction to mathematical logic and model theory, we can �nally give a
proper de�nition of quanti�er elimination and hereby start discussing the main purposes of this
thesis.

2.14 De�nition. An L-theory T is said to admit elimination of quanti�ers if for any L-formula
φ(v) there is a quanti�er-free L-formula ψ(v) such that the following holds:

T |= ∀v (φ(v)↔ ψ(v)).

A weaker concept than quanti�er elimination is the property of model completeness. The
following theorem is called Robinson's Test. We call an L-theory T model complete if one of the
following equivalent conditions holds:

2.15 Theorem (Robinson's Test). For an L-theory T the following are equivalent:

(i) All L-embeddings of models of T are elementary.
(ii) Let M,N |= T be two models, where M ⊆ N . For every existential L-formula φ(v) and

a ∈M with N |= φ(a) it followsM |= φ(a).
(iii) For every L-formula φ(v) there exists a universal L-formula ψ(v) such that it holds

T |= ∀v (φ(v)↔ ψ(v)).

Proof. See [Pre98, Lemma 3.3.1 and Theorem 3.3.3].

By condition (iii) of Robinson's Test, a theory is obviously model complete whenever it admits
quanti�er elimination.

A language L without constant symbols does not produce any quanti�er-free L-sentences.
Hence, to make sense of the expression �quanti�er-free L-sentence �, we will always assume that
our languages contain at least one constant symbol.

It is important to remark that quanti�er elimination is a matter of language. We will see that
some theories only admit quanti�er elimination after adding some predicates to the language.

Having de�ned what it means for an L-theory to eliminate quanti�ers, we may now end this
introductory chapter and start the next one with the �rst quanti�er elimination test.





3 Basic Quanti�er Elimination Criteria

3.1 First Approach to Quanti�er Elimination

This section is based on [Mar02, Section 3.1]. The proofs, however, will be presented in more de-
tail than in the source. We will prove two lemmas in order to obtain a �rst quanti�er elimination
test from the combination of both.

3.1 Lemma. Let L be a language that contains at least one constant symbol c, T an L-theory,
and φ(v) an L-formula. Then the following are equivalent:

(i) If M and N are models of T , and A is a common substructure, then for any tuple a ∈ A
we haveM |= φ(a) if and only if N |= φ(a).

(ii) There is a quanti�er-free L-formula ψ(v) such that T |= ∀v (φ(v)↔ ψ(v)).

Proof. (i) ⇒ (ii): If T |= ∀v φ(v), then T |= ∀v (φ(v) ↔ c =̇ c) and we have found the
corresponding quanti�er-free formula: c =̇ c. If, on the other hand, T |= ∀v ¬φ(v), then we have
T |= ∀v (φ(v)↔ ¬c =̇ c) and we are also done. So we may assume that we are in the third case
where none of the above is true, i.e., there exists a modelM1 of T that does not model ∀v φ(v)
and there is a modelM2 of T that does not model ∀v ¬φ(v). This means thatM1 |= ∃v ¬φ(v)
andM2 |= ∃v φ(v), and, thus, both T ∪ {¬φ(v)} and T ∪ {φ(v)} are satis�able.
De�ne the set Γ(v) = {ψ(v) : ψ is quanti�er-free and T |= ∀v (φ(v)→ ψ(v))}. Let c1, . . . , cm

be new constant symbols. We will view T now as an Lc -theory where Lc is the language L
extended by the constant symbols c1, . . . , cm. We will show that T ∪ Γ(c) |= φ(c).

Assume that this is not the case. Then there is a modelM |= T ∪Γ(c)∪{¬φ(c)}. Let A be the
substructure ofM generated by c, i.e. the smallest substructure ofM that contains c1, . . . , cm.

Let Σ = T ∪Diag(A) ∪ {φ(c)}. Let us assume that Σ were not satis�able. So, for any model
B |= T ∪ Diag(A), one obtains B |= ¬φ(c). Thus T ∪ Diag(A) |= ¬φ(c). By the Compactness
Theorem there are �nitely many ψ1(c), . . . , ψn(c) ∈ Diag(A) which are quanti�er-free L-formulas
such that

T ∪ {ψ1(c), . . . , ψn(c)} |= ¬φ(c).

Let C |= T , and suppose that C |= {ψ1(c), . . . , ψn(c)}, i.e. C |= ψ1(c) ∧ . . . ∧ ψn(c). Then,
C |= ¬φ(c). Hence

T |=
n∧
i=1

ψi(c)→ ¬φ(c). (3.1)

11
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Viewing T as an L-theory again, this yields

T |= ∀v

(
n∧
i=1

ψi(v)→ ¬φ(v)

)

as in Lemma 2.13: Let D be an L-structure such that D |= T . Let d1, . . . , dm ∈ D be any tuple
of the size of a. Let D′ be the Lc -structure which expands D by the constant symbols c1, . . . , cm,
that we interpret as d1, . . . , dm, respectively. Then, D′ |= T and, by (3.1), we obtain

D′ |=
n∧
i=1

ψi(d)→ ¬φ(d).

Since this does not depend on the choice of the tuple d, we obtain

D |= ∀v

(
n∧
i=1

ψi(v)→ ¬φ(v)

)
and thus T |= ∀v

(
n∧
i=1

ψi(v)→ ¬φ(v)

)
,

as claimed. Forming the contrapositive we obtain

T |= ∀v

(
φ(v)→

n∨
i=1

¬ψi(v)

)
.

By the de�nition of Γ, this means
n∨
i=1

¬ψi(v) ∈ Γ(v).

SinceM |= Γ(c) and because ¬ψi(c) is quanti�er-free, this also yields

A |=
n∨
i=1

¬ψi(c)

by Lemma 2.2, since A is the substructure ofM which is generated by c. This is a contradiction
to ψ1(c), . . . , ψn(c) ∈ Diag(A) and A |= Diag(A).

Thus, we may conclude that our assumption �Σ is not satis�able � was wrong and Σ is indeed
satis�able. Let N |= Σ. Then N |= φ(c), and N |= Diag(A). By Lemma 2.9, this means that
there is an L-embedding from A into N , i.e. A is a substructure of N . Recall thatM is a model
of T ∪ Γ(c) ∪ {¬φ(c)}, so M |= ¬φ(c). Since both M and N are models of T , we may apply
(ii) and conclude that also N |= ¬φ(c). This is a contradiction. Hence, also the assumption that
T ∪ Γ(c) 6|= φ(c) was wrong and, thus, we obtain T ∪ Γ(c) |= φ(c).

By the Compactness Theorem, this means that there are �nitely many quanti�er-free L-
formulas χ1(c), . . . , χm(c) ∈ Γ(c) such that

T ∪ {χ1(c), . . . , χm(c)} |= φ(c).

Again by the same argumentation as before we may conclude

T |= ∀v

(
m∧
i=1

χi(v)→ φ(v)

)
.
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Since χ1, . . . , χm ∈ Γ, this yields

T |= ∀v

(
m∧
i=1

χi(v)↔ φ(v)

)
,

where
∧n
i=1 χi(v) is quanti�er-free. Thus, we have completed the �rst�and the more interesting�

implication of the proof.

(ii) ⇒ (i): Suppose that T |= ∀v (φ(v) ↔ ψ(v)) for a quanti�er-free formula ψ(v). Let M
and N be two models of T , A a common substructure ofM and N , and a ∈ A. By Lemma 2.2,
quanti�er-free formulas are preserved under substructure and extension. Hence, we obtain

M |= φ(a) ⇔ M |= ψ(a) sinceM |= T , by assumption of (ii)

⇔ A |= ψ(a) since A ⊆M
⇔ N |= ψ(a) since A ⊆ N
⇔ N |= φ(a) since N |= T , by assumption of (ii).

The following lemma states that if one existential quanti�er can be eliminated at a time, we
already obtain quanti�er elimination.

3.2 Lemma. Let T be an L-theory. Suppose that for every quanti�er-free L-formula θ(w, v)
there is a quanti�er-free formula ψ(v) such that T |= ∀v ((∃w θ(w, v)) ↔ ψ(v)). Then T has
quanti�er elimination.

Proof. Let φ(v) be any L-formula. We want to show that there is some quanti�er-free L-formula
ψ(v) such that T |= ∀v (φ(v) ↔ ψ(v)). We will prove this by induction on the complexity of
φ(v).

If φ(v) is quanti�er-free, we are already done. So, as induction hypothesis, suppose that
for φ1(v) and φ2(v) there already exist quanti�er-free L-formulas ψ1(v) and ψ2(v) such that
T |= ∀v (φ1(v)↔ ψ1(v)) and T |= ∀v (φ2(v)↔ ψ2(v)). In the case that φ(v) = ¬φ1(v), we have
T |= ∀v (φ(v)↔ ¬ψ1(v)). And if φ(v) = φ1(v) ∧ φ2(v), then T |= ∀v (φ(v)↔ (ψ1(v) ∧ ψ2(v))).
In either case, φ is equivalent to a quanti�er-free formula.

Now suppose φ(v) = ∃x φ1(x, v). By induction hypothesis there is a quanti�er-free L-formula
ψ1(x, v) such that T |= ∀v∀x (φ1(x, v)↔ ψ1(x, v)). Then we obtain

T |= ∀v (∃x φ1(x, v)↔ ∃x ψ1(x, v)) (3.2)

as follows: Let M |= T and a ∈ M . Suppose that M |= φ1(b, a) for some b ∈ M . Then since
M |= ∀v∀x (φ1(x, v) ↔ ψ1(x, v)), also M |= ψ1(b, a). So, M |= ∃x φ1(x, a) → ∃x ψ1(x, a).
Similarly we obtain the other implication. Hence,M |= ∃x φ1(x, a) ↔ ∃x ψ1(x, a). This shows
(3.2) as claimed.

Now by assumption there is ψ(v) quanti�er-free such that

T |= ∀v (∃x ψ1(x, v)↔ ψ(v)). (3.3)

Hence from (3.2) and (3.3) we obtain

T |= ∀v (∃x φ1(x, v)↔ ψ(v)),

which was to be shown.
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The previous two lemmas set a decent foundation and both of them combined, they yield a
simple, yet useful, quanti�er elimination test.
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3.3 Theorem. Let T be an L-theory. The following are equivalent:

(i) Let M,N |= T , A a common substructure of M and N , φ(w, v) a quanti�er-free L-
formula, and a ∈ A. IfM |= ∃x φ(x, a), then N |= ∃x φ(x, a).

(ii) T has quanti�er elimination.

Proof. (i) ⇒ (ii): Considering Lemma 3.2, it su�ces to show that for an L-formula ∃x φ(x, v),
where φ(x, v) is quanti�er-free, there is a quanti�er-free L-formula ψ(v) such that it holds
T |= ∀v (∃x φ(x, v) ↔ ψ(v)). So, suppose that there are two models M,N |= T , a com-
mon substructure A of M and N , and a tuple a ∈ A. Suppose further that M |= ∃x φ(x, a).
Then, by our assumption, it follows that N |= ∃x φ(x, a). SinceM and N are interchangeable,
this is an equivalence. Therefore, we may apply Lemma 3.1 and conclude that T has quanti�er
elimination.

(ii) ⇒ (i): Suppose that T eliminates quanti�ers. LetM,N , and A be de�ned as above. Let
φ(w, v) be quanti�er-free. By quanti�er elimination there exists a quanti�er-free formula ψ(v),
such that T |= ∀v (∃x φ(x, v)↔ ψ(v)). Let a ∈ A. We obtain

M |= ∃x φ(x, a) ⇔ M |= ψ(a) becauseM |= T
⇔ A |= ψ(a) by Lemma 2.2

⇔ N |= ψ(a) again by Lemma 2.2

⇔ N |= ∃x φ(x, a) because N |= T .

In the following two sections we will apply this test to two well-known examples for theories
that allow quanti�er elimination.

3.2 Algebraically Closed Fields

We will assume that the reader already knows enough about algebraically closed �elds to follow
the proof of quanti�er elimination for the theory of algebraically closed �elds. Nevertheless, we
will prove one statement that will be the crucial point at the very end of the proof.

3.4 Lemma. Every algebraically closed �eld has in�nitely many elements.

Proof. Assume that there was a �nite algebraically closed �eld K = {a1, a2, . . . , an} with n
elements. Let f ∈ K[X] be the polynomial

f =
n∏
i=1

(X − ai),

which vanishes on every element of K. Now consider the polynomial g = f + 1. One can easily
see that g does not have any root in K, which is a contradiction to the fact that K is algebraically
closed.
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3.5 De�nition. Let L be the language of rings 〈+ ,− , · ; 0 , 1〉, where �− � will throughout the
thesis always denote the binary relation of substraction. The theory ACF of algebraically closed
�elds is axiomatized by the following axioms:

� the �eld axioms:

K1: ¬0 =̇ 1
K2: ∀x∀y∀z (x+ (y + z) =̇ (x+ y) + z)
K3: ∀x (x+ 0 =̇ x)
K4: ∀x (x+ (−x) =̇ 0)
K5: ∀x∀y∀z (x · (y · z) =̇ (x · y) · z)
K6: ∀x (x · 1 =̇ x)
K7: ∀x∃y (x =̇ 0 ∨ x · y =̇ 1)
K8: ∀x∀y (x · y =̇ y · x)
K9: ∀x∀y∀z ((x+ y) · z =̇ (x · z) + (y · z))

� every monic polynomial has a zero:

AKn: ∀x0∀x1 . . . ∀xn∃y yn+1 + xny
n + . . .+ x1y + x0 =̇ 0 for each n ∈ N.

In axiom AKn we used a simpli�ed notation: As it is generally kept in mathematics, we
usually relinquish the function symbol · of multiplication, and we write xn instead of x · . . . · x︸ ︷︷ ︸

n times

.

We will now show by using Theorem 3.3 that ACF eliminates quanti�ers.

3.6 Theorem. The theory ACF of algebraically closed �elds admits quanti�er elimination.

Proof. Let F1,F2 |= ACF, A a common substructure of F1 and F2. Then A is a model of the
universal theory ACF∀. Let us investigate what that means for A: Since in the language L, there
is + and ·, it will be closed under addition and multiplication, and − guarantees the existence of
additive inverse elements. Hence, A is a ring. Since it is a subring of the �elds F1 and F2, it is
even an integral domain. This allows us to form the �eld of fractions, Quot(A). Since Quot(A)
is the smallest �eld which contains A, we obtain Quot(A) ⊆ F1,F2. Let F̃ be the algebraic
closure of Quot(A). Since F1 and F2 are two algebraically closed �elds, this directly yields that
F̃ ⊆ F1,F2.

Let φ(x, y) be a quanti�er-free L-formula and a ∈ A. Assume that F1 |= ∃x φ(x, a). We wish
to show F2 |= ∃x φ(x, a) in order to apply Theorem 3.3. Without loss of generality, we can
assume that

φ(x, a) =
N∨
i=1

 ni∧
j=1

φij(x, a)


︸ ︷︷ ︸

=:φi(x,a)

,

where each φij(x, a) is of the form pij(x) = 0 or qij(x) 6= 0 for polynomials pij and qij in the
variable X whose coe�cients are themselves polynomials in the constants a occurring in φ with
integer coe�cients. Note that thus pij(X), qij(X) ∈ A[X]. Further note that the cases m = 0
and ni = 0 are not excluded.

Since ∃x φ(x, a) is logically equivalent to ∃x φ1(x, a) ∨ . . . ∨ ∃x φm(x, a) and because of our
assumption F1 |= ∃x φ(x, a), we may as well assume that F1 |= ∃x φ1(x, a). If we show that
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F2 |= ∃x φ1(x, a), then it follows naturally that F1 |= ∃x φ(x, a). We distinguish the following
two cases:

Case 1: Suppose that at least one of the p1,j is not the zero polynomial in A[X], say p1,1 6= 0.
Then there is b ∈ F such that F1 |= φ1(b, a), in particular p1,1(b) = 0. But any root of p1,1 is

already contained in F̃ . Thus, b ∈ F̃ and hence, F̃ |= ∃x φ1(x, a). This yields F̃ |= ∃x φ(x, a),
and therefore F2 |= ∃x φ(x, a).

Case 2: If, on the other hand, all terms p1,j are equal to the zero polynomial or if there is no

term p1,j(x) = 0 in φ1(x, a), then it su�ces to �nd an element b ∈ F̃ that di�ers from all the zeros
of the polynomials q1,j . One such b does, indeed, exist, since there are only �nitely many zeros

of the q1,j and, as an algebraically closed �eld, by Theorem 3.4, F̃ has in�nitely many elements.

Therefore we obtain F̃ |= ∃x φ1(x, a), i.e. F̃ |= ∃x φ(x, a) and, hence, also F2 |= ∃x φ(x, a).

3.3 Real Closed Fields

Tarski gave an explicit algorithm for eliminating quanti�ers in the theory of real closed �elds.
This is the theory of the �eld of the reals, which is equipped with a natural order.

In this section we will review some of the necessary results on real closed �elds which we will
later on use to prove quanti�er elimination. We start with some basic notion:

3.7 De�nition. An ordering on a �eld K is a total order relation ≤ such that for all a, b, c ∈ K
it holds that

a ≤ b ⇒ a+ c ≤ b+ c and

a ≤ b ∧ c ≥ 0 ⇒ ac ≤ bc.

An ordered �eld (K,≤) is a �eld K, equipped with an ordering ≤. If the order is clear, however,
we just write K.

3.8 De�nition. We say that a �eld K is real if it has an ordering ≤. For an ordered �eld (K,≤),
the subset P = {x ∈ K : x ≥ 0} is called the positive cone of (K,≤).

Equivalently we could say that a �eld K is called real, if −1 cannot be written as a sum of
squares in K. We are familiar with Q and R as real �elds with their natural orderings. But also
the �eld of rational functions in one variable over Q is real. In fact, if R is any ordered �eld,
then R(t), the �eld of rational functions in one variable over R, also admits an ordering.

3.9 De�nition. An ordered �eld R is real closed if R is real and does not admit any proper
algebraic extension which is real itself and whose ordering extends the ordering on R.

Usually real closed �elds are denoted by the letter R. We will stick to this convention. There
are many equivalent formulations of a de�nition for real closed �elds:

3.10 Lemma. Let R be a �eld. Then the following are equivalent:

(i) R is real closed.
(ii) There is an ordering on R which cannot be extended to any proper algebraic extension of

R.
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(iii) There is an ordering of R whose positive cone is R2 = {a2 : a ∈ R}, and every polynomial
of R[X] of odd degree has a root in R.

(iv) R is real, for every a ∈ R, either a or −a is a square in R, and every polynomial of R[X]
of odd degree has a root in R.

Proof. See [KnSc, Section 1.5, Satz 1 and Bemerkung] for a proof.

3.11 Lemma. If R is a real closed �eld, then R(
√
−1) is algebraically closed.

Proof. A proof, which is due to Carl Friedrich Gauÿ, can be found in [KnSc, Section 1.5, Theo-
rem 2].

Lemma 3.10(iii) immediately yields that the ordered �eld of real numbers R is real closed.
From Lemma 3.11 we deduce the Intermediate Value Theorem for real closed �elds:

3.12 Theorem (Intermediate Value Theorem). Let R be a real closed �eld, f ∈ R[t], a, b ∈ R
with a < b. If f(a) · f(b) < 0, then the number of zeros in the interval ]a, b[ is odd. In particular,
there exists x ∈ ]a, b[ such that f(x) = 0.

Proof. Let a1 ≤ . . . ≤ ar be the roots of f . By Lemma 3.11, the degree of the �eld extension
[R(
√
−1) : R] is 2, i.e. the irreducible factors of f are either linear or quadratic polynomials.

Hence, f is of the form f = c · (t− a1) · . . . · (t− ar) · p1(t) · . . . · ps(t), where c is a unit in R and
p1, . . . , ps are irreducible monic quadratic polynomials. Since the pk only take positive values,
we obtain

−1 = sign
f(a)

f(b)
=

r∏
i=1

sign
a− ai
b− ai

.

Thus, the number of ai with a < ai < b is odd.

3.13 De�nition. A real closure of an ordered �eld K is a real closed �eld R ⊇ K, such that R
is algebraic over K and the order on R extends the order on K.

3.14 Lemma. Every ordered �eld K has a real closure. If R and R′ are two real closures of K,
there is one unique order-preserving K-isomorphism between R and R′. Thus, we speak of the
real closure of K.

Proof. We only sketch the proof of the �rst statement: For an ordered �eld (K,≤) one needs to
apply Zorn's lemma to the set

L = {L ⊇ K : L is an ordered �eld, L is algebraic over K, and extends the order on K}

and verify that the maximal element of L is indeed real closed. The proof of the second part
needs some more machinery. The whole proof of the lemma can be found in detail, for example,
in [BoCoRo, Theorem 1.3.2].

3.15 Lemma. Let R be a real closed �eld, K ⊆ R a sub�eld, and K̃ the relative algebraic closure
of K in R, i.e. K̃ = {x ∈ R : x is algebraic over K}. Then K̃ is real closed.
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Proof. We will verify version (iv) of Lemma 3.10. Since K̃ is a sub�eld of R, we can restrict
the ordering on R to K̃. Hence, K̃ is real. Now let a ∈ K̃. We may assume that a ≥ 0,
as otherwise we can consider −a instead. Since R is real closed, the quadratic polynomial
X2 − a ∈ K̃[X] ⊆ R[X] has a root b ∈ R. As b is algebraic over K̃, it is also algebraic over K,
and thus contained in K̃. A similar argument can be applied to any polynomial in K̃[X] of odd
degree to show that it has a root in K̃.

After giving an axiomatization of the theory of real closed �elds, we are ready to prove quan-
ti�er elimination.
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3.16 De�nition. Let L be the language of ordered rings 〈+ ,− , · ;< ; 0 , 1〉. The theory of RCF
of real closed �elds is axiomatized by the following axiom system:

� the �eld axioms K1 to K9,

� the order axioms:

O1: ∀x ¬x < x
O2: ∀x∀y∀z ((x < y ∧ y < z)→ x < z)
O3: ∀x∀y (x < y ∨ x = y ∨ y < x)
O4: ∀x∀y∀z (x < y → x+ z < y + z)
O5: ∀x∀y ((0 < x ∧ 0 < y)→ 0 < x · y)

� positive elements are squares:

RK1: ∀x (0 < x → ∃y x = y2)

� polynomials of odd degree have zeros: For each n ∈ N we have:

RK2n: ∀x0∀x1 . . . ∀x2n ∃y y2n+1 + x2ny
2n + x2n−1y

2n−1 + . . .+ x1y + x0 = 0.

Note that in the language of ordered rings we use < for the order relation while in the de�nition
of ordered �elds it is common to use ≤. This does not cause any di�culties though, as the two
symbols are interde�nable.

Using the criterion of Theorem 3.3 again, we will now show quanti�er elimination for real
closed �elds. The proof is very similar to the one of Theorem 3.6.

3.17 Theorem. The theory of real closed �elds RCF admits quanti�er elimination.

Proof. Let B1,B2 |= RCF and A a common substructure of both B1 and B2. Let φ(x, y) be a
quanti�er-free L-formula and a ∈ A such that B1 |= ∃x φ(x, a). By Theorem 3.3 we need to
show that this implies B2 |= ∃x φ(x, a).

Without loss of generality, φ(x, y) only uses the logical operators ∧,∨, and ¬ such that ¬
only occurs in front of atomic formulas. Atomic formulas have the form 0 =̇ p(x) or 0 < q(x),
where p and q are polynomials in the variable X whose coe�cients are again polynomials in
the constants a1, . . . , an with integer coe�cients. Moreover, we can replace ¬p(x) =̇ 0 by the
expression (0 < p(x) ∨ 0 < −p(x)) and ¬0 < q(x) by (0 =̇ q(x) ∨ 0 < −q(x)). Therefore, we
can assume that φ(x, a) only uses ∧ and ∨ as logical connectives. So we have

φ(x, a) =

N∨
i=1

 ni∧
j=1

φij(x, a)


︸ ︷︷ ︸

=:φi(x,a)

,

where φij(x, a) is of the form p(x) =̇ 0 or 0 < q(x). The formula ∃x φ(x, a) is logically equivalent
to ∃x φ1(x, a) ∨ . . . ∨ ∃x φm(x, a). Because B1 |= ∃x φ(x, a), without loss of generality suppose
that B1 |= ∃x φ1(x, a). We now show that B2 |= ∃x φ1(x, a), since this implies B2 |= ∃x φ(x, a).

We know that φ1(x, a) is of the form

s∧
k=1

qk(x) > 0 ∧
n1∧

k=s+1

pk(x) =̇ 0.
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In ordered �elds, it holds that ps+1(x) = 0, . . . , pn1(x) = 0 if and only if the sum of all squares
vanishes, i.e.

∑n1
k=s+1 pk(x)2 = 0. Therefore, φ1(x, a) even has the form

s∧
k=1

qk(x) > 0 ∧ p(x) =̇ 0,

where p(x) :=
∑n1

k=s+1 pk(x)2. That means

B1 |= ∃x

(
s∧

k=1

qk(x) > 0 ∧ p(x) = 0

)
.

Since A is a substructure, it is, again, a subring of a �eld, hence, an integral domain. Let
Quot(A) be its �eld of fractions and let R1 and R2 be the relative algebraic closures of Quot(A)
in B1 and B2, respectively. By Lemma 3.15, R1 and R2 are also real closed, i.e. R1 |= RCF and
R2 |= RCF. By Lemma 3.14, R1 and R2 are isomorphic, so we will identify them with each
other and just write R instead. Because B1 |= ∃x φ1(x, a), there exists α ∈ B1 such that

B1 |=
s∧

k=1

qk(α) > 0 ∧ p(α) =̇ 0.

We will show that there exists b ∈ R such that

R |=
s∧

k=1

qk(b) > 0 ∧ p(b) =̇ 0,

because in this case it follows R |= ∃x φ1(x, a) and therefore also B2 |= ∃x φ1(x, a), since
b ∈ R ⊆ B2. We distinguish the following two cases:

Case 1: p is not the zero-polynomial in R[X]. Since R is relatively algebraically closed in B1,
it holds that α ∈ R, so α ∈ B2 and we are done.

Case 2: p is the zero-polynomial in R[X] or s = n1 which means that there is no condition
p = 0 in φ1. If the q1, . . . , qs do not have any zeros in R, then they do not change sign and it
holds for all b ∈ R that qk(b) > 0. Otherwise, let β1 < . . . < βt be the zeros of q1, . . . , qs in R.
We have one of the following situations:

(1) α < β1,
(2) βi < α < βi+1 for some i ∈ {1, . . . , t− 1},
(3) βt < α.

Note that α is not a zero of any qk. In situation (1) choose b = β1 − 1 ∈ R. In (2) take
b = 1

2(βi + βi+1) ∈ R. And in the last situation (3), b = βt + 1 ∈ R will do.

It follows from the Intermediate Value Theorem 3.12 for B1 that qk(b) > 0 for all k = 1, . . . , s.
If not, there would be another zero between b and one βi in R, not included in {β1, . . . , βt}, a
contradiction. Hence, b satis�es ∃x φ1(x, a) and this yields B2 |= ∃x φ(x, a).





4 Quanti�er Elimination by

Algebraically Prime Models

4.1 Algebraically Prime Models and Simple Closedness

For this section we use the terminology that David Marker uses in [Mar02]. The notion of
algebraically prime models and simple closedness is not common otherwise in the literature. For
the following quanti�er elimination test there is nothing really new happening in this section. It
will, however, be handy to prove quanti�er elimination of Presburger Arithmetic.

4.1 De�nition. A theory T has algebraically prime models if for any A |= T∀ there is Ã |= T
and an L-embedding i : A → Ã such that for all N |= T and L-embeddings j : A → N there is
an L-embedding h : Ã → N such that j = h ◦ i.

4.2 De�nition. Let M,N |= T , where M ⊆ N . We call M simply closed in N if for any
quanti�er-free formula φ(v, w) and any a ∈M , if N |= ∃x φ(a, x) thenM |= ∃x φ(a, x).

The following quanti�er elimination test can be found in [Mar02, Corollary 3.1.12] and the
proof is a modi�cation of the proof of [Mar02, Theorem 3.1.9].

4.3 Theorem. Suppose that T is an L-theory such that

(i) T has algebraically prime models,
(ii) wheneverM⊆ N are models of T ,M is simply closed in N .

Then T has quanti�er elimination.

Proof. We are going to use the quanti�er elimination test from Theorem 3.3: Let T be an L-
theory as above. Let φ(v, x) be a quanti�er-free formula,M,N |= T , A a common substructure
ofM and N , a ∈ A, b ∈ M such thatM |= φ(a, b). We want to show that there is c ∈ N such
that N |= φ(a, c). For simplicity reasons we suppose without loss of generality that A is not
only a substructure ofM and N but also properly contained in both such that the substructure
embeddings are the identity map.

By Lemma 2.13 we know that A |= T∀. Since T has algebraically prime models, there is
Ã |= T and an L-embedding i : A → Ã such that for all B |= T and L-embeddings j : A → B
there is an L-embedding h : Ã → B such that j = h ◦ i. In particular, by setting B = N , we
obtain an L-embedding β : Ã → N such that β ◦ i = id. Similarly by setting B = M we get
α : Ã →M such that α ◦ i = id.

As Ã |= T ,M |= T and Ã ⊆ M, Ã is simply closed inM. Moreover, we have i(a) ∈ Ã and
α(i(a)) = a ∈ M . By assumption we have M |= ∃x φ(a, x). Hence, by simple closedness, it
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follows Ã |= ∃x φ(i(a), x). Now by applying β this yields Ã |= ∃x φ(a, x). Thus, we have shown
that there exists an element, say c ∈ N , such that N |= φ(a, c).

So, by Theorem 3.3, T has quanti�er elimination.

4.2 Presburger Arithmetic

Presburger Arithmetic is formally de�ned as the theory of the natural numbers with addition.
It is due to Mojzesz Presburger and, therefore, named after him Presburger Arithmetic. As it
completely omits multiplication, it is much weaker than Peano Arithmetic, which includes both
addition and multiplication. It cannot de�ne terms such as prime numbers or divisibility by a
variable, for instance. But, unlike Peano Arithmetic, it is a complete and decidable theory. We
will come back to this concept in Chapter 7.

Let L be the language 〈+ ,− ;< ; 0 , 1〉. Roughly speaking, Presburger Arithmetic is the theory
of the ordered group of integers. It does not have quanti�er elimination in the language L. The
problem is formulas of the following type

φ(x) = ∃y (x =̇ y + . . .+ y︸ ︷︷ ︸
n times

),

which asserts that x is divisible by n. Once having de�ned properly what Pr, the theory of
Presburger Arithmetic, is, we will show that the above formula is not equivalent to a quanti�er-
free L-formula.
If we add predicates for being divisible by some integer n to the language L, however, quanti�er

elimination is admitted in the extended language. Thus, let Pn be a unary predicate which we
interpret as �the element is divisible by n � and let L∗ = L∪{Pn : n = 2, 3, . . .} be the extended
language. Since we only add predicates for sets that one can already de�ne in L, we do not
change the de�nable sets by extending the language.

There is another axiomatization of Pr than the one that we will give in the following, see for
instance [Poi, page 115]. We follow [Mar02, page 82].

4.4 De�nition. The L∗-theory Pr for Presburger Arithmetic is axiomatized by the following
axiom system:

� axioms for Abelian groups,

AG1: ∀x (0 + x =̇ x+ 0 =̇ x)
AG2: ∀x∀y∀z (x+ (y + z) =̇ (x+ y) + z)
AG3: ∀x (x− x =̇ 0)
AG4: ∀x∀y (x+ y =̇ y + x)

� the order axioms O1, O2, O3 and O4

� and additionally:

P1: 0 < 1
P2: ∀x (x ≤ 0 ∨ x ≥ 1)

P3n: ∀x
(
Pn(x)↔ ∃y (x =̇ y + . . .+ y︸ ︷︷ ︸

n times

)
)
for n = 2, 3, . . .



Presburger Arithmetic 25

P4n: ∀x
(
n−1∨
i=0

(
Pn(x+ 1 + . . .+ 1︸ ︷︷ ︸

i times

) ∧
∧
j 6=i
¬Pn(x+ 1 + . . .+ 1︸ ︷︷ ︸

j times

)
))

for n = 2, 3, . . .

Without adding the predicates Pn to the language, the above formula φ(x) is not equivalent
in the theory to a quanti�er-free formula. Let Pr′ be the L-theory which is de�ned by the same
axioms as Pr, except for P3n and P4n, since they require the predicates Pn, which are not in the
language L. The following proposition shows that the L-theory Pr′ does not admit elimination
of quanti�ers in L:

4.5 Proposition. In Pr′, the formula ∃x (y = x + x) is not equivalent to a quanti�er-free
L-formula.

Proof. Consider the group G := Z[ω], which is generated by the integers and an in�nite element
ω, and H := Z[ω/2], both equipped with the usual addition. Then G ⊆ H. Note that in H, there
is an element x such that ω = x+ x, namely ω/2. In G, however, there is no such element.

Now let us suppose that there is a quanti�er-free L-formula ψ(v) such that it holds
Pr |= ∀y (∃x y = x + x ↔ ψ(y)). As one can quickly check with the axiomatization of
Presburger Arithmetic, G and H are both models of Pr. Hence, H |= ∀y (∃x y = x+ x↔ ψ(y))
and G |= ∀y (∃x y = x+ x↔ ψ(y)). Now we are in one of the following two cases:

Case 1: H |= ψ(ω). Equivalently one has H |= ∃x ω = x+ x. As G is a substructure of H and
ψ(ω) is quanti�er-free, we also obtain G |= ψ(ω), which holds if and only if G |= ∃x ω = x + x.
But, as we have noted in the beginning, ∃x ω = x + x holds in H but not in G. Hence, we are
in the second case:

Case 2: H |= ¬ψ(ω), i.e. H |= ¬∃x ω = x + x. Analogously it follows G |= ¬ψ(ω), and thus,
G |= ¬∃x ω = x+ x. Again, this leads to a contradiction.

Hence, it makes sense that, in order to admit quanti�er elimination, the language needs to be
extended by the predicates Pn.

Even though multiplication is not part of the language, we will occasionally write something
like n · x, where n is an integer. For this we do not need the function of multiplication. It
is enough to apply addition a certain (integer, of course) number of times. Hence n · x means
nothing else than adding n copies of x together. Also, something like division is not de�ned in
Pr. But one can show that if an element is divisible by some integer, then the division is unique:

4.6 Lemma. Let G |= Pr be a model, m ∈ Z an integer and y ∈ G such that G |= Pm(y). Then
there is a unique x ∈ G such that x+ . . .+ x︸ ︷︷ ︸

m times

= y.

Proof. Suppose there are two elements x and x′ such that m · x = m · x′. Then it also holds
2m · x = 2m · x′. After an easy manipulation we obtain m · (x− x′) = −m · (x− x′). Since the
left hand side is the negative of the right hand side, this yields that m · (x−x′) = 0. As we work
in ordered groups, which are torsion free, it follows that x = x′. Hence, dividing by an integer
gives a unique solution.

In Presburger Arithmetic, it is not as easy to see what the universal theory Pr∀ looks like.
So we will �rst check how it can be de�ned. This will be used afterwards in the proof to show
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quanti�er elimination for Pr. Let us de�ne a theory T for which we show that it is, indeed,
Pr∀. Of course, the axioms AG1, AG2, AG3, AG4, O1, O2, O3, O4, D1, D2, and D4n are
universal.

4.7 De�nition. De�ne the theory T by the following axioms:

� the axioms AG1, AG2, AG3, AG4, O1, O2, O3, O4, P1, P2, P4n

� together with:

T1: ∀x∀y ((Pn(x) ∧ Pn(y)) → Pn(x+ y)),
T2: ∀x∀y ((Pn(x) ∧ Pn(y)) → Pn(x− y)),

T3: ∀x∀y
(

(y + . . .+ y︸ ︷︷ ︸
n times

=̇ x)→ Pn(x)
)
,

T4: for all n dividing m: ∀x (Pm(x)→ Pn(x)),

T5: for all k, n = 2, 3, . . .: ∀x
(
Pn(x)→ Pkn(x+ . . .+ x︸ ︷︷ ︸

k times

)
)
.

The �rst two axioms ensure that the Pn are closed under addition and subtraction. Together
with axiom T5 it follows that the Pn are additive subgroups.

For the next 3 lemmas and proofs, we follow [Mar02, Lemma 3.1.9 and Lemma 3.1.20].

4.8 Lemma. The above de�ned theory T axiomatizes the universal theory Pr∀.

Proof. It is easy to see that T ⊆ Pr∀, i.e. that each model of Pr∀ is also a model of T . We need
to show the other implication. Let G be a model of T . We will show that there is H ⊇ G, where
H |= Pr. Then, by Lemma 2.13, the claim follows. Hence, let

H :=
{x
n

: x ∈ G and (n = 1 or G |= Pn(x))
}
,

where x
n is the equivalence class of (x, n) under the equivalence relation ≈, where (y1,m1) ≈

(y2,m2) if and only if
y1 + . . .+ y1︸ ︷︷ ︸

m2 times

= y2 + . . .+ y2︸ ︷︷ ︸
m1 times

.

For each n, let
PHn := nH := {h+ . . .+ h︸ ︷︷ ︸

n times

: h ∈ H}.

Consider the L∗-structure H := 〈H ; + ,− ;< ,PHn ; 0 , 1〉. We �rst show that H is an ordered
Abelian group: Let x/m, y/n ∈ H. If both m and n are equal to 1, we are already done. We only
show the case where neither m nor n is equal to 1, of which the other cases are simpli�cations.
Hence, we assume m,n 6= 1. Then G |= Pm(x) and G |= Pn(y). By axiom T5 we obtain
G |= Pmn(nx) and G |= Pmn(my). In H, rules as in Q apply. Since Pmn is closed under addition
and subtraction, (nx ±my)/mn ∈ H. Thus, also H is closed under addition and subtraction.
Because the Pn are subgroups of G, they are Abelian. Hence, so is H. The existence of a neutral
element and of inverse elements as well as associativity and commutativity is inherited from G.
Thus, H is an Abelian group. For two elements x/m and y/n in H we have H |= x/m ≤ y/n if
and only if G |= nx ≤ my. Hence H is an ordered Abelian group.

Let us check the other axioms. Clearly, H satis�es P1. Suppose that there is x/m ∈ H with
0 < x/m < 1, thus, 0 < x < m. Since x ∈ G and G ful�lls axiom P2, m 6= 1. This means that
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x is some integer from {1, 2, . . . ,m − 1}. But then, because obviously G |= Pm(m), by axiom
P4m for G it follows that G |= ¬Pm(x), which is a contradiction to x/m ∈ H. Hence, axiom
P2 holds. By construction, PHn ful�lls P3n. It remains to check axiom P4n: Let x/m ∈ H,
so G |= Pm(x). By axiom P4mn for x ∈ G there is a unique i with 0 ≤ i < mn such that
x + i ∈ P Gmn. By T4 it follows G |= Pm(x + i). Since Pm is a subgroup of G, also G |= Pm(i).
Thus, i = `m for some 0 ≤ ` < n. In H, there is y such that

y + . . .+ y︸ ︷︷ ︸
mn times

= x+ `m,

i.e. mn · y = x+ `m. Dividing by m yields n · y = x/m+ `, which is unique by Lemma 4.6. As i
was unique, also ` is unique.

Hence, H ful�lls all axioms of Pr, i.e. H |= Pr. We have now proven that every model of T
can be embedded into a model of Pr. This proves that T |= Pr∀.

4.9 Theorem. The theory Pr has algebraically prime models.

Proof. In order to verify the existence of algebraically prime models we need to show that for
any G |= Pr∀ there is H |= Pr and an L∗-embedding i : G → H such that for all H′ |= Pr and
L∗-embeddings j : G → H′ there is an L∗-embedding h : H → H′ such that j = h ◦ i.
Let G |= Pr∀ and H |= Pr be de�ned as in Lemma 4.8. Let i : G → H be the canonical

L∗-embedding. Suppose there is another model H′ |= Pr and an L∗-embedding j : G → H′. It
remains to show that H can be embedded over G into H′.
Let x/m ∈ H with G |= Pm(x). Since G is a substructure of H′ it follows that H′ |= Pm(x).

This means, there exists some y ∈ H ′ such that

y + . . .+ y︸ ︷︷ ︸
m times

= x,

which is unique by Lemma 4.6. Hence, by sending x/m to y we obtain a well-de�ned map h.
To see that it is injective, we check the kernel: If h(x/m) = 0, then m · 0 = x, i.e. x = 0.
Thus, x/m = 0 and therefore h is injective. The homomorphic properties are easy to check. So,
without carrying them out, we may conclude that h is an L∗-embedding of H into H′ that �xes
G.

4.10 Theorem. If G,H |= Pr are two models with G ⊆ H, then G is simply closed in H.

Proof. Let φ(v, w) be a quanti�er-free L∗-formula and a ∈ G. Suppose that there is b ∈ H such
that H |= φ(b, a). What we need to show is that there exists c ∈ G such that G |= φ(c, a).

Axiom P4n states that for �xed n and x, there is i ∈ {0, . . . , n− 1} such that Pn(x+ i) and
for every j ∈ {0, . . . , n − 1} with j 6= i it holds ¬Pn(x + j). That means that the disjunction
in P4n is actually an exclusive disjunction, i.e. P4n holds if and only if for all x, exactly one
i ∈ {0, . . . , n − 1} ful�lls Pn(x + i) and ¬Pn(x + j) for every j ∈ {0, . . . , n − 1} with j 6= i.
Hence, by axiom P4n, Pn(x) is in Pr equivalent to

∧n−1
i=1 ¬Pn(x + i). That means ¬Pn(x) is

equivalent to
∨n−1
i=1 Pn(x+ i). Hence, we may replace all negative occurrences of Pn in φ(v, a) by

a disjunction of positive occurrences. Let us assume that φ(v, a) is already in disjunctive normal
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form. Thus, without loss of generality, we obtain

φ(v, a) =
N∨
i=1

(
ni∧
j=1

φij(v, a)︸ ︷︷ ︸
=:φi(v,a)

)
,

where the φij(v, a) are atomic formulas. Since we have H |= ∃x φ(x, a), we may assume that
H |= ∃x φ1(x, a). All L∗-terms t are of the form t =̇ mv + g, where m ∈ Z, g ∈ G. Since all
models of Pr are discretely ordered, we can replace formulas like ¬v =̇ 1 by v < 1 ∨ 1 < v.
Hence, considering the equivalence m1v + g1 =̇ m2v + g2 ↔ (m1 − m2)v =̇ g2 − g1, atomic
L∗-formulas are of the forms

mv =̇ g, where m ∈ Z, g ∈ G,
mv < g, where m ∈ Z, g ∈ G, and

Pk(`v + g), where k, ` ∈ Z, g ∈ G.

In the second formula we may replace mv < g by v < h, where h is the least element in G such
that mh ≥ g. Before we explain, why we may make this replacement, we illustrate why such an
element h exists: If G |= Pm(g), then set h := g/m. If on the contrary G |= ¬Pm(g), then by
axiom P4m there is i ∈ {1, . . . ,m − 1} such that G |= Pm(g + i). Hence, set h := (g + i)/m.
Now, to see that we may replace mv < g by v < h, assume that v < h. Further suppose that,
by choice of h, we have mh ≥ g > m(h− 1). Then v ≤ h− 1, and therefore g > m(h− 1) ≥ mv.
Suppose conversely that v ≥ h. Then, mv ≥ mh ≥ g.
Hence, without loss of generality, we may assume that φ1(v, a) is of the form

s∧
j=1

Pkj (`jv + hj) ∧
t∧

j=s+1

mjv =̇ gj ∧
n1∧

j=t+1

dj < v < ej ,

where 0 ≤ s ≤ t ≤ n1, kj , `j ,mj ∈ Z, and hj , gj , dj , ej ∈ G for each 1 ≤ j ≤ n1. If there is a
part in φ1 of the form mjv =̇ gj , i.e. if s < t and mj 6= 0 for some j, then b = gj/mj . Hence,
H |= Pmj (gj). Since G ⊆ H, we obtain G |= Pmj (gj) and therefore b ∈ G, which means that
we are done by setting c := b. So, suppose there is no part in φ1 of this form, i.e. that s = t.
By setting d := max{dj : t + 1 ≤ j ≤ n1} and e := min{ej : t + 1 ≤ j ≤ n1} we obtain
dj ≤ d < b < e ≤ ej for each j ∈ {t+ 1, . . . , n1}. Subtracting d yields 0 = d− d < b− d < e− d.
If e − d is �nite, i.e. bounded by some natural number, then so is b − d. Since d ∈ G and G is
closed under �+ � and �− �, it follows b ∈ G. Therefore we will assume that e− d is not �nite.

Note that b is a solution to the system of congruences

`1v + h1 ≡ 0 mod k1

`2v + h2 ≡ 0 mod k2
...

`sv + hs ≡ 0 mod ks.

Let k :=
∏s
i=1 ki. Axiom P4k assures that there exists z ∈ {0, . . . , k − 1} such that G |=

Pk(b− z). Then also z is a solution to the system of congruences above. Again by P4k there is
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q ∈ {k, . . . , 2k − 1} such that G |= Pk(d+ q − z). As e− d is in�nite, this yields that d+ q < e
and, thus, d < d + q < e. Since d + q ∈ G, by setting c := d + q, we have found the desired
element: It hold G |= Pk(c − z). Then c is also a solution to the above system. That means,
G |= φ1(c, a), and thus G |= φ(c, a), as desired.

4.11 Corollary. The theory of Presburger Arithmetic admits elimination of quanti�ers.

Proof. By Theorem 4.3, a theory T eliminates quanti�ers if it has algebraically prime models
and if for two modelsM ⊆ N of T thenM is simply closed in N . The two previous theorems
show these two conditions.





5 Quanti�er Elimination by Types and

Saturation

The next quanti�er elimination test is about saturated models. We will develop some theory
about types and saturation. These notions were worked out in the 1950s, cf. [Poi, page 63].

5.1 Types and Saturated Models

For this section we follow [Mar02], although we do not presuppose the theory to be complete
as it is done in the source. Consider a structure M with universe M in a language L. Recall
from De�nition 2.8 that for a subset A ⊆ M , LA is the language obtained from L by adding
a constant symbol ca for each a ∈ A to L. By ThA(M) we denote the set of all LA-sentences
which are true inM.

5.1 De�nition. LetM be an L-structure and A ⊆M a subset. For a set p of LA-formulas in n
free variables v1, . . . , vn, we call p an n-type (over A) if p∪ThA(M) is satis�able. We say that p
is a complete n-type if for all LA-formulas φ(v) with free variables taken from v1, . . . , vn, either
φ(v) ∈ p or ¬φ(v) ∈ p. By SMn (A) we denote the set of all complete n-types.

Zorn's Lemma assures that an incomplete theory can always be extended to a complete theory.
Thus, viewing each n-type as a theory in the language LA∪{x1,...,xn}, also each n-type can be ex-

tended to a complete n-type p∗ ∈ SMn (A) with p∗ ⊇ p. This result is also known as Lindenbaum's
Lemma, see [Man, Lemma 3.22].

5.2 De�nition. LetM be an L-structure, A ⊆ M , and p an n-type over A. We say that p is
realized by a ∈Mn ifM |= φ(a) for each φ(v) ∈ p.

Having de�ned types we may now continue with saturated models.

5.3 De�nition. Let κ be an in�nite cardinal. We say that M |= T is κ-saturated if, for all
A ⊆M , if |A| < κ and p ∈ SMn (A), then p is realized by some element inM. We callM simply
saturated if it is |M |-saturated.

Since every type is contained in some complete type, also every incomplete type is realized in
κ-saturated models. It turns out that for a model M to be κ-saturated it is even enough that
every 1-type over A is realized inM:

5.4 Lemma. Let κ be an in�nite cardinal. Then the following are equivalent:
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(i) M is κ-saturated.
(ii) If A ⊆M with |A| < κ and p is a 1-type over A, then p is realized inM.

Proof. (i) ⇒ (ii): Being κ-saturated means that every complete n-type over any subset A ⊆ M
with cardinality less than κ is realized in M. But every 1-type can be extended to a complete
1-type. Thus, this implication is clear.

(ii) ⇒ (i): We prove the other direction by induction on n. Since (ii) states the base case for
n = 1, we only need to deal with the induction step. Suppose that for a �xed n ∈ N and A ⊆M
with |A| < κ every complete n-type is realized inM. Let p ∈ SMn+1(A). We need to show that p
is realized inM.

Let q ∈ SMn (A) be the type {φ(v1, . . . , vn) : φ ∈ p}. By the induction hypothesis q is realized
inM by some a ∈ M . Let r be the type {ψ(a,w) : ψ(v) ∈ p}. Then r is a complete 1-type in
SM1 (A ∪ {a1, . . . , an}). By (ii), r is realized by some b ∈ M . Hence, the tuple (a, b) realizes p.
This shows thatM is κ-saturated.

The traditional examples of saturated structures are the rationals as a dense linear order
without endpoints, and the complex numbers as an algebraically closed �eld of characteristic 0,
see [Sac72a, Proposition 16.1 and Proposition 16.2].

Sometimes, it can be hard to determine for a concrete model whether it is κ-saturated or not.
However, it is not so hard to prove that there exists an extension that is saturated. We will
prove this in three steps. Lemma 5.5 shows that every type can be realized in some elementary
extension. Iterating this construction, we show in Lemma 5.6 that there is an elementary exten-
sion in which every type is realized. And �nally we use this machinery to prove the existence of
saturated elementary extensions in Theorem 5.10.

5.5 Lemma. LetM be an L-structure, A ⊆M a subset, and p an n-type over A. There exists
an elementary extension N �M such that p is realized in N .

Proof. Let c1, . . . , cn be new constants not contained in LA. De�ne

Γ := {φ(c, a) : φ(v, a) ∈ p} ∪ Diagel(M).

Let ∆ ⊆ Γ be a �nite subset. We ought to show that ∆ has a model, i.e. that ∆ is satis�able.
Without loss of generality we may assume that p is closed under conjunction. Thus, the part
of ∆ coming from the �rst part of Γ is one single sentence φ(c, a). On the other hand, since
Diagel(M) is a complete theory, we may further assume that also the part of ∆ that comes from
Diagel(M) is one single sentence. Thus we obtain that ∆ = {φ(c, a), ψ(a, b)}, where a ∈ A,
b ∈ Mr A, φ(v, a) ∈ p, and ψ(a, b) ∈ Diagel(M). The latter yields M |= ψ(a, b). We have
M |= ∃v φ(v, a), i.e. there is d ∈M such thatM |= φ(d, a).

Let us consider the model Mc, where we interpret c
Mc = d. Since Mc |= φ(c, a), we obtain

Mc |= ∆. Thus, there exists a model N |= Γ in which p is realized. Since N |= Diagel(M), there
is an elementary L-embeddingM� N , which was to be shown.

5.6 Lemma. Let κ be some in�nite cardinal. For an L-structureM there exists an elementary
extension N �M such that for any subset A ⊆M with cardinality less than κ, each 1-type over
A is realized in N .
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Proof. Let (pα : α < ζ) be an enumeration of all 1-types in SM1 (A) for all subsets A ⊆M with
|A| < κ for some su�ciently large ordinal number ζ. We build an elementary chain of models
(Mα : α < ζ):

Let M0 := M. If Mα is already constructed, then let Mα+1 be the elementary extension
of Mα in which pα is realized. This elementary extension exists by Lemma 5.5. For a limit
ordinal λ letMλ :=

⋃
α<λMα. Proposition 2.11 assures that the union of an elementary chain

of models is an elementary extension of each member of the chain. Let

N :=
⋃
α<ζ

Mα.

Then every 1-type is realized in N . Again by Proposition 2.11, Mα � M for each α < ζ and,
hence,M� N .

5.7 Corollary. In the situation of Lemma 5.6, also each n-type for n ∈ N is realized in N .

Proof. This follows immediately from Lemma 5.4.

We will now show that for each regular in�nite cardinal κ, every structure has an elementary
extension that is κ-saturated. A reader that is not familiar with set theory and regular cardinals
may as well imagine any in�nite successor cardinal instead, since every in�nite successor cardinal
number is regular, see [Del, Theorem 3.8.6]. For the sake of completeness we give the de�nition
of regularity:

5.8 De�nition. Let (B,<) be a totally ordered set. A subset A ⊆ B is called co�nal in B if
and only if for all b ∈ B there exists a ∈ A such that a > b. The co�nality of B, denoted by
cf(B), is the least cardinal κ such that there exists a subset C ⊆ B which has cardinality κ and
is co�nal in B.

5.9 De�nition. An in�nite cardinal κ is said to be regular if cf(κ) = κ.

5.10 Theorem. Let κ be a regular in�nite cardinal andM a model of a theory T . There exists
a κ-saturated N |= T such thatM� N .

Proof. We build an elementary chain (Nα : α < κ), such that its limit will be the desired
κ-saturated elementary extension N : Let N0 :=M. Assuming that Nα is already constructed,
let Nα+1 be the elementary extension of Nα such that for any subset A ⊆ M with cardinality
less than κ, any 1-type over A is realized in Nα+1. Such an extension exists by Lemma 5.6. For
a limit ordinal λ, we set

Nλ :=
⋃
α<λ

Nα.

By Proposition 2.11, Nλ is an elementary extension of every Nα. We �nally set

N :=
⋃
α<κ

Nα.

Again, by Proposition 2.11, N is an elementary extension of each Nα.
It remains to show that N is κ-saturated. Let A ⊆ N with |A| < κ, and let p be an n-type

over A for some n ∈ N. Since κ is regular, its co�nality is equal to itself. Now the cardinality of
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A is smaller than κ. Hence, A cannot be co�nal in N , which implies that |A| is already contained
in some Nα. Since every 1-type is realized in Nα, by Lemma 5.4 also every n-type for any n ∈ N,
in particular p, is realized in Nα. Since Nα � N , this shows that N is κ-saturated.

5.11 Lemma. Let κ be an in�nite cardinal, M and N two models of a theory T , where M is
κ-saturated and |N | ≤ κ, and let A ⊆ N be a subset. Then, any partial elementary embedding
f : A→M extends to an elementary embedding of N intoM.

Proof. Let κ0 := |NrA| and (nα : α < κ0) be an enumeration of NrA. De�ne Aα := A∪ {nβ :

β < α} for each α < κ0. Then, A0 = A. We build a sequence of partial elementary embeddings
f0 ( f1 ( . . . ( fα ( . . . for α < κ0 with fα : Aα →M.

We want the desired map to be

f̃ :=
⋃
α<κ0

fα.

By trans�nite induction we show that for every α < κ0, the map fα is partial elementary. We
set f0 := f , which is by assumption partial elementary. If α is a limit ordinal, let fα :=

⋃
β<α fβ .

Then, given that all fβ are partial elementary, also fα is partial elementary, since it is the union
of partial elementary functions.

For the successor ordinals let fα be already constructed and partial elementary. We need to
extend this to a map fα+1 that is also partial elementary. Since both fα and fα+1 coincide on
Aα, it remains to de�ne fα+1(nα). De�ne the set

Γ(v) := {φ(v, fα(a1), . . . , fα(am)) : N |= φ(nα, a1, . . . , am) where a1, . . . , am ∈ Aα}.

We will show that Γ(v) is a 1-type. For this, we need to show that Γ(v)∪Th(M) is satis�able.
By the Compactness Theorem it su�ces to show that every �nite subset of Γ(v) ∪ Th(M) is
satis�able. Let ∆ := {φ1(v, fα(a1)), . . . , φn(v, fα(an))} ⊆ Γ(v) be an arbitrary �nite subset. If
we show that there is an element m ∈ M , such that M |= φi(m, fα(ai)) for each i = 1, . . . , n,
i.e.M |=

∨n
i=1 φi(x, fα(ai)), we are done. Since Γ(v) is closed under conjunction, φ(v, fα(a)) :=∨n

i=1 φi(v, fα(ai)) ∈ Γ(v). Then, N |= ∃v φ(v, a). Since fα is partial elementary this implies
thatM |= ∃v φ(v, fα(a)). SinceM |= Th(M), ∆ ∪Th(M) is satis�able. Hence, Γ(v) ∪Th(M)
is satis�able. Thus, we have shown that Γ(v) is a 1-type.

By Lindebaum's Theorem it can be extended to a complete type Γ(v)∗ ∈ SM1 (Aα). SinceM is
κ-saturated, Γ(v)∗ is realized inM by some b ∈M . Because Γ(v) is fully contained in Γ(v)∗, also
the type Γ(v) is realized by b. We set fα+1(nα) := b, i.e. fα+1 = fα ∪{(nα, b)}. By construction,
fα+1 is a partial elementary embedding. Thus, we obtain an elementary map f̃ : N →M by

f̃ :=
⋃
α<κ

fα.

We are now ready to state and proof another quanti�er elimination criterion.

5.12 Theorem. Let L be a language containing at least one constant symbol and T an L-theory.
Then the following are equivalent:

(i) T has quanti�er elimination.
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(ii) If M |= T , A ⊆ M , N |= T is |M |+-saturated, f : A→ N is a partial embedding, then f
extends to an L-embeddingM→N .

Proof. (i) ⇒ (ii): Let φ be an L-formula and a ∈ A such that M |= φ(a). By quanti�er
elimination there is a quanti�er-free formula ψ such that M |= ψ(a). Since f is a partial
embedding and, thus, preserves quanti�er-free formulas, we obtain N |= ψ(a). Hence, N |= φ(a).
This shows that f is partial elementary. By Lemma 5.11, f extends to an L-embedding fromM
into N .

(ii)⇒ (i): We will use the previous quanti�er elimination criterion from Theorem 3.3. Suppose
M,N |= T , A is a common substructure ofM and N , and φ is a quanti�er-free formula. Further
let b ∈ M and a ∈ A such that M |= φ(b, a). We need to show that there is c ∈ N such that
N |= φ(c, a).

Let N ′ |= T be an elementary extension of N which is |M |+-saturated. Such an extension
exists by Theorem 5.10. Let f : A→ N ′ be the identity map on A. By assumption f extends to
an L-embedding f : M → N ′. This yields N ′ |= φ(f(b), f(a)) and also N ′ |= φ(f(b), a), since
f(a) = a. Therefore, N ′ |= ∃v φ(v, a). Since N is an elementary substructure of N ′, we obtain
N |= ∃v φ(v, a), as desired. Now the quanti�er elimination criterion from Theorem 3.3 yields
that T has quanti�er elimination, which was to be shown.

5.2 Di�erentially Closed Fields

Since ancient times mathematicians have investigated roots of polynomial equations. A long
amount of time later, they began to consider di�erential equations. It was an important contri-
bution of model theory to algebra to introduce the axiomatic notion of di�erentially closed �elds.
They are to di�erential polynomial equations what algebraically closed �elds are to polynomial
equations, cf. [Poi, page 71].

According to [Mar96, page 53], the �rst work on the model theory of di�erentially closed
�elds was done by Abraham Robinson, whose work was in�uenced by earlier work of Abraham
Seidenberg.

After giving a brief introduction to di�erential �elds, we will axiomatize the theory of di�er-
entially closed �elds and use the above criterion from Theorem 5.12 to show that this theory
admits quanti�er elimination. If not stated di�erently, we stick very closely to [Mar02, pages
148�151].

5.13 De�nition. A derivation on a commutative ring R is a map δ : R → R such that the
Leibniz rule holds:

δ(x+ y) = δ(x) + δ(y)

δ(xy) = xδ(y) + yδ(x).

We will write a′, a′′, . . . instead of δ(a), δ(δ(a)), . . . and we denote the nth derivative of a by a(n).

The Leibniz rules yield a way to extend the derivation on a ring to its �eld of fraction: Namely
the quotient rule

δ

(
x

y

)
=
y · δ(x)− x · δ(y)

y2
.
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5.14 De�nition. A di�erential �eld (K, δ) is a �eld K equipped with a derivation δ : K → K.
We de�ne the ring of di�erential polynomials over K to be the following polynomial ring in
in�nitely many variables:

K{X} = K[X, δ(X), δ2(X), . . . , δm(X), . . .].

If the corresponding derivation is clear, we will simply writeK instead of (K, δ). We can extend
δ to a derivation on K{X} by setting δ(δn(X)) := δn+1(X). As above, we write δn(X) = X(n).

5.15 De�nition. A di�erential �eld isomorphism ψ : K → K ′ between two di�erential �elds
(K, δ) and (K ′, δ′) is a �eld isomorphism that preserves the derivation. That means for every
k ∈ K we have ψ(δ(k)) = δ′(ψ(k)). Similarly a di�erential �eld embedding ψ : K → K ′ is a �eld
embedding which preserves the derivation.

We will only consider �elds of characteristic 0 with one single derivation. One could also
investigate the theory DCFp of di�erentially closed �elds of characteristic p > 0. This theory is
much less well-behaved [Sac72b]. In [Gra] however, the author shows that the theory m-DCF
of di�erentially closed �elds of characteristic 0 which have m many commuting derivations has
very similar model theoretic properties to those of DCF: m-DCF admits quanti�er elimination
[Gra, Theorem 3.1.7] and is complete [Gra, Theorem 3.1.9]. Henceforth, all �elds in this section
will be of characteristic 0 and equipped with one single derivation.

5.16 De�nition. Let (K, δ) be a di�erential �eld. For f ∈ K{X}rK, the order of f is the
largest n such that δn(X) occurs in f . If f is a constant, we say that f has order −∞.

In case f ∈ K{X} has order n, we can write

f(x) =

m∑
i=0

gi

(
X,X ′, . . . , X(n−1)

)(
X(n)

)i
,

where gi ∈ K[X,X ′, . . . , X(n−1)]. If gm 6= 0, we say that f has degree m.

5.17 De�nition. If k ⊆ K are di�erential �elds equipped with the same derivation δ, and
a ∈ K, we denote by k〈a〉 the di�erential sub�eld of K generated by a over k.

5.18 Lemma. Let k ⊆ K be di�erential �elds of characteristic 0 and f ∈ k{X}r{0} be of order
n. Let a, b ∈ K with f(a) = f(b) = 0 such that a, . . . , a(n−1) are algebraically independent over
k, and b, . . . , b(n−1) are algebraically independent over k, and g(a) 6= 0, g(b) 6= 0 for any g of
order n of lower degree in X(n). Then, there is a di�erential �eld isomorphism between k〈a〉 and
k〈b〉 that �xes k.

Proof. A brief sketch of this proof can be found in [Mar02, Proposition 4.3.30 i)], here we present
more detail.

The elements a, . . . , a(n−1) and b, . . . , b(n−1) are algebraically independent over k. This means,
by sending a(i) to b(i) for each i < n, k(a, . . . , a(n−1)) and k(b, . . . , b(n−1)) are clearly isomorphic
over k as �elds. Let us call this isomorphism ψ.

Further, f(a) = f(b) = 0 and every di�erential polynomial g of order n and lower degree in
X(n) vanishes neither in a nor in b. There is a polynomial f̃ ∈ k[X0, . . . , Xn] such that f(a) =
f̃(a, . . . , a(n)). It holds f̃(a, . . . , a(n−1), t) ∈ k(a, . . . , a(n−1))[t] and by dividing it by a constant
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from k(a, . . . , a(n−1)), we may assume without loss of generality that it is a monic polynomial.
Hence, f̃(a, . . . , a(n−1), t) is the minimal polynomial of a(n) over k(a, . . . , a(n−1)). Similarly,
f̃(b, . . . , b(n−1), t) ∈ k(b, . . . , b(n−1))[t] is the minimal polynomial of b(n) over k(b, . . . , b(n−1)). By
applying the isomorphism ψ to the coe�cients of the former minimal polynomial, one obtains
the latter. Hence, also k(a, . . . , a(n)) and k(b, . . . , b(n)) are isomorphic as �elds. Since this
isomorphism extends ψ, we will keep its name.

In order to see that ψ extends to an isomorphism from k〈a〉 = k(a, . . . , a(n), . . .) into k〈b〉 =
k(b, . . . , b(n), . . .), we will show that δ(a(n)) and δ(b(n)) can be expressed only using terms of lower
order:

For all i < n we already have that δ(a(i)) = a(i+1) and δ(b(i)) = b(i+1). Let

f(x) =
n∑
i=0

m∑
j=0

ci,j(x
(i))j .

Di�erentiating yields

δ(f(a)) = δ

 n∑
i=0

m∑
j=0

ci,j

(
a(i)
)j

=

n∑
i=0

m∑
j=0

δ

(
ci,j

(
a(i)
)j)

=
n∑
i=0

m∑
j=0

(
δ(ci,j)

(
a(i)
)j

+ ci,jj
(
a(i)
)j−1

a(i+1)

)

= f δ(a) +
n∑
i=0

∂f

∂X(i)
(a)a(i+1),

where f δ is the polynomial obtained by di�erentiating the coe�cients of f and ∂f
∂X(n) denotes

the nth partial derivative of f with respect to X(n). Since ∂f
∂X(n) has lower degree in X(n) than

f , by assumption, it holds ∂f
∂X(n) (a) 6= 0. Because f(a) = 0, and also δ(f(a)) = 0, it follows

−f δ(a) =
n∑
i=0

∂f

∂X(i)
(a)δ(a(i)),

which is equivalent to

δ(a(n)) =

−f δ(a)−
n−1∑
i=0

∂f
∂X(i) (a)δ(a(i))

∂f
∂X(n) (a)

. (5.1)

Similarly we get

δ(b(n)) =

−f δ(b)−
n−1∑
i=0

∂f
∂X(i) (b)δ(b(i))

∂f
∂X(n) (b)

. (5.2)

Since both (5.1) and (5.2) use only terms of lower order to express δ(a(n)) and δ(b(n)), we
have shown that k(a, . . . , a(n), . . .) and k(b, . . . , b(n), . . .) are isomorphic as �elds. Again, this
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isomorphism will be called ψ. What remains to be shown is that under ψ, the derivation is
preserved. For this we will �rst show that for each k ∈ N it holds ψ(δ(a(k))) = δ(ψ(a(k))).
Afterwards we will conclude that the equation also holds for every c ∈ k〈a〉.
Let k ∈ {0, . . . , n − 1}. Since ψ(a(k+1)) = b(k+1), it holds ψ(δ(a(k))) = ψ(a(k+1)) = b(k+1) =

δ(b(k)) = δ(ψ(a(k))). The case where k ≥ n, reduces to the former by considering the equations
(5.1) and (5.2).

Now, let c ∈ k〈a〉. Then there is f, g ∈ k[X0, . . . , Xm] for some m such that

c =
f(a, . . . , a(m))

g(a, . . . , a(m))

and for the derivation it holds

δ(c) =
δ(f(a, . . . , a(m)))g(a, . . . , a(m))− f(a, . . . , a(m))δ(g(a, . . . , a(m)))

g(a, . . . , a(m))2
.

Hence, by applying the isomorphism ψ we obtain

ψ(δ(c)) =
ψ
(
δ(f(a, . . . , a(m)))g(a, . . . , a(m))− f(a, . . . , a(m))δ(g(a, . . . , a(m)))

)
ψ
(
g(a, . . . , a(m))2

)
=
ψ
(
δ(f(a, . . . , a(m)))

)
ψ
(
g(a, . . . , a(m))

)
− ψ

(
f(a, . . . , a(m))

)
ψ
(
δ(g(a, . . . , a(m)))

)
ψ
(
g(a, . . . , a(m))

)2 .

Since ψ has the homomorphic property one can move ψ into the polynomials f and g, such that
it is only applied to the elements a, . . . , a(m). But for those elements we already have shown that
ψ commutes with the derivation. Thus, we obtain ψ(δ(c)) = δ(ψ(c)).

Hence, we have shown that the ψ is indeed a di�erential �eld isomorphism.

5.19 De�nition. Let k ⊆ K be di�erential �elds. We say that a ∈ K is di�erentially algebraic
over k if f(a) = 0 for some nonzero f ∈ k{X}. Otherwise a is di�erentially transcendental.

5.20 Lemma. Let k ⊆ K be di�erential �elds. If a ∈ K is di�erentially algebraic over k, then
there is a nonzero di�erential polynomial f such that f(a) = 0 and for all g ∈ k{X}r {0} of
lower order it holds that g(a) 6= 0. Moreover, one can choose f such that if there is b ∈ K with
f(b) = 0 and g(b) 6= 0 for any lower order g, then k〈a〉 and k〈b〉 are isomorphic over k.

Proof. See [Mar02, Proposition 4.3.30 ii)]. Let a ∈ K be di�erentially algebraic over k. Let n be
minimal such that a, . . . , a(n) are algebraically dependent over k, and let f ∈ k{X} be of order n
and of minimal degree in X(n) such that f(a, . . . , a(n)) = 0. Obviously, g(a) 6= 0 for any nonzero
g ∈ k{X} of order less than n.
If f(b) = 0 and g(b) 6= 0 for any lower order polynomial g, then b, . . . , b(n−1) are alge-

braically independent over k. So b(n) is zero of the irreducible polynomial f(b, . . . , b(n−1), Y ) ∈
k(b, . . . , b(n−1))[Y ]. Now, since all the assumptions of Lemma 5.18 are ful�lled, we conclude that
k〈a〉 and k〈b〉 are isomorphic over k.

5.21 De�nition. A di�erential �eld K is di�erentially closed if, whenever f, g ∈ K{X}, g is
nonzero and the order of f is greater than the order of g, there is a ∈ K such that f(a) = 0 and
g(a) 6= 0.
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That means in particular, if f has order zero, i.e. f ∈ K[X], there is a ∈ K with f(a) = 0.
Hence, every di�erentially closed �eld is algebraically closed.

There are many examples of di�erential �elds: the �eld of formal power series K((X)) for some
�eld K with its usual derivation, or the �eld of meromorphic functions on an open connected
subset of C. These, and further examples can be found for instance in [Poi, page 71]. However,
there is no natural example of a di�erentially closed �eld.

In the following we will show that every di�erential �eld can be embedded into a di�erentially
closed �eld. This part will be based on [Mar96, Section 1]. For a long time it was not clear if
the di�erential closure is somehow unique like the algebraic or the real closure. Saharon Shelah
has shown that it is indeed unique up to isomorphism, cf. [Sac72a]
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5.22 De�nition. An ideal I � K{X} is called a di�erential ideal if for every f ∈ I it also
contains its derivative. By 〈f〉 we denote the di�erential ideal generated by f . A prime di�erential
ideal I ⊆ K{X} is a di�erential ideal which is also a prime ideal, i.e. if ab ∈ I for some a, b ∈ K,
then a ∈ I or b ∈ I. Moreover, for a di�erential polynomial f ∈ K{X} we de�ne

I(f) :=

{
h ∈ k{X} :

∂m

∂mX(n)
h ∈ 〈f〉 for some m ∈ N

}
.

Even if f is irreducible, 〈f〉 may not be prime. For example if f(X) = (X ′′)2 − 2X ′. Then
δ(f(X)) = 2X ′′ · X ′′′ − 2X ′′ = 2X ′′(X ′′′ − 1) is in 〈f〉, but neither 2X ′′ nor X ′′′ − 1 is in 〈f〉.
But, however, the following holds:

5.23 Lemma. If f is an irreducible di�erential polynomial, then I(f) is a di�erential prime
ideal.

Proof. This proof is not trivial and needs some additional theory. We refer to [Poi, Lemma 6.10]
or [Mar96, Corollary 1.7].

5.24 Theorem. Every di�erential �eld k has an extension K which is di�erentially closed.

Proof. [Mar96, Lemma 2.2] Let f ∈ k{X} be of order n and g ∈ k{X} of order less than n.
By taking an irreducible factor of f of order n, we may as well assume that f is irreducible. It
follows that g /∈ I(f), since g has order less than f .

By Lemma 5.23, I(f) is a di�erential prime ideal. Thus, let F be the fraction �eld F :=
Quot(k{X}/I(f)). To see that δ is well-de�ned on F , let p, q ∈ k{X} with p− q ∈ I(f). Then
also δ(a)− δ(b) = δ(a− b) ∈ I(f), as 〈f〉 is closed under di�erentiation. By the quotient rule, δ
extends to F .

Hence, let a ∈ F be the image of X mod I(f). Since f ∈ I(f), f(a) = 0 in F , while g /∈ I(f)
yields g(a) 6= 0.

Iterating this process we can build K ⊇ k a di�erentially closed �eld.

We have now developed the theory of di�erential �elds that is needed for the proof of quanti�er
elimination of di�erentially closed �elds. We will proceed by giving an axiomatization of DCF.
The theory of di�erential �elds is given by the axioms for �elds of characteristic 0 together with
the Leibniz rule. In order to formalize that a di�erential �eld is di�erentially closed we need
additionally a countable in�nite family of axioms. It is di�cult to write down a general axiom
as there are many varying parameters: the orders of the two polynomials and the degree of
them in every �variable � X(i). We will not use any axioms, the important point for us is that
one is convinced that there exists an axiomatization. But this is not hard to see, since we can
easily formalize di�erential polynomials and the fact that there exists an element in which one
di�erential polynomial vanishes and the other one does not.

5.25 De�nition. Let L be the language 〈+ ,− , · , δ ; 0 , 1〉, where δ is a unary function symbol
for the derivation. The theory DCF of di�erentially closed �elds is axiomatized as follows:

� the �eld axioms K1 to K9,

� characteristic 0: For each n ∈ N we have:



Di�erentially Closed Fields 41

K0n: ∀x ((x+ . . .+ x︸ ︷︷ ︸
n times

=̇ 0)→ x =̇ 0)

� the Leibniz rule for di�erentiation:

D1: ∀x∀y δ(x+ y) =̇ δ(x) + δ(y),
D2: ∀x∀y δ(x · y) =̇ xδ(y) + yδ(x).

� and additionally di�erential closedness: For any non-constant di�erential polynomials f
and g where the order of g is less than the order of f , there exists an x such that f(x) = 0
and g(x) 6= 0.

5.26 Theorem. The theory of di�erentially closed �elds admits quanti�er elimination.

Proof. See [Mar02, Theorem 4.3.32]. Suppose that K |= DCF is a di�erentially closed �eld,
R ⊆ K a subset, M |= DCF |K|+-saturated. Let f : R → M be a partial embedding. As
we will see in Chapter 6, without loss of generality, by Lemma 6.2, we may assume that R is a
substructure of K, i.e. the substructure R ⊆ K that is generated by R, that means the smallest
substructure of K which contains R. Hence, R is a di�erential subring of K and f is a di�erential
ring embedding, that means a ring embedding which preserves the derivation. In order to apply
Theorem 5.12, we must show that f extends to a di�erential �eld embedding of K intoM.

Surely, f extends to a di�erential �eld embedding of Quot(R) intoM, since there is a unique
extension of the derivation from R to Quot(R). Therefore, we may assume that R is already a
�eld. If we show that for every a ∈ Kr R, there is a di�erential �eld embedding of R〈a〉 into
M, then by trans�nite induction we are done. By identifying R with f(R) we may assume that
R ⊆M and that f is the identity onR. Now, a is either di�erentially algebraic or transcendental
over R. We consider both cases:

Case 1: a is di�erentially algebraic over R. Let f ∈ R{X}r {0} be as in Lemma 5.20. Let n
be the order of f . Let p be the type {f(v) = 0} ∪ {g(v) 6= 0 : g is nonzero of order less than n}.
If g1, . . . , gm are nonzero di�erential polynomials of order less than n, then gi(a) 6= 0 for all i,
while f(a) = 0. Therefore, there exists s ∈ M such that f(s) = 0 and

∏m
i=1 gi(s) 6= 0. Thus,

p is satis�able, and since M is |K|+-saturated, p is realized by some b ∈ M . Since g(b) 6= 0
for all nonzero di�erential polynomials g of order less than n, it follows that b, b′, . . . , b(n−1) are
algebraically independent over R. Also a, a′, . . . , a(n−1) are algebraically independent over R, so
by Lemma 5.18, R〈a〉 and R〈b〉 are isomorphic over R. Thus, we can extend the di�erential �eld
embedding by sending a to b.

Case 2: a is di�erentially transcendental over R. Let p be the type {g(v) 6= 0 : g ∈ R{X}r{0}}.
Let g1, . . . , gn ∈ R{X}r {0}. Let N := max{deg(gi) : i = 1, . . . , n} + 1 and let f(x) = x(N).
Since M is di�erentially closed, there is s ∈ M such that f(s) = s(N) = 0 and gi(s) 6= 0 for
all i = 1, . . . , n. Thus, p is satis�able and, by |K|+-saturation, realized by some b ∈ M that is
di�erentially transcendental over R. Since R〈a〉 and R〈b〉 are over R isomorphic to the fraction
�eld QuotR{X}, we can extend the di�erential �eld embedding again by sending a to b.





6 Quanti�er Elimination by Lou van

den Dries

Back in the 1980s there did not exist a good documentation of quanti�er elimination test. In
1985, Lou van den Dries gave in [vdD] a new quanti�er elimination test. So far, there has not
been published a systematic proof of this test. The goal of the following section is to serve this
purpose.

In the second section of this chapter we will apply this quanti�er elimination test to the theory
of the �eld of reals with a predicate for the powers of 2.

Let us start by proving some lemmas that we will use in the following. Throughout this
chapter let L be a language with at least one constant symbol and T an L-theory.

6.1 Extensions of Partial Embeddings

6.1 Lemma. The union of any increasing chain of models of T∀ is also a model of T∀.

Proof. Let T be a theory. Let I be an ordered indexing set and (Mi)i∈I an increasing chain of
models of T∀, i.e. for all i ∈ I,Mi |= T∀ and for all i < j ∈ I,Mi ⊆Mj . Let ∀x1∀x2 . . . ∀xn φ(x),
with φ quanti�er-free, be a universal formula in T . Let a be an arbitrary n-tuple in

⋃
i∈IMi.

Since it has only �nitely many components, there is an Mj which already contains all of them.
SinceMj |= T∀, we haveMj |= φ(a). Therefore,⋃

i∈I
Mi |= φ(a).

Since a was arbitrary, ⋃
i∈I
Mi |= ∀x φ(a).

Hence, ⋃
i∈I
Mi |= T∀.

The following will be the key lemma for the proof of the quanti�er elimination test.

6.2 Lemma. Consider two L-structures B1 and B2, a subset X ⊆ B1, and a partial embedding
η : X → B2. There is an extension of η to an L-embedding η′ : D → B2, where D is the sub-
structure of B1 generated by X, i.e. the smallest substructure of B1 that contains X.

43
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Proof. We will �rst explain how to construct D, the substructure of B1 generated by X. Secondly
we will show that η can be extended to an L-embedding from D into B2. What we need to do is
add to X all the elements that arise from applying terms to every tuple x ∈ X and de�ne what
happens to them when applying f .

Set D := {tB1(x) : t is a term and x ∈ X}. Then D is closed under terms. For every constant
c ∈ L, let cD := cB1 . To see that cD is an element of D, consider the term t = c, then tB1 ∈ D,
thus cD ∈ D.

Let g(v) be an r-ary function symbol in B1. For d ∈ D de�ne gD(d) := gB1(d). Now d is not
necessarily a tuple in X. However, it was constructed by a term. Thus, let t1, . . . , tr be terms
such that d = (d1, . . . , dr) = (tB11 (x1), . . . , t

B1
r (xr)) for some x1, . . . , xr ∈ X, and let t(v1, . . . , vr)

be the term g(t1(v1), . . . , tr(vr)). Therefore, g
D(d) = tB1(x1, . . . , xr) ∈ D.

For a relation symbol R we de�ne D |= RD(d) if and only if B1 |= RB1(d).

Since the L-embedding is the identity map on D into B1, it is injective. Thus, by construction,
D is a substructure of B1.
Now let η : X → B2 be a partial embedding. For any d ∈ D, say d = tD(x) for some term t, and

some tuple x ∈ X, we de�ne η′(tD(x)) := tB2(η(x)). For d ∈ D the choice of a term t such that
d = tD(x) might not be unique. In order to see well-de�nedness, note that D |= t1(x) =̇ t2(x) for
x ∈ X immediately yields that B2 |= t1(η(x)) =̇ t2(η(x)), since η is a partial embedding. Hence,
η′ is well-de�ned. We claim that η′ is an L-embedding.
For a constant symbol c in L we have η′(cD) = η′(cB1) = cB2 . Let f be a function symbol.

Then:

η(fD(tD1 (x1), . . . , t
D
n (xn))) = η((fD(tD1 , . . . , t

D
n ))(x1, . . . , xn))

= fB2(tB21 , . . . , tB2n )(η(x1), . . . , η(xn))

= fB2(tB21 (η(x1)), . . . , t
B2
n (η(xn)))

= fB2(η′(tD1 (x1)), . . . , η
′(tDn (xn))).

Let R be a relation symbol in L. Then the following are equivalent:

D |= R(t1(x1), . . . , tn(xn))

⇔ B1 |= R(t1(x1), . . . , tn(xn)) since D ⊆ B1
⇔ B2 |= R(t1(x1), . . . , tn(xn)) since R(t1, . . . , tn) is quanti�er-free

and x1, . . . , xn ∈ X
⇔ B2 |= R(η′(t1(x1)), . . . , η

′(tn(xn))) by de�nition of η′

Hence, we have shown that η′ is, indeed, an L-embedding.

We will now come to van den Dries' quanti�er elimination test, which he gave in [vdD]:

6.3 Theorem. Let T be a theory with at least one constant symbol and suppose that the following
conditions hold:

(1) Each model M of T∀ has a T -closure M. This means that for every M |= T∀ there is
M |= T withM⊆M, andM can be embedded overM into each T -extension ofM, i.e.
into every N |= T withM⊆ N .
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(2) IfM ( N are models of T , then there is b ∈ NrM such thatM(b), the T∀-model generated
by b overM, can be embedded overM into an elementary extension ofM.

Then T admits quanti�er elimination.

Proof. We will prove this quanti�er elimination test by using Theorem 5.12 and by applying the
previous lemma several times.

LetM |= T be a model, X ⊆M a subset, N |= T an |M |+-saturated model, and f : X → N
a partial embedding. We need to show that f extends to an L-embedding f :M→N . For the
sake of simplicity, f will keep its name after each extension.

By Lemma 6.2, f extends to an L-embedding f : A → N , where A is the substructure ofM
generated by the set X. Thus, A is a model of the universal theory T∀, by Lemma 2.13. We may
now apply condition (1). So, A has a T -closure, i.e. A ⊆ A |= T and A can be embedded over
A into N . Thus, f extends to an L-embedding f ′ : A → N . Moreover, A is embedded over A
intoM.

From this point we start a trans�nite iteration. Let f0 := f ′ and A0 := A. We will build
a chain of models A0 ⊆ A1 ⊆ . . . ⊆ Aα ⊆ . . . ⊆ M and, as in Lemma 5.11, a chain of L-
embeddings f0 ⊆ f1 ⊆ . . . ⊆ fα ⊆ . . ., where fα : Aα → N . Let κ = |Mr A|. We want the
desired map to be

f :=
⋃
α<κ

fα :M→N .

For the successor step suppose that Aα and fα : Aα → N are already constructed. Without
loss of generality we assume that Aα (M, otherwise set Aα+1 = Aα and fα+1 = fα and we are
done.

By condition (2), there is an element bα ∈MrAα such that Aα(bα) can be embedded over Aα
into an elementary extension of Aα, say Eα. Applying condition (1) again, since Aα(bα) |= T∀,
it has a T -closure Aα(bα) |= T that can be embedded over Aα(bα) into each T -extension of
Aα(bα), in particular into Eα. Hence, we obtain the following diagram:

Aα

�

⊆ Aα(bα) ⊆ Aα(bα) ⊆ M.

⊇

Eα

We will �rst construct an L-embedding of Aα∪{bα} into N , then extend it to an L-embedding
from Aα(bα) into N , and �nally obtain one from Aα(bα) into N . Let fα+1

∣∣
Aα = fα. De�ne the

set

Γ(v) := {φ(v, fα(a)) : a ∈ Aα, φ is a quanti�er-free formula, andM |= φ(bα, a)}.

In order to show that Γ(v) is a type, we need to demonstrate that Γ(v) ∪ Th(N ) is satis�able.
Let ∆ ⊆ Γ(v) be an arbitrary �nite subset. We will show that there is x ∈ N such that
N |= φ(x, fα(a)) for each φ(v, fα(a)) ∈ ∆. This will imply that Γ(v) ∪ Th(N ) is satis�able.
Since Γ(v) is closed under conjunction, we may assume that ∆ = {φ(v, fα(a))} only consists of
one single formula with a ∈ Aα. ThenM |= φ(bα, a) and it su�ces to show that φ(v, fα(a)) is
satis�able in N . Since φ is quanti�er-free and bα ∈ Aα(bα) ⊆ M, we have Aα(bα) |= φ(bα, a),
in other words Aα(bα) |= ∃v φ(v, a). Then also Eα |= ∃v φ(v, a). Since Eα is an elementary
extension of Aα and a ∈ Aα, we obtain Aα |= ∃v φ(v, a). By induction hypothesis, we already
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have an L-embedding of Aα into N and existential formulas are preserved upwards in inclusion.
This yields N |= ∃v φ(v, fα(a)).

Thus, we have shown that Γ(v)∪Th(N ) is satis�able and, hence, that Γ(v) is a 1-type which
can be extended to a complete type Γ(v)∗ ∈ SN1 (Aα). Since N is |M |+-saturated, there is some
element cα ∈ N that realizes Γ(v)∗ and thus, Γ(v). Set fα+1(bα) = cα.

In order to convince oneself that fα+1 is still injective, suppose that N |= fα+1(bα) = fα+1(a)
for a ∈ Aα+1. We will show that this implies already bα = a inM which proves injectivity. Let
us have a look at the formula φ(v, w) that denotes the equality v = w. This is a quanti�er-free
formula. Thus, φ(v, fα+1(a)) ∈ Γ(v), i.e.M |= φ(bα, a). This yields thatM |= bα = a. Hence,
we have a partial embedding of Aα ∪ {bα} into N .

By Lemma 6.2, it can be extended to an L-embedding from Aα(bα) into N , since Aα(bα) is the
smallest substructure ofM that contains Aα and bα. By condition (1), Aα(bα) can be embedded
over Aα(bα) into N . Hence, we have �nished the construction of fα+1. Set Aα+1 := Aα(bα).
Then fα+1 : Aα+1 → N is an L-embedding of models.

For a limit ordinal α let
f ′α :=

⋃
λ<α

fλ :
⋃
λ<α

Aλ → N .

Since each fλ is an L-embedding, also their union f ′α is an L-embedding. EachAλ is, in particular,
a model of T∀. By Lemma 6.1 their union is also a model of T∀ and by condition (1) this union
has a T -closure ⋃

λ<α

Aλ =: Aα,

that can be embedded over
⋃
λ<αAλ into N . Thus, Aα |= T and f ′α expands to the L-embedding

fα : Aα → N .

This algorithm terminates as soon as Aα = M. At this point we obtain the desired L-
embedding f := fα :M→N .

By Theorem 5.12, T admits quanti�er elimination.

6.2 The Field of Reals with a Predicate for the Powers of Two

In this chapter we will show that the theory of real closed �elds with a certain discrete multiplica-
tive subgroup�in the following denoted by RPT�has quanti�er elimination in the language of
ordered rings augmented by two new symbols. This section follows [vdD]. We will denote by L
the language 〈+ ,− , · ;< ; 0 , 1〉 of ordered rings. For simplicity reasons, we will omit the symbols
of L when talking about a structure.

Let λ be a unary function symbol, A a unary relation symbol and for every n ∈ N, let Pn be
a unary relation symbol. By L∗ we denote the language L ∪ {A, λ, Pn : n = 1, 2, . . .}.

6.4 De�nition. Let RPT, the theory of the �eld of reals with a predicate for the powers of two,
as van den Dries calls it, be the L∗-theory given by the following axioms expressing that:

� R is a real closed ordered �eld, i.e. axioms K1 to K9, O1 to O5, RK1, and RK2n,

� A is a multiplicative subgroup of positive elements of R:

A1: ∀x (A(x)→ x > 0)
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A2: ∀x∀y ((A(x) ∧A(y))→ A(x · y))
A3: A(1)
A4: ∀x (A(x)→ ∃y (A(y) ∧ x · y = y · x = 1)).
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� such that:

V1: A(1 + 1),
V2: ∀x (1 < x < 2→ ¬A(x)),

V3n: ∀x (Pn(x)↔ ∃y (A(y) ∧ yn = x)), for all n ∈ N,
V4: ∀x (x ≤ 0→ λ(x) = 0),
V5: ∀x (x > 0→ (A(λ(x)) ∧ λ(x) ≤ x < 2λ(x))).

Axiom V1 states that 2 ∈ A. Since A is a multiplicative group, it contains all powers of 2.
By V1 there is no element in A between 1 and 2. For an element x it holds Pn(x) if and only if
x has an nth root which lies in A. The function λ assigns to each positive element y the nearest
element in A which is less than or equal to y. If y is not positive, then λ(y) = 0. Instead of
A(x), we will write x ∈ A in the following as usually.

We will prove the following theorem after we have developed some theory:

6.5 Theorem. The L∗-theory RPT admits elimination of quanti�ers.

First we will go a little into valuation theory. For this part, see [Kuh, pages 9, 15, and 16].

6.6 De�nition. We say that two nonzero elements a and b of an ordered �eld K are of the same
archimedean class if

1

n
<
∣∣∣a
b

∣∣∣ < n

for some n ∈ N.

6.7 De�nition. Let K be a �eld and Γ an ordered abelian group. A valuation on K is a
surjective map v : K → Γ ∪ {∞} which satis�es the following properties for all a, b ∈ K:

(i) v(a) =∞ if and only if a = 0,
(ii) v(ab) = v(a) + v(b),
(iii) v(a+ b) ≥ min{v(a), v(b)}.
The value group of a valuation is the image v(K×).

There are some immediate consequences for a valuation v : K → Γ ∪ {∞}: For every a ∈ K
it holds v(−a) = v(a). For a 6= 0 we have v(a−1) = −v(a). Every �nite element�that means
every element bounded by some natural number�has valuation 0: v(1) = v(1 · 1) = v(1) + v(1),
hence, v(1) = 0. Now for any �nite element r, 1/r can be bounded by 1/n and n for some
n > r, thus v(r) = 0. Condition (iii) also holds for more than two summands: v(a1 + . . .+an) ≥
min{a1, . . . , an} for all n ∈ N and ai ∈ K. And �nally the inequality in (iii) is an equality
v(a+ b) = min{v(a), v(b)} if v(a) 6= v(b).

It is not hard to see that the property of being in the same archimedean class forms an
equivalence relation. Let Γ be the set of archimedean classes of nonzero element in a �eld K.
We denote by [a] the equivalence class of a. By setting [a] < [b] if and only if n|b| < |a| for every
n ∈ N, we can de�ne an order on Γ. One can easily check that the order is well-de�ned. We also
de�ne an addition on Γ by setting [a] + [b] := [ab]. Equipped with this operation and order, Γ
becomes an ordered Abelian group with neutral element [1]. We also obtain the following:

6.8 Proposition. The map v : K → Γ ∪ {∞} given by a 7→ [a] for a ∈ K× and 0 7→ ∞, is a
valuation. It reverses order on positive elements, i.e. 0 < a ≤ b implies that v(a) ≥ v(b).
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Proof. We will check the conditions that makes a map into a valuation. It is certainly by
de�nition surjective and (i) is ful�lled. Also (ii) holds by de�nition.

In order to verify (iii), let a, b ∈ K. If a = 0, then v(a) =∞ and v(a+ b) = v(b). Similarly for
b = 0. So let a, b 6= 0. First assume that [a] < [b], and that both a and b are positive, as otherwise
one can simply consider their negatives. Together these assumptions yield that nb < a for all
n ∈ N, in particular b < a. Then it holds a < a+ b ≤ n(a+ b) = na+ nb < na+ a = (n+ 1)a.
Dividing by a yields

1

n+ 1
< 1 <

a+ b

a
< n+ 1.

Hence, [a+ b] = [a].

Now let [a] = [b] and assume that a ≥ b > 0. Further, assume that [a+b] < [a]. Then it follows
for all n ∈ N that na < a + b, in particular, 2a < a + b. But this yields a < b, a contradiction.
Hence, [a+ b] ≥ [a] = [b]. This shows condition (iii).

What remains to be shown is that the valuation reverses order on positive elements. Let
a, b ∈ K with a, b > 0. Suppose that a < b. This implies by de�nition of the order immediately
that [a] ≥ [b]. Hence 0 < a ≤ b implies that v(a) ≥ v(b).

From now on, let v denote the above examined valuation, which assigns to each element its
archimedean class. We will call this valuation in the following the natural valuation.

The natural valuation on K can be extended to the real closure K:

6.9 Lemma. Suppose that K is an ordered �eld. The natural valuation v : K → Γ ∪ {∞} can
be extended to the natural valuation v on the real closure K of K. It satis�es v : K → Γ ∪ {∞},
where Γ is the divisible hull of Γ, and for all x ∈ K, it holds

v(x) =
1

n
· v(y)

for some y ∈ K, y > 0 and n > 0.

Proof. It is easy to see that v can be extended to K, since v
∣∣
K

= v. Let x ∈ Kr K. Let
f(t) = ant

n + an−1t
n−1 + . . . + a1t + a0 be the minimal polynomial of x over K with an = 1,

a0 6= 0, and ai ∈ K for every i ∈ {0, . . . , n}. Then anx
n + an−1x

n−1 + . . . + a1x + a0 = 0.
Applying the valuation, we obtain

v(anx
n + an−1x

n−1 + . . .+ a1x) = v(−a0).

Without loss of generality we assume that for every i ∈ {0, . . . , n} it holds ai 6= 0, as otherwise
we consider only the indices of the nonzero monomials. Suppose that there is i > j such that
v(aix

i) = v(ajx
j). This means that v(aj)−v(ai) = v(xi)−v(xj) and therefore v(xi−j) = v(aj/ai).

It follows that

v(x) =
1

i− j
· v
(
aj
ai

)
.

If aj/ai is negative, by replacing it with ai/aj instead, we obtain the claimed form.
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If, however, the valuations of the monomials are pairwise di�erent, i.e. if for all i 6= j we have
v(aix

i) 6= v(ajx
j), we obtain

v(a0) = v(−a0)
= min

i=1,...,n
{v(aix

i)}

= min
i=1,...,n

{v(ai) + v(xi)}

= min
i=1,...,n

{v(ai) + i · v(x)}

Let i0 ∈ {0, . . . , n} such that v(ai0x
i0) = mini=1,...,n{v(aix

i)}. Then v(a0) = v(ai0) + i0 · v(x)
and therefore

v(x) =
1

i0
· v
(
a0
ai0

)
.

As above, if a0/ai0 is not positive we may replace it by its negative. This proves the claim.

6.10 Lemma. Let K = (K,A, (Pn), λ) be a model of the universal theory RPT∀, and v the
natural valuation on K. Then the following holds:

(a) Each archimedean class of K is represented by an element in A. Thus, v(A) = Γ.
(b) v

∣∣
A
has kernel 2Z.

(c) There is an isomorphism A/2Z ∼= Γ.

Proof. (a) For x > 0 we have λ(x) ≤ x < 2λ(x) and λ(x) 6= 0, i.e. 1/2 < 1 ≤ x/λ(x) < 2 by
V5, that means that x and λ(x) are part of the same archimedean class. So each archimedean
class is represented by an element of A, since im(λ) ⊆ A.
(b) ⊆ : Let x ∈ A with v(x) = 0. As [x] = [1], there is n ∈ N such that 1/n < x < n. Let

k ∈ Z be minimal such that x < 2k+1 ≤ n. Then 2k ≤ x < 2k+1. This yields 1 ≤ x/2k < 2. By
axiom V2 it follows that x/2k = 1, and thus, x = 2k.

⊇ : Since v(1) = 0 and 1/3 < 1/2 < 3, the numbers 1 and 2 are in the same archimedean
class, i.e. v(2) = 0. Then also v(2k) = 0 for all k ∈ Z. And since 2Z ⊆ A, we are done.
(c) By (a), every archimedean class has one representative from A. Hence, v

∣∣
A
is is surjective.

Then the claim follows from (b) and the �rst isomorphism theorem.

From part (c) of Lemma 6.10 it follows that two elements in A which are in the same
archimedean class only di�er by a power of 2. This means that for a, b ∈ A with [a] = [b]
there exists n ∈ Z such that a · 2n = b.

Consider a model (K,A, (Pn), λ) of the universal theory RPT∀. Depending on the structure
of K we may draw di�erent conclusions: If K is a �eld, it follows that A is a group. This shows
Lemma 6.11. If, however, K is even real closed, then (K,A, (Pn), λ) is even a model of RPT.
We will prove this in Lemma 6.12.

6.11 Lemma. Let K = (K,A, (Pn), λ) |= RPT∀, where K is a �eld. Then A and Pn are groups
with Pn ⊆ A.

Proof. Since K is a model of the universal theory, by Lemma 2.13, there is a model R =
(R,B, (Qn), µ) |= RPT with K ⊆ R. Let us �x an arbitrary natural number n ∈ N. By
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de�nition, B is a group. Clearly, Qn is closed under multiplication and, if x has an nth root y
in B, then also 1/x has an nth root in B, namely 1/y. Hence, also Qn is a group. Because K
is a substructure of R, it holds A = B ∩ K. Now B is a group and K is a �eld, hence, their
intersection is also a group. Similarly, it follows that Pn = Qn ∩K is a group.

6.12 Lemma. Let K = (K,A, (Pn), λ) |= RPT∀, where K is a real closed �eld. Then K |= RPT.

Proof. Since K |= RPT∀, there is a model R = (R,B, (Qn), µ) |= Σ∗ such that K ⊆ R.
Obviously, axioms K1�K9, O1�O5, RK1, and RK2n are satis�ed in K, since K is real

closed. By Lemma 6.11, A is an ordered Abelian group, hence also axioms A1�A4 hold. Now,
V1, V2, V4, and V5 are universal, hence, preserved downwards in inclusion. They hold in R,
therefore they also hold in K. It remains to show V3n. If x has an nth root in A, it is certainly
contained in Pn. So, let on the contrary x ∈ Pn. Then x ∈ Qn, which implies that there is y ∈ B
with yn = x. Since K is real closed, y already lies in K. But K ∩ B = A. Hence, y ∈ A. This
establishes axiom V3n and �nishes the proof.

6.13 Lemma. Let K = (K,A, (Pn), λ) |= RPT∀. For each x ∈ A exactly one of x, 2x, . . . , 2n−1x
belongs to Pn.

Proof. By Lemma 2.13, there is R = (R,B, (Qn), µ) |= RPT with K ⊆ R. Since R is real closed,
the value group of the natural valuation v on R is divisible and, therefore, by Lemma 6.10 (c),
also B/2Z.

This means: For all n ∈ N and for all x ∈ B there exists b ∈ B such that bn2Z = x2Z. In other
words: ∀n ∈ N ∀x ∈ B ∃b ∈ B ∃` ∈ Z :

bn = x2`.

What remains to be shown is that ` can be chosen to be ` ∈ {0, . . . , n − 1} and is unique: By
division with remainder we obtain ` = rn + k where k ∈ {0, . . . , n − 1} is unique, so bn =
x · 2k · (2r)n. Set b̃ = b · 2−r. This yields b̃n = (b · 2−r)n = x · 2k.
Formalizing what we have just shown, this gives us the analogue of axiomP4n from Presburger

Arithmetic:

R |= ∀x

B(x)→
n−1∨
i=0

(
Qn(2ix) ∧

∧
j 6=i
¬Qn(2jx)

) for all n ∈ N.

But this is a universal L∗-formula, hence, preserved downwards in inclusion. Thus, it also
holds

K |= ∀x

A(x)→
n−1∨
i=0

(
Pn(2ix) ∧

∧
j 6=i
¬Pn(2jx)

) for all n ∈ N.

This proves the claim.

The reader may have noticed some analogues to Presburger Arithmetic. In fact, the theory
RPT somehow extends Pr:

6.14 Proposition. Let K = (K,A, (Pn), λ) be a model of RPT. Then A = (A, ·,÷, <, 1, 2, (Pn))
is a model of Presburger Arithmetic.



52 Quanti�er Elimination by Lou van den Dries

Proof. A is certainly an ordered Abelian group. Hence, axioms AG1�AG4 and O1�O4 are
satis�ed. In the proof of Lemma 6.13, we have shown axiom P4n. As 1 < 2, axiom P1 holds.
Axiom V2 immediately implies P2 and V3n immediately implies P3n.

With this preliminary work we are now ready to prove 6.5:

Proof of 6.5. We will use Theorem 6.3 to show that the L∗-theory RPT admits quanti�er elim-
ination. For the proof of the �rst condition let D = (D,A, (Pn), λ) be a model of RPT∀. Then,
by Lemma 2.13, there is R = (R,B, (Qn), µ) |= RPT with D ⊆ R. Note that in the language of
ordered rings every substructure is an integral domain. Hence, let K be the fraction �eld of D.
Then K is certainly an ordered �eld and we have K ⊆ R.
We will verify condition (1) in two steps. At �rst we will show that R induces an L∗-structure

on K and that this L∗-structure is actually independent of the speci�c choice of R, i.e. is the
only one that makes K into a Σ∗∀-model and extends the L∗-structure on D. Secondly, we will
show that R also induces an L∗-structure on the real closure K of K and that this is the only
one which makes K into a model of RPT and extends the L∗-structure on D. We will then see
that K with the induced structure is a RPT-closure of D.
Step 1: It su�ces to show the following:

(a) B ∩K = {a/b : a, b ∈ A} ,
(b) Qn ∩K = {a/b : a, b ∈ Pn} , and
(c) for 0 < a, b ∈ D, where a/b is positive in K, µ(a/b) only depends on λ.

We will start by showing (c): So, let 0 < a, b ∈ D, such that a/b > 0 in K. It holds that
0 < λ(a) ≤ a < 2 · λ(a), as well as 0 < λ(b) ≤ b < 2 · λ(b), so λ(a)/2λ(b) < a/b, and with similar
arguments we get

1

2
· λ(a)

λ(b)
<
a

b
< 2 · λ(a)

λ(b)
.

Note that µ restricted to D is just λ. Since B is a multiplicative group, it holds that λ(a)/λ(b) ∈
B, as well as λ(a)/2λ(b) ∈ B and 2λ(a)/λ(b) ∈ B.
Now we are in one of the two situations: Either we have a/b < λ(a)/λ(b) or a/b ≥ λ(a)/λ(b).

In the case that
1

2
· λ(a)

λ(b)
<
a

b
<
λ(a)

λ(b)
,

it follows that

µ
(a
b

)
=

1

2
· λ(a)

λ(b)
,

as µ assigns to a/b the nearest element of B which is less than or equal to a/b. On the other
hand if

λ(a)

λ(b)
≤ a

b
< 2 · λ(a)

λ(b)
,

then we obtain

µ
(a
b

)
=
λ(a)

λ(b)
.

This shows (c). Now it is easy to see (a): ⊇ : If a, b ∈ A, then a/b = λ(a)/λ(b) = µ(a/b). Hence,
a/b ∈ B ∩K. ⊆ : For the other inclusion let x ∈ B ∩K. Then x = a/b for some a, b ∈ D. It
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holds a/b = µ(a/b) = λ(a)/λ(b). Thus, we obtain

B ∩K =
{a
b

: a, b ∈ A
}
.

It remains to show (b): ⊇ : Let a, b ∈ Pn. Since Pn ⊆ Qn, it follows that a, b ∈ Qn. By
Lemma 6.11, Qn is a group. Hence, a/b ∈ Qn. As a and b are in D, clearly a/b ∈ K. Thus,
a/b ∈ Qn ∩K.

⊆ : Let a, b ∈ D with a/b ∈ Qn ∩ K. Then a/b ∈ B ∩ K, which implies by (a) that there
exist x and y in A such that a/b = x/y. As x, y ∈ A, by Lemma 6.13, there are unique
`, k ∈ {0, . . . , n− 1} such that 2`x, 2ky ∈ Pn. Hence,

2`x

2ky
= 2`−k · x

y
= 2`−k · a

b
∈ Qn.

But it already holds that a/b ∈ Qn. By uniqueness of ` and k, it follows ` − k = 0 mod n. As
`, k ∈ {0, . . . n− 1}, we obtain ` = k. Thus,

a

b
=

2kx

2ky
,

where 2kx, 2ky ∈ Pn. This proves (b).
Step 2: We will now move on to the real closure K of K. Analogously we will show that R

induces an L∗-structure on K and that this L∗-structure is independent of the speci�c choice of
R, i.e. that it is the only one that makes K into a Σ∗∀-model and extends the L∗-structure on D.
In order to do so, we consider the extension v : K → Γ ∪ {∞}, as in Lemma 6.9. We will show
that in the representation

v(x) =
1

n
· v(y),

y can even be chosen such that y ∈ Qn:
Since y and µ(y) are in the same archimedean class and therefore have the same valuation, we

can replace y by µ(y) and, thus, assume without loss of generality that y ∈ B. By Lemma 6.13,
then exactly one of y, 2y, . . . , 2n−1y belongs to Qn. And since this element is also in the same
archimedean class as y itself, it has the same valuation and we may even suppose that y ∈ Qn.
Therefore, it has an nth root in B, say y

1
n , which has the same archimedean class as the element

x, that we started with. Now let us �x an arbitrary x ∈ K with x > 0. We are going to show
the following:

2k · y
1
n ≤ x < 2k+1 · y

1
n for some k ∈ Z. (6.1)

Since there is m ∈ N such that 1/m < x/y
1
n < m, we can take ` ∈ N such that 2` > m and

obtain

2−`y
1
n < x < 2`y

1
n .

Now choose k ∈ N such that k ≤ `, and such that x < 2k+1y
1
n and x ≥ 2ky

1
n . Thus,

2ky
1
n ≤ x < 2k+1y

1
n

and 2ky
1
n ∈ B ∩K. Hence, µ(x) = 2ky

1
n . This proves (6.1) and shows that K is closed under µ.
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It remains to show that B ∩K and Qn ∩K are independent of R. In order to do so, we will
�rst show that

B ∩K =

∞⋃
n=1

{y
1
n : y ∈ Qn ∩K}.

⊆ : Let x ∈ B ∩K. Then, as shown before, there exist ỹ ∈ Qn and k ∈ Z, such that µ(x) = x =

2kỹ
1
n . Thus, x =

(
2knỹ

) 1
n and by setting y := 2knỹ we obtain that x = y

1
n , where y ∈ B ∩K.

⊇ : For the other inclusion let n ≥ 1 and y ∈ Qn ∩K. Then it has an nth root in B, which
implies that y

1
n ∈ B. Since K is real closed, this root also lies in K. We have already shown

that Qn ∩K is independent of R, i.e. also B ∩K is independent of R.
Let us consider Qn ∩K. An element x taken from this set is positive, lies in K, and has an

nth root in B. Since K is real closed, every positive element has an nth root for every n. So, for
this element x to be in Qn ∩K, means that its uniquely determined nth root is in B. Hence, we
obtain Qn ∩K = {xn : x ∈ B ∩K}. As B ∩K is independent of R, also Qn ∩K is independent
of R.
Thus, we have seen that the induced L∗-structure on K by R is the only one which makes

K into a model of RPT∀ and extends the L∗-structure on D. We denote this L∗-structure by
K. By Lemma 6.12, K is already a model of RPT. This is the desired RPT-closure of D: Since
D is an integral domain, the smallest real closed �eld that contains D is the real closure of its
�eld of fractions. The induced structure on K by an arbitrary supermodel R is unique. Hence,
two di�erent supermodels R and R′ induce the same structure on K. This means that K can be
embedded over D into any model N |= RPT with D ⊆ N . Thus, we have completed the proof
of the �rst condition of Theorem 6.3.

Next, we come to the veri�cation of condition (2). Let K ( R be two models of RPT,
where K = (K,A, (Pn), λ) and R = (R,B, (Qn), µ). Then either they have the same amount of
archimedean classes or R has more archimedean classes than K. We will �rst consider the case
in which they have the same number of archimedean classes: Since each archimedean class is
respresented by an element of A, or B, respectively, it follows that A and B coincide: Let a ∈ A.
Then there is b ∈ B with [a] = [b]. By Lemma 6.10 (c) there is ` ∈ Z such that 2`a = b, so b ∈ A.
The other implication follows similarly. Hence, A = B. Further, µ takes its values in K.

Let κ := |R|. By Theorem 5.10, there exists a κ-saturated elementary extension of K, say
K̃ = (K̃, Ã, (P̃n), λ̃)). Note that K, R, and K̃ are real closed �elds with K ⊆ R and K � K̃.
Denote these embeddings by h and f , respectively. By identifying K with its image under h
in R, we may assume that h = id. Since the theory of real closed �elds RCF admits quanti�er
elimination, it is model complete. Hence, h is an elementary embedding. Let φ(v) be a formula
in the language of ordered rings and k ∈ K. We have

K̃ |= φ(f(k))⇔ K |= φ(k)⇔ R |= φ(k).

Thus, f is a partial elementary embedding from K ⊆ R to K̃. Since K̃,R |= RCF, |R| ≤ κ,
and K � K̃, the prerequisites of Lemma 5.11 are ful�lled and the partial elementary embedding
from K into K̃ can be extended to an elementary embedding of ordered �elds from R into K̃.

We will now show that the L∗-structure on R given by R is the only one that makes R into a
model of RPT and extends the L∗-structure of K. Because then the L∗-structure on R induced
by K̃ coincides with the L∗-structure given by R. Hence, it follows that also R can be embedded
over K into K̃ as models of RPT.
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So, suppose there is R′ = (R,B′, (Q′n), µ′), another model of RPT which extends K. Then
again, B′ = A = B. The set Q′n consists exactly of all the elements in R which have an nth root
in B′ = B, thus, Q′n = Qn. Since R has the same archimedean classes as K, and K ⊆ R, K
is dense in R. They both extend λ, therefore, also µ and µ′ coincide. So the structure of R is
indeed uniquely determined.

We have shown that R can be embedded over K into K̃. Hence, for any b ∈ RrK, K(b) can
be embedded over K into K̃, an elementary extension of K.
We come to the second case: If on the other hand R has more archimedean classes than K,

then clearly A ( B. So let b ∈ BrA. For each natural number n ∈ N we take

in ∈ {0, . . . , n− 1} such that b = 2in · qn for some qn ∈ Qn.

By Lemma 6.13, we can choose in this way.

Let us consider the �eld extension K(b) with the order induced by R. First, we will show that
there is a structure on K(b) induced by R. It su�ces to show that K(b) is closed under µ, as
then an L∗-structure on K(b) is given by

Kb = (K(b), B ∩K(b), (Qn ∩K(b)), µ
∣∣
K(b)

).

For this we need the following identity:

The value group of K(b) is

v(K(b)×) = v(K×) ⊕ v(〈b〉) = v(K×) ⊕ Z · v(b), (6.2)

where 〈b〉 is the multiplicative group generated by b and the sums are direct. This identity can
be found, for instance, in [Kuh, Lemma 6.3]. Hence, for every positive element x ∈ K(b) there
exist y ∈ K× and ` ∈ Z such that v(x) = v(y) + ` · v(b) = v(yb`), where ` is unique. By Lemma
6.10 we can replace y by an element a′ of A. It follows that v(x)− v(a′b`) = v(x · a′−1b−`) = 0,
which implies that there is k ∈ Z such that 2k ≤ x · a′−1b−` < 2k+1. This yields

2ka′b` ≤ x < 2k+1a′b`,

which means that every positive element x of K(b) lies between two elements ab` and 2ab` where
a = 2ka′ ∈ A and ` ∈ Z. These two elements ab` and 2ab` certainly lie in B and in K(b). Hence,
µ(x) = ab` ∈ K(b), which implies that K(b) is closed under µ.

Thus, K ⊆ Kb ⊆ R and, therefore, Kb |= RPT∀.

Note that for each n, since b = 2in · qn with qn ∈ Qn, we have qn = 2−in · b ∈ K(b). Thus,
b = 2in · qn, where qn ∈ Qn ∩K(b).

Next, let K′b = (K(b), A(b), (Pn(b)), λb) be another structure on K(b) satisfying for each n ∈ N
that b = 2in · sn with sn ∈ Pn(b). We will show that K′b = Kb, i.e. the following:

(a) B ∩K(b) = A(b),
(b) Qn ∩K(b) = Pn(b), and
(c) µ

∣∣
K(b)

= λb.

First note that in Qn, there is tn such that b = 2in · tn. But also there is sn ∈ Pn(b) such
that b = 2in · sn. This, however, implies that tn = sn. Hence, we obtain b = 2in · qn for some
qn ∈ Qn ∩ Pn(b).
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Now, in order to show (a), we �rst claim that

B ∩K(b) = {ab` : a ∈ A and ` ∈ Z}. (6.3)

⊇ : Let x = ab` for some a ∈ A and ` ∈ Z. Since A ⊆ B, it follows immediately that
x ∈ B ∩K(b).

⊆ : Now, let x ∈ B ∩ K(b). Again by (6.2), for every positive element x ∈ K(b) there are
a ∈ A and ` ∈ Z such that v(x) = v(a) + ` · v(b) = v(ab`), where ` is unique. This means that
x and ab` are both in B and part of the same archimedean class. Hence, they only di�er in a
power of 2, i.e. x = a′ · b`, where a′ = 2ka ∈ A for some k ∈ Z. This proves equation (6.3) above.

Next, we will show that
{ab` : a ∈ A and ` ∈ Z} = A(b), (6.4)

as this will imply (a).

⊆ : Consider P1(b). It holds that b = 2i1 ·q1 for some q1 ∈ P1(b)∩Q1. But Q1 = B and b ∈ B.
Therefore, i1 = 0. Hence, b ∈ P1(b) ⊆ A(b). So any element of the form ab`, where a ∈ A and
` ∈ Z, is contained in A(b).

⊇ : By Lemma 6.10, each archimedean class of K(b) has a representative from A(b). Hence,
the identity (6.2) also yields, by the same arguments as before, that for every x ∈ A(b) there is
a ∈ A and ` ∈ Z such that x = ab`. This proves equation (6.4) and, thus, implies (a).

Next, we will show (b): ⊆ : Let x ∈ Qn ∩ K(b). Then x ∈ B ∩ K(b) and, therefore, by
(a), there exists a ∈ A and ` ∈ Z such that x = ab`. By assumption there is qn ∈ Pn(b) ∩ Qn
such that b = 2in · qn. This yields that x = ab` = a · 2in`q`n. As Qn is a group, we obtain
xq−`n = a · 2in` ∈ Qn, because x, qn ∈ Qn. But a ∈ K. It follows that xq−`n ∈ Qn ∩ K = Pn.
Hence, xq−`n ∈ Pn. As K(b) is a �eld, by Lemma 6.11, also Pn(b) is a group. Thus, since
Pn ⊆ Pn(b), we obtain x = xq−`n q`n ∈ Pn(b), which was to be shown.

⊇ : On the contrary, let x ∈ Pn(b). Certainly, x ∈ K(b). What we need to show is that
x ∈ Qn. By Lemma 6.11, it holds Pn(b) ⊆ A(b). Hence, there is a ∈ A and ` ∈ Z such that
x = ab`. Moreover, there is qn ∈ Pn(b)∩Qn such that b = 2in ·qn. Hence, xq−`n = ab`q−`n = a·2in`.
As xq−`n ∈ Pn(b) and a ∈ K, we obtain a · 2in` ∈ Pn(b) ∩K. But Pn(b) ∩K = Pn ⊆ Qn. Thus,
a · 2in` ∈ Qn. This yields x = ab` = a · 2in`q`n ∈ Qn. This �nishes the proof of (b).
It remains to show (c): We have already shown that for every positive element x of K(b) there

is a ∈ A and ` ∈ Z, such that x lies between ab` and 2ab`. By part (a), ab`, 2ab` ∈ B ∩K(b) and
also ab`, 2ab` ∈ A(b) Hence, µ

∣∣
K(b)

and λb coincide. This shows (c).

Hence, we have shown that K′b = Kb. We will from now on simply write

Kb = (K(b), A(b), (Pn(b)), λb).

Now, let Kb = (K(b), A(b), (Pn(b)), λb) be the RPT-closure of Kb. We showed in condition (1)
that this exist and that K(b) is the real closure of K(b).

Let κ := |A(b)| and let K̃ = (K̃, Ã, (P̃n), λ̃) be a κ-saturated elementary extension of K.
Let us call this elementary embedding ψ. Since K, K̃, and Kb are models of RPT, by Lemma
6.14, the structures A = (A, ·,÷, <, 1, 2, (Pn)), Ã = (Ã, ·,÷, <, 1, 2, (P̃n)), and Ab = (A(b), ·,÷,
<, 1, 2, (Pn(b))) are models of Pr. Moreover, Ã is as well a κ-saturated elementary extension of
A with elementary embedding φ = ψ

∣∣
A
. Since A � Ã, A ⊆ Ab and the theory of Presburger
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Arithmetic eliminates quanti�ers, we are in the same situation as earlier with RCF and can,
thus, apply Lemma 5.11. We obtain that φ : A → Ã extends to an elementary embedding
φ′ : Ab → Ã.
We will now extend ψ to an embedding ψ′ from Kb into K̃. In order to do so, we only need to

determine the image of b under ψ′. Since each archimedean class fromK(b) is already represented
in A(b) and φ′ preserves the order on A(b) and, hence, on A(b), we can de�ne ψ′(b) = φ′(b). Now
ψ′ embeds K(b) into K̃ as ordered �elds. We will from now on write ψ′ as the identity map.

Now, since K(b) ⊆ K̃ and K̃ |= RPT, by earlier observations K̃ induces an L∗-structure on
K(b). Moreover, since b · 2−in ∈ Pn(b) ⊆ Pn(b),

b · 2−in = ψ′(b · 2−in) = φ′(b · 2−in) ∈ P̃n.

So, b = 2in ·pn for some pn ∈ P̃n. Hence, the L∗-structure which K̃ induces on K(b) is Kb. Thus,
Kb ⊆ K̃ and this embedding preserves K.
In order to �nally establish condition (2), we need to show that K(b), the smallest substructure

ofR which contains bothK and b, can be embedded over K into K̃. But since Kb is a substructure
of R whose underlying universe contains both K and b, also K(b) ⊆ Kb. As K(b) is embedded
in Kb over K, it is also embedded in K̃ over K.
This �nishes our proof.

Of course, one can replace the number 2 by any positive real number, since it does not play
any special role in the results. More precisely, let c be a new constant symbol, and let c-RPT be
theory RPT except that �2 � is everywhere replaced by �c � and the axiom c > 1 is added. We
then get the following result:

6.15 Corollary. c-RPT admits elimination of quanti�ers.

In the proof, we have seen that one is rather free in the choice of b. In [vdD], van den Dries
points out that this is the main di�erence of his quanti�er elimination test to the usual tests.





7 Applications

Quanti�er elimination is a very powerful property, as it helps in the question of completeness and
decidability as well as in the study of de�nable sets. It also has some geometric interpretations
and, hence, many applications in algebraic geometry (see for example [BoCoRo]). The well-known
Tarski�Seidenberg Theorem or Hilbert's 17th Problem follow from quanti�er elimination in real
closed �elds, whereas Hilbert's Nullstellensatz follows from quanti�er elimination of algebraically
closed �elds, just to name a few geometric results. In di�erential algebra, there exists an analogue
of Hilbert's Nullstellensatz, which follows from quanti�er elimination in di�erentially closed �elds.

This chapter pursues the goal of giving a few examples from di�erent realms of what quanti�er
elimination can lead to. We will �rst see one geometric consequence of quanti�er elimination,
namely the Di�erential Nullstellensatz. Afterwards we will set our focus on completeness and de-
cidability. We will conclude this last chapter and hereby this thesis with a section on applications
of quanti�er elimination to the better understanding of de�nable sets.

7.1 One Geometric Consequence

There are many geometric interpretations of quanti�er elimination of di�erent theories. Without
denying the importance of such, we will only give one here. While Hilbert's Nullstellensatz for
algebraically closed �elds is a fundamental theorem in algebraic geometry, there is an analogue in
di�erential algebra, namely the Di�erential Nullstellensatz. Since the Di�erential Nullstellensatz
is not as well-known, we decided to give a proof of this theorem instead. We will deduce it from
quanti�er elimination in di�erentially closed �elds.

7.1 Theorem (Di�erential Nullstellensatz). Let k be a di�erential �eld of characteristic 0 and
let Σ be a �nite system of di�erential polynomial equations and inequations over k in several
unknowns such that Σ has a solution in some extension ` ⊇ k. Then Σ has a solution in any
di�erentially closed �eld K ⊇ k.

Proof. See for example [Mar96, Corollary 2.6] or [Poi, Theorem 6.17]. Let L be a di�erentially
closed �eld containing ` and let K be an arbitrary di�erentially closed �eld containing k. Their
existence is ensured by Theorem 5.24. Since ` ⊆ L, there is also in L a solution to Σ. We will
show that K contains a solution to Σ.

The di�erential �eld k is a common substructure of L and K. Applying Theorem 3.3, by
quanti�er elimination, L |= ∃v̄ Σ(v̄) implies K |= ∃v̄ Σ(v̄). Hence, every di�erentially closed
extension of k contains a solution to Σ.
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7.2 Completeness and Decidability

Lemma 2.7 shows that in a complete theory all of its models satisfy the same L-sentences. This
is a very powerful property. In this section we will prove completeness and decidability for all of
the treated theories. In the case of decidability we will not give proofs in much detail.

The following theorem gives a su�cient condition for completeness.

7.2 Theorem. Let T be a model complete L-theory. If there is M0 |= T which embeds into
every model of T , then T is complete.

Proof. Suppose that there is M0 |= T such that M0 embeds into every model of T . Consider
two modelsM,N |= T . Then there is an L-embedding fromM0 intoM and one fromM0 into
M. Since T is model complete, the L-embeddings are elementary. Hence, for every L-sentence
φ we have

M |= φ ⇔ M0 |= φ ⇔ N |= φ.

Thus,M and N are elementarily equivalent and, by Lemma 2.7, T is complete.

We will now apply this theorem to our previous theories and show that all of them are complete.

7.3 Corollary. (i) The theory ACF of algebraically closed �elds of characteristic 0 in the
language of rings is complete.

(ii) The theory RCF of real closed �elds in the language of ordered rings is complete.
(iii) The theory Pr of Presburger Arithmetic in the language 〈+ ,− ;< ,P2 , P3 , . . . ; 0 , 1〉 is com-

plete.
(iv) The theory DCF of di�erentially closed �elds of characteristic 0 in the language 〈+ ,− , · , δ ;

0 , 1〉 is complete.
(v) The theory RPT in the language L∗ = 〈+ ,− , · , λ ;< ,A , P1 , P2 , P3 , . . . ; 0 , 1〉 is complete.

Proof. (i) ACF is the theory of algebraically closed �elds of characteristic 0. The �eld of the
rationals Q is contained in every in�nite �eld. Thus, the algebraic closure of Q can be embedded
into every model of ACF. Quanti�er elimination implies model completeness. Hence, ACF is
complete.

(ii) Every real closed �eld has characteristic 0. Thus, Q is also contained in every real closed
�eld. Hence, the real closure of Q can be embedded into every model of RCF. By quanti�er
elimination, RCF is complete.

(iii) Every model of Pr contains the ring of integers Z. Since Pr allows elimination of
quanti�ers and is therefore model complete, Pr is complete.

(iv) DCF is the theory of di�erentially closed �elds of characteristic 0. The �eld of rationals
Q together with the natural derivation δ(c) = 0 for all c ∈ Q is contained in every model of DCF.
Hence, again by quanti�er elimination, DCF is complete.

(v) Let Qrc be the real closure of Q. As Qrc is contained in every real closed �eld, and 2Z is
contained in every multiplicative subgroup of positive elements of Qrc that contains 2, (Qrc, 2Z)
can be embedded into every model of RPT. Hence, also RPT is complete.

Next we come to the concept of decidability. Whenever we use the term �algorithm �, the
reader who is familiar with theoretical computer science may imagine a register machine or a



Completeness and Decidability 61

Turing machine. They are abstract models of computation which are used to simulate the logic
of algorithms. For this part we refer to [Mar02, page 42] or, for a more detailled approach, see
[EbFlTh, Sections 10.2 and 10.6].

7.4 De�nition. A set S is called recursive if there is an algorithm that decides after a �nite
number of steps whether a given object is an element of the set or not. An L-theory T is called
decidable if there is an algorithm that, when given an L-sentence φ as input, decides whether
T |= φ.

7.5 Proposition. Every L-theory T which is recursively axiomatizable and complete is decidable.

Proof. See for example [EbFlTh, Satz 10.6.5]. Since many authors use di�erent de�nitions, we
will roughly explain how the proof works: One �rst shows that T is recursively enumerable. This
means, we show that there is an algorithm which lists exactly the L-sentences φ in T . Let Σ be
the recursive axiom system of T . Let us �rst have a list of all L-sentences. Since Σ is recursive,
the algorithm can then decide whether or not the antecedent of each L-sentence φ is in Σ or is
a conjunction of elements of Σ. If this is the case, then the algorithm shall put the consequent
of φ on the list.

Now, we have a list of all L-sentences in T . Then for a given L-sentence φ the algorithm can
go systematically through the list and check whether it �nds φ or ¬φ.

This proposition yields the following strong results:

7.6 Corollary. All of the theories from Corollary 7.3 that we have treated in this thesis are
decidable.

It was Tarski who �rst showed completeness and decidability for the �eld of real numbers. His
proof gave an explicit algorithm for eliminating quanti�ers. This proof can be found in [Tar,
Section 2]. He makes use of Theorem 3.2 and gives an algorithm to eliminate one existential
quanti�er at a time. In fact, in his paper, he shows even more: Tarksi gave a decision method,
i.e. an algorithm that decides for a given sentences in a �nite number of steps if it is contained
in a certain class of sentences or not.

So far, all our proofs of quanti�er elimination have been non-constructive. Tarksi, however,
provided for the theory of real closed �elds an algorithm to explicitly �nd an equivalent quanti�er-
free formula. Also, Presburger's proof of quanti�er elimination for Presburger Arithmetic was
constructive. In fact, in all of our cases one can give an explicit e�ective procedure. The following
lemma tells us that for decidable theories there is an algorithm to eliminate quantifers.

7.7 Theorem. Consider a decidable L-theory T which allows elimination of quanti�ers. Then
there is an algorithm which, when given an L-formula φ(v) as input, will output a quanti�er-free
L-formula ψ(v) such that T |= ∀v (φ(v)↔ ψ(v)).

Proof. See [Mar02, Proposition 3.1.22]. Given φ(v) as an input, the algorithm searches for a
quanti�er-free formula ψ(v) such that T |= ∀v (φ(v) ↔ ψ(v)). Since T is decidable this is an
e�ective search. Because T has quanti�er-elimination, we will eventually �nd ψ(v).

Even though there exist algorithms for e�ective quanti�er elimination, the complexities of
these algorithms are in general very high.
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In [vdD], van den Dries asks the question whether similar results as completeness and decid-
ability could be obtained for the structure (R, 2Z, 3Z). Philipp Hieronymi answered this question
in [Hie] negatively: If another predicate for a multiplicative discrete set is added to RPT, then
this theory de�nes the integers. By Gödels Incompleteness Theorem, this means that the theory
cannot be complete nor decidable.

7.3 De�nable Sets

In model theory we often try to understand which sets one can achieve by only using symbols
from the language. Such sets are called de�nable.

7.8 De�nition. LetM be an L-structure and B ⊆ M . A set S ⊆ Mn is called B-de�nable if
there is an L-formula φ(v1, . . . , vn, w) and b ∈ B such that

S = {a ∈Mn : M |= φ(a, b)}.

If B = ∅, we say that S is 0-de�nable. A function f : Mn →M is called B-de�nable if its graph
{(x, y) : f(x) = y} ⊆Mn+1 is a B-de�nable set.

We will give a few consequences of quanti�er elimination to the understanding of de�nable
sets. The �rst one is a well-known result about real closed �elds. We will start with the de�nition
of o-minimality:

7.9 De�nition. Let T be a theory in a language L containing <, such that the linear order
axioms O1, O2, and O3 hold in each model of T . Then T is called o-minimal, if for each
M |= T , every de�nable subset of M is a �nite union of points and intervals with endpoints in
M ∪ {±∞}.

O-minimality was introduced by Anand Pillay and Charles Steinhorn in 1984, based on van
den Dries' ideas. Its aim was to generalize some model-theoretic properties of the �eld of the
real numbers, cf. [Hod, page 82].

7.10 Theorem. The theory RCF is an o-minimal theory.

Proof. See [Mar02, Corollary 3.3.23]. Let R |= RCF. By quanti�er elimination, every de�nable
subset of R is a �nite Boolean combination of sets of the form {x ∈ R : p(x) = 0} and
{x ∈ R : q(x) > 0}. Solution sets of the �rst type are �nite or, in case of the zero-polynomial,
they contain all ] −∞,+∞[. Sets of the second form are �nite unions of intervals. Hence, we
conclude that any de�nable set is a �nite union of points and intervals, also allowing ±∞ as
endpoints.

One implication of quanti�er elimination of RPT that gives us control over the de�nable sets,
is the following theorem, which van den Dries gave in [vdD]:

7.11 Theorem. Each subset of R which is R-de�nable in L∗ is the union of an open set and a
countable set.

Proof. See [vdD, �1. Corollary]. The proof is by induction on complexity of terms.
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One further consequence of quanti�er elimination is based on the universal axiomatizability
of RPT in an extended language. This axiomatization is obtained as follows:

If we have a brief look at the axioms of RPT, one sees that there are two obstacles: Firstly
this is the axiom A4, namely the existence of multiplicatively inverse elements. And secondly,
axioms V3n contain existential quanti�ers. We can, however, add 0-de�nable functions to the
language.



64 Applications

Let L∗∗ be the language L∗ expanded by the new function symbols f and gn for each n ∈ N.
For the function symbol f we de�ne two new axioms:

U1: ∀x∀y (f(x) = y ↔ x · y = 1)
A4': ∀x A(f(x)).

Additionally, for the function symbols gn we de�ne two new classes of axioms

U2n: ∀x∀y ((x ≤ 0→ gn(x) = 0) ∧ (x > 0→ (gn(x) = y ↔ xn = y))
V3n': ∀x (Pn(x)↔ A(gn(x))).

Now RPT′ is obtained from the axioms of RPT except for A4 and V3n plus the above de�ned
axioms, i.e.

RPT′ = RPTr {A4, V3n, for all n ∈ N} ∪ {U1, A4', U2n, V3n', for all n ∈ N}.

The L∗∗-theory RPT′ is axiomatized only by universal L∗∗-sentences and, hence, has universal
axiomatization. Since the functions f and gn are de�nable in the original language L∗, we do not
obtain any more de�nable sets after augmenting the language by these function symbols. Also
note that we do not change the property of having quanti�er elimination: Any L∗∗-formula in
which f or gn occurs is equivalent to an L∗-formula and, hence, to a quanti�er-free formula.

The consequence of the above observations is the following result due to Chris Miller's doctoral
student Michael Tychonievich:

7.12 Proposition. Let A ⊆ Rn be an R-de�nable set in (R, 2Z). Then there exists k ∈ N and
an (n+ k)-ary set B that is R-de�nable such that the following holds: x ∈ A if and only if there
exists y ∈ (2Z)k such that (x, y) ∈ B.

This result can be found in [Tyc, Corollary 4.1.7]. However, we would like to mention that
during the research for this thesis we discovered a gap in his proof. In correspondence with Miller,
the result is still true and it follows from the fact that RPT′ has universal axiomatization.

Filling the gap is not subject of this work but might be of interest for future investigation.
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